// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "shader_recompiler/backend/bindings.h"
#include "shader_recompiler/backend/glsl/glsl_emit_context.h"
#include "shader_recompiler/frontend/ir/program.h"
#include "shader_recompiler/profile.h"
#include "shader_recompiler/runtime_info.h"
namespace Shader::Backend::GLSL {
namespace {
u32 CbufIndex(size_t offset) {
return (offset / 4) % 4;
}
char Swizzle(size_t offset) {
return "xyzw"[CbufIndex(offset)];
}
std::string_view InterpDecorator(Interpolation interp) {
switch (interp) {
case Interpolation::Smooth:
return "";
case Interpolation::Flat:
return "flat ";
case Interpolation::NoPerspective:
return "noperspective ";
}
throw InvalidArgument("Invalid interpolation {}", interp);
}
std::string_view InputArrayDecorator(Stage stage) {
switch (stage) {
case Stage::Geometry:
case Stage::TessellationControl:
case Stage::TessellationEval:
return "[]";
default:
return "";
}
}
bool StoresPerVertexAttributes(Stage stage) {
switch (stage) {
case Stage::VertexA:
case Stage::VertexB:
case Stage::Geometry:
case Stage::TessellationEval:
return true;
default:
return false;
}
}
std::string OutputDecorator(Stage stage, u32 size) {
switch (stage) {
case Stage::TessellationControl:
return fmt::format("[{}]", size);
default:
return "";
}
}
std::string_view SamplerType(TextureType type, bool is_depth) {
if (is_depth) {
switch (type) {
case TextureType::Color1D:
return "sampler1DShadow";
case TextureType::ColorArray1D:
return "sampler1DArrayShadow";
case TextureType::Color2D:
return "sampler2DShadow";
case TextureType::ColorArray2D:
return "sampler2DArrayShadow";
case TextureType::ColorCube:
return "samplerCubeShadow";
case TextureType::ColorArrayCube:
return "samplerCubeArrayShadow";
default:
throw NotImplementedException("Texture type: {}", type);
}
}
switch (type) {
case TextureType::Color1D:
return "sampler1D";
case TextureType::ColorArray1D:
return "sampler1DArray";
case TextureType::Color2D:
return "sampler2D";
case TextureType::ColorArray2D:
return "sampler2DArray";
case TextureType::Color3D:
return "sampler3D";
case TextureType::ColorCube:
return "samplerCube";
case TextureType::ColorArrayCube:
return "samplerCubeArray";
case TextureType::Buffer:
return "samplerBuffer";
default:
throw NotImplementedException("Texture type: {}", type);
}
}
std::string_view ImageType(TextureType type) {
switch (type) {
case TextureType::Color1D:
return "uimage1D";
case TextureType::ColorArray1D:
return "uimage1DArray";
case TextureType::Color2D:
return "uimage2D";
case TextureType::ColorArray2D:
return "uimage2DArray";
case TextureType::Color3D:
return "uimage3D";
case TextureType::ColorCube:
return "uimageCube";
case TextureType::ColorArrayCube:
return "uimageCubeArray";
case TextureType::Buffer:
return "uimageBuffer";
default:
throw NotImplementedException("Image type: {}", type);
}
}
std::string_view ImageFormatString(ImageFormat format) {
switch (format) {
case ImageFormat::Typeless:
return "";
case ImageFormat::R8_UINT:
return ",r8ui";
case ImageFormat::R8_SINT:
return ",r8i";
case ImageFormat::R16_UINT:
return ",r16ui";
case ImageFormat::R16_SINT:
return ",r16i";
case ImageFormat::R32_UINT:
return ",r32ui";
case ImageFormat::R32G32_UINT:
return ",rg32ui";
case ImageFormat::R32G32B32A32_UINT:
return ",rgba32ui";
default:
throw NotImplementedException("Image format: {}", format);
}
}
std::string_view ImageAccessQualifier(bool is_written, bool is_read) {
if (is_written && !is_read) {
return "writeonly ";
}
if (is_read && !is_written) {
return "readonly ";
}
return "";
}
std::string_view GetTessMode(TessPrimitive primitive) {
switch (primitive) {
case TessPrimitive::Triangles:
return "triangles";
case TessPrimitive::Quads:
return "quads";
case TessPrimitive::Isolines:
return "isolines";
}
throw InvalidArgument("Invalid tessellation primitive {}", primitive);
}
std::string_view GetTessSpacing(TessSpacing spacing) {
switch (spacing) {
case TessSpacing::Equal:
return "equal_spacing";
case TessSpacing::FractionalOdd:
return "fractional_odd_spacing";
case TessSpacing::FractionalEven:
return "fractional_even_spacing";
}
throw InvalidArgument("Invalid tessellation spacing {}", spacing);
}
std::string_view InputPrimitive(InputTopology topology) {
switch (topology) {
case InputTopology::Points:
return "points";
case InputTopology::Lines:
return "lines";
case InputTopology::LinesAdjacency:
return "lines_adjacency";
case InputTopology::Triangles:
return "triangles";
case InputTopology::TrianglesAdjacency:
return "triangles_adjacency";
}
throw InvalidArgument("Invalid input topology {}", topology);
}
std::string_view OutputPrimitive(OutputTopology topology) {
switch (topology) {
case OutputTopology::PointList:
return "points";
case OutputTopology::LineStrip:
return "line_strip";
case OutputTopology::TriangleStrip:
return "triangle_strip";
}
throw InvalidArgument("Invalid output topology {}", topology);
}
void SetupOutPerVertex(EmitContext& ctx, std::string& header) {
if (!StoresPerVertexAttributes(ctx.stage)) {
return;
}
if (ctx.uses_geometry_passthrough) {
return;
}
header += "out gl_PerVertex{vec4 gl_Position;";
if (ctx.info.stores[IR::Attribute::PointSize]) {
header += "float gl_PointSize;";
}
if (ctx.info.stores.ClipDistances()) {
header += "float gl_ClipDistance[];";
}
if (ctx.info.stores[IR::Attribute::ViewportIndex] &&
ctx.profile.support_viewport_index_layer_non_geometry && ctx.stage != Stage::Geometry) {
header += "int gl_ViewportIndex;";
}
header += "};";
if (ctx.info.stores[IR::Attribute::ViewportIndex] && ctx.stage == Stage::Geometry) {
header += "out int gl_ViewportIndex;";
}
}
void SetupInPerVertex(EmitContext& ctx, std::string& header) {
// Currently only required for TessellationControl to adhere to
// ARB_separate_shader_objects requirements
if (ctx.stage != Stage::TessellationControl) {
return;
}
const bool loads_position{ctx.info.loads.AnyComponent(IR::Attribute::PositionX)};
const bool loads_point_size{ctx.info.loads[IR::Attribute::PointSize]};
const bool loads_clip_distance{ctx.info.loads.ClipDistances()};
const bool loads_per_vertex{loads_position || loads_point_size || loads_clip_distance};
if (!loads_per_vertex) {
return;
}
header += "in gl_PerVertex{";
if (loads_position) {
header += "vec4 gl_Position;";
}
if (loads_point_size) {
header += "float gl_PointSize;";
}
if (loads_clip_distance) {
header += "float gl_ClipDistance[];";
}
header += "}gl_in[gl_MaxPatchVertices];";
}
} // Anonymous namespace
EmitContext::EmitContext(IR::Program& program, Bindings& bindings, const Profile& profile_,
const RuntimeInfo& runtime_info_)
: info{program.info}, profile{profile_}, runtime_info{runtime_info_}, stage{program.stage},
uses_geometry_passthrough{program.is_geometry_passthrough &&
profile.support_geometry_shader_passthrough} {
if (profile.need_fastmath_off) {
header += "#pragma optionNV(fastmath off)\n";
}
SetupExtensions();
switch (program.stage) {
case Stage::VertexA:
case Stage::VertexB:
stage_name = "vs";
break;
case Stage::TessellationControl:
stage_name = "tcs";
header += fmt::format("layout(vertices={})out;", program.invocations);
break;
case Stage::TessellationEval:
stage_name = "tes";
header += fmt::format("layout({},{},{})in;", GetTessMode(runtime_info.tess_primitive),
GetTessSpacing(runtime_info.tess_spacing),
runtime_info.tess_clockwise ? "cw" : "ccw");
break;
case Stage::Geometry:
stage_name = "gs";
header += fmt::format("layout({})in;", InputPrimitive(runtime_info.input_topology));
if (uses_geometry_passthrough) {
header += "layout(passthrough)in gl_PerVertex{vec4 gl_Position;};";
break;
} else if (program.is_geometry_passthrough &&
!profile.support_geometry_shader_passthrough) {
LOG_WARNING(Shader_GLSL, "Passthrough geometry program used but not supported");
}
header += fmt::format(
"layout({},max_vertices={})out;in gl_PerVertex{{vec4 gl_Position;}}gl_in[];",
OutputPrimitive(program.output_topology), program.output_vertices);
break;
case Stage::Fragment:
stage_name = "fs";
position_name = "gl_FragCoord";
if (runtime_info.force_early_z) {
header += "layout(early_fragment_tests)in;";
}
if (info.uses_sample_id) {
header += "in int gl_SampleID;";
}
if (info.stores_sample_mask) {
header += "out int gl_SampleMask[];";
}
break;
case Stage::Compute:
stage_name = "cs";
const u32 local_x{std::max(program.workgroup_size[0], 1u)};
const u32 local_y{std::max(program.workgroup_size[1], 1u)};
const u32 local_z{std::max(program.workgroup_size[2], 1u)};
header += fmt::format("layout(local_size_x={},local_size_y={},local_size_z={}) in;",
local_x, local_y, local_z);
break;
}
SetupOutPerVertex(*this, header);
SetupInPerVertex(*this, header);
for (size_t index = 0; index < IR::NUM_GENERICS; ++index) {
if (!info.loads.Generic(index) || !runtime_info.previous_stage_stores.Generic(index)) {
continue;
}
const auto qualifier{uses_geometry_passthrough ? "passthrough"
: fmt::format("location={}", index)};
header += fmt::format("layout({}){}in vec4 in_attr{}{};", qualifier,
InterpDecorator(info.interpolation[index]), index,
InputArrayDecorator(stage));
}
for (size_t index = 0; index < info.uses_patches.size(); ++index) {
if (!info.uses_patches[index]) {
continue;
}
const auto qualifier{stage == Stage::TessellationControl ? "out" : "in"};
header += fmt::format("layout(location={})patch {} vec4 patch{};", index, qualifier, index);
}
if (stage == Stage::Fragment) {
for (size_t index = 0; index < info.stores_frag_color.size(); ++index) {
if (!info.stores_frag_color[index] && !profile.need_declared_frag_colors) {
continue;
}
header += fmt::format("layout(location={})out vec4 frag_color{};", index, index);
}
}
for (size_t index = 0; index < IR::NUM_GENERICS; ++index) {
if (info.stores.Generic(index)) {
DefineGenericOutput(index, program.invocations);
}
}
if (info.uses_rescaling_uniform) {
header += "layout(location=0) uniform vec4 scaling;";
}
DefineConstantBuffers(bindings);
DefineStorageBuffers(bindings);
SetupImages(bindings);
SetupTextures(bindings);
DefineHelperFunctions();
DefineConstants();
}
void EmitContext::SetupExtensions() {
header += "#extension GL_ARB_separate_shader_objects : enable\n";
if (info.uses_shadow_lod && profile.support_gl_texture_shadow_lod) {
header += "#extension GL_EXT_texture_shadow_lod : enable\n";
}
if (info.uses_int64 && profile.support_int64) {
header += "#extension GL_ARB_gpu_shader_int64 : enable\n";
}
if (info.uses_int64_bit_atomics) {
header += "#extension GL_NV_shader_atomic_int64 : enable\n";
}
if (info.uses_atomic_f32_add) {
header += "#extension GL_NV_shader_atomic_float : enable\n";
}
if (info.uses_atomic_f16x2_add || info.uses_atomic_f16x2_min || info.uses_atomic_f16x2_max) {
header += "#extension GL_NV_shader_atomic_fp16_vector : enable\n";
}
if (info.uses_fp16) {
if (profile.support_gl_nv_gpu_shader_5) {
header += "#extension GL_NV_gpu_shader5 : enable\n";
}
if (profile.support_gl_amd_gpu_shader_half_float) {
header += "#extension GL_AMD_gpu_shader_half_float : enable\n";
}
}
if (info.uses_subgroup_invocation_id || info.uses_subgroup_mask || info.uses_subgroup_vote ||
info.uses_subgroup_shuffles || info.uses_fswzadd) {
header += "#extension GL_ARB_shader_ballot : enable\n"
"#extension GL_ARB_shader_group_vote : enable\n";
if (!info.uses_int64 && profile.support_int64) {
header += "#extension GL_ARB_gpu_shader_int64 : enable\n";
}
if (profile.support_gl_warp_intrinsics) {
header += "#extension GL_NV_shader_thread_shuffle : enable\n";
}
}
if ((info.stores[IR::Attribute::ViewportIndex] || info.stores[IR::Attribute::Layer]) &&
profile.support_viewport_index_layer_non_geometry && stage != Stage::Geometry) {
header += "#extension GL_ARB_shader_viewport_layer_array : enable\n";
}
if (info.uses_sparse_residency && profile.support_gl_sparse_textures) {
header += "#extension GL_ARB_sparse_texture2 : enable\n";
}
if (info.stores[IR::Attribute::ViewportMask] && profile.support_viewport_mask) {
header += "#extension GL_NV_viewport_array2 : enable\n";
}
if (info.uses_typeless_image_reads) {
header += "#extension GL_EXT_shader_image_load_formatted : enable\n";
}
if (info.uses_derivatives && profile.support_gl_derivative_control) {
header += "#extension GL_ARB_derivative_control : enable\n";
}
if (uses_geometry_passthrough) {
header += "#extension GL_NV_geometry_shader_passthrough : enable\n";
}
}
void EmitContext::DefineConstantBuffers(Bindings& bindings) {
if (info.constant_buffer_descriptors.empty()) {
return;
}
for (const auto& desc : info.constant_buffer_descriptors) {
header += fmt::format(
"layout(std140,binding={}) uniform {}_cbuf_{}{{vec4 {}_cbuf{}[{}];}};",
bindings.uniform_buffer, stage_name, desc.index, stage_name, desc.index, 4 * 1024);
bindings.uniform_buffer += desc.count;
}
}
void EmitContext::DefineStorageBuffers(Bindings& bindings) {
if (info.storage_buffers_descriptors.empty()) {
return;
}
u32 index{};
for (const auto& desc : info.storage_buffers_descriptors) {
header += fmt::format("layout(std430,binding={}) buffer {}_ssbo_{}{{uint {}_ssbo{}[];}};",
bindings.storage_buffer, stage_name, bindings.storage_buffer,
stage_name, index);
bindings.storage_buffer += desc.count;
index += desc.count;
}
}
void EmitContext::DefineGenericOutput(size_t index, u32 invocations) {
static constexpr std::string_view swizzle{"xyzw"};
const size_t base_index{static_cast<size_t>(IR::Attribute::Generic0X) + index * 4};
u32 element{0};
while (element < 4) {
std::string definition{fmt::format("layout(location={}", index)};
const u32 remainder{4 - element};
const TransformFeedbackVarying* xfb_varying{};
if (!runtime_info.xfb_varyings.empty()) {
xfb_varying = &runtime_info.xfb_varyings[base_index + element];
xfb_varying = xfb_varying && xfb_varying->components > 0 ? xfb_varying : nullptr;
}
const u32 num_components{xfb_varying ? xfb_varying->components : remainder};
if (element > 0) {
definition += fmt::format(",component={}", element);
}
if (xfb_varying) {
definition +=
fmt::format(",xfb_buffer={},xfb_stride={},xfb_offset={}", xfb_varying->buffer,
xfb_varying->stride, xfb_varying->offset);
}
std::string name{fmt::format("out_attr{}", index)};
if (num_components < 4 || element > 0) {
name += fmt::format("_{}", swizzle.substr(element, num_components));
}
const auto type{num_components == 1 ? "float" : fmt::format("vec{}", num_components)};
definition += fmt::format(")out {} {}{};", type, name, OutputDecorator(stage, invocations));
header += definition;
const GenericElementInfo element_info{
.name = name,
.first_element = element,
.num_components = num_components,
};
std::fill_n(output_generics[index].begin() + element, num_components, element_info);
element += num_components;
}
}
void EmitContext::DefineHelperFunctions() {
header += "\n#define ftoi floatBitsToInt\n#define ftou floatBitsToUint\n"
"#define itof intBitsToFloat\n#define utof uintBitsToFloat\n";
if (info.uses_global_increment || info.uses_shared_increment) {
header += "uint CasIncrement(uint op_a,uint op_b){return op_a>=op_b?0u:(op_a+1u);}";
}
if (info.uses_global_decrement || info.uses_shared_decrement) {
header += "uint CasDecrement(uint op_a,uint op_b){"
"return op_a==0||op_a>op_b?op_b:(op_a-1u);}";
}
if (info.uses_atomic_f32_add) {
header += "uint CasFloatAdd(uint op_a,float op_b){"
"return ftou(utof(op_a)+op_b);}";
}
if (info.uses_atomic_f32x2_add) {
header += "uint CasFloatAdd32x2(uint op_a,vec2 op_b){"
"return packHalf2x16(unpackHalf2x16(op_a)+op_b);}";
}
if (info.uses_atomic_f32x2_min) {
header += "uint CasFloatMin32x2(uint op_a,vec2 op_b){return "
"packHalf2x16(min(unpackHalf2x16(op_a),op_b));}";
}
if (info.uses_atomic_f32x2_max) {
header += "uint CasFloatMax32x2(uint op_a,vec2 op_b){return "
"packHalf2x16(max(unpackHalf2x16(op_a),op_b));}";
}
if (info.uses_atomic_f16x2_add) {
header += "uint CasFloatAdd16x2(uint op_a,f16vec2 op_b){return "
"packFloat2x16(unpackFloat2x16(op_a)+op_b);}";
}
if (info.uses_atomic_f16x2_min) {
header += "uint CasFloatMin16x2(uint op_a,f16vec2 op_b){return "
"packFloat2x16(min(unpackFloat2x16(op_a),op_b));}";
}
if (info.uses_atomic_f16x2_max) {
header += "uint CasFloatMax16x2(uint op_a,f16vec2 op_b){return "
"packFloat2x16(max(unpackFloat2x16(op_a),op_b));}";
}
if (info.uses_atomic_s32_min) {
header += "uint CasMinS32(uint op_a,uint op_b){return uint(min(int(op_a),int(op_b)));}";
}
if (info.uses_atomic_s32_max) {
header += "uint CasMaxS32(uint op_a,uint op_b){return uint(max(int(op_a),int(op_b)));}";
}
if (info.uses_global_memory && profile.support_int64) {
header += DefineGlobalMemoryFunctions();
}
if (info.loads_indexed_attributes) {
const bool is_array{stage == Stage::Geometry};
const auto vertex_arg{is_array ? ",uint vertex" : ""};
std::string func{
fmt::format("float IndexedAttrLoad(int offset{}){{int base_index=offset>>2;uint "
"masked_index=uint(base_index)&3u;switch(base_index>>2){{",
vertex_arg)};
if (info.loads.AnyComponent(IR::Attribute::PositionX)) {
const auto position_idx{is_array ? "gl_in[vertex]." : ""};
func += fmt::format("case {}:return {}{}[masked_index];",
static_cast<u32>(IR::Attribute::PositionX) >> 2, position_idx,
position_name);
}
const u32 base_attribute_value = static_cast<u32>(IR::Attribute::Generic0X) >> 2;
for (u32 index = 0; index < IR::NUM_GENERICS; ++index) {
if (!info.loads.Generic(index)) {
continue;
}
const auto vertex_idx{is_array ? "[vertex]" : ""};
func += fmt::format("case {}:return in_attr{}{}[masked_index];",
base_attribute_value + index, index, vertex_idx);
}
func += "default: return 0.0;}}";
header += func;
}
if (info.stores_indexed_attributes) {
// TODO
}
}
std::string EmitContext::DefineGlobalMemoryFunctions() {
const auto define_body{[&](std::string& func, size_t index, std::string_view return_statement) {
const auto& ssbo{info.storage_buffers_descriptors[index]};
const u32 size_cbuf_offset{ssbo.cbuf_offset + 8};
const auto ssbo_addr{fmt::format("ssbo_addr{}", index)};
const auto cbuf{fmt::format("{}_cbuf{}", stage_name, ssbo.cbuf_index)};
std::array<std::string, 2> addr_xy;
std::array<std::string, 2> size_xy;
for (size_t i = 0; i < addr_xy.size(); ++i) {
const auto addr_loc{ssbo.cbuf_offset + 4 * i};
const auto size_loc{size_cbuf_offset + 4 * i};
addr_xy[i] = fmt::format("ftou({}[{}].{})", cbuf, addr_loc / 16, Swizzle(addr_loc));
size_xy[i] = fmt::format("ftou({}[{}].{})", cbuf, size_loc / 16, Swizzle(size_loc));
}
const auto addr_pack{fmt::format("packUint2x32(uvec2({},{}))", addr_xy[0], addr_xy[1])};
const auto addr_statment{fmt::format("uint64_t {}={};", ssbo_addr, addr_pack)};
func += addr_statment;
const auto size_vec{fmt::format("uvec2({},{})", size_xy[0], size_xy[1])};
const auto comp_lhs{fmt::format("(addr>={})", ssbo_addr)};
const auto comp_rhs{fmt::format("(addr<({}+uint64_t({})))", ssbo_addr, size_vec)};
const auto comparison{fmt::format("if({}&&{}){{", comp_lhs, comp_rhs)};
func += comparison;
const auto ssbo_name{fmt::format("{}_ssbo{}", stage_name, index)};
func += fmt::format(fmt::runtime(return_statement), ssbo_name, ssbo_addr);
}};
std::string write_func{"void WriteGlobal32(uint64_t addr,uint data){"};
std::string write_func_64{"void WriteGlobal64(uint64_t addr,uvec2 data){"};
std::string write_func_128{"void WriteGlobal128(uint64_t addr,uvec4 data){"};
std::string load_func{"uint LoadGlobal32(uint64_t addr){"};
std::string load_func_64{"uvec2 LoadGlobal64(uint64_t addr){"};
std::string load_func_128{"uvec4 LoadGlobal128(uint64_t addr){"};
const size_t num_buffers{info.storage_buffers_descriptors.size()};
for (size_t index = 0; index < num_buffers; ++index) {
if (!info.nvn_buffer_used[index]) {
continue;
}
define_body(write_func, index, "{0}[uint(addr-{1})>>2]=data;return;}}");
define_body(write_func_64, index,
"{0}[uint(addr-{1})>>2]=data.x;{0}[uint(addr-{1}+4)>>2]=data.y;return;}}");
define_body(write_func_128, index,
"{0}[uint(addr-{1})>>2]=data.x;{0}[uint(addr-{1}+4)>>2]=data.y;{0}[uint("
"addr-{1}+8)>>2]=data.z;{0}[uint(addr-{1}+12)>>2]=data.w;return;}}");
define_body(load_func, index, "return {0}[uint(addr-{1})>>2];}}");
define_body(load_func_64, index,
"return uvec2({0}[uint(addr-{1})>>2],{0}[uint(addr-{1}+4)>>2]);}}");
define_body(load_func_128, index,
"return uvec4({0}[uint(addr-{1})>>2],{0}[uint(addr-{1}+4)>>2],{0}["
"uint(addr-{1}+8)>>2],{0}[uint(addr-{1}+12)>>2]);}}");
}
write_func += '}';
write_func_64 += '}';
write_func_128 += '}';
load_func += "return 0u;}";
load_func_64 += "return uvec2(0);}";
load_func_128 += "return uvec4(0);}";
return write_func + write_func_64 + write_func_128 + load_func + load_func_64 + load_func_128;
}
void EmitContext::SetupImages(Bindings& bindings) {
image_buffers.reserve(info.image_buffer_descriptors.size());
for (const auto& desc : info.image_buffer_descriptors) {
image_buffers.push_back({bindings.image, desc.count});
const auto format{ImageFormatString(desc.format)};
const auto qualifier{ImageAccessQualifier(desc.is_written, desc.is_read)};
const auto array_decorator{desc.count > 1 ? fmt::format("[{}]", desc.count) : ""};
header += fmt::format("layout(binding={}{}) uniform {}uimageBuffer img{}{};",
bindings.image, format, qualifier, bindings.image, array_decorator);
bindings.image += desc.count;
}
images.reserve(info.image_descriptors.size());
for (const auto& desc : info.image_descriptors) {
images.push_back({bindings.image, desc.count});
const auto format{ImageFormatString(desc.format)};
const auto image_type{ImageType(desc.type)};
const auto qualifier{ImageAccessQualifier(desc.is_written, desc.is_read)};
const auto array_decorator{desc.count > 1 ? fmt::format("[{}]", desc.count) : ""};
header += fmt::format("layout(binding={}{})uniform {}{} img{}{};", bindings.image, format,
qualifier, image_type, bindings.image, array_decorator);
bindings.image += desc.count;
}
}
void EmitContext::SetupTextures(Bindings& bindings) {
texture_buffers.reserve(info.texture_buffer_descriptors.size());
for (const auto& desc : info.texture_buffer_descriptors) {
texture_buffers.push_back({bindings.texture, desc.count});
const auto sampler_type{SamplerType(TextureType::Buffer, false)};
const auto array_decorator{desc.count > 1 ? fmt::format("[{}]", desc.count) : ""};
header += fmt::format("layout(binding={}) uniform {} tex{}{};", bindings.texture,
sampler_type, bindings.texture, array_decorator);
bindings.texture += desc.count;
}
textures.reserve(info.texture_descriptors.size());
for (const auto& desc : info.texture_descriptors) {
textures.push_back({bindings.texture, desc.count});
const auto sampler_type{SamplerType(desc.type, desc.is_depth)};
const auto array_decorator{desc.count > 1 ? fmt::format("[{}]", desc.count) : ""};
header += fmt::format("layout(binding={}) uniform {} tex{}{};", bindings.texture,
sampler_type, bindings.texture, array_decorator);
bindings.texture += desc.count;
}
}
void EmitContext::DefineConstants() {
if (info.uses_fswzadd) {
header += "const float FSWZ_A[]=float[4](-1.f,1.f,-1.f,0.f);"
"const float FSWZ_B[]=float[4](-1.f,-1.f,1.f,-1.f);";
}
}
} // namespace Shader::Backend::GLSL