// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include <boost/container/flat_map.hpp>
#include <boost/container/flat_set.hpp>
#include "common/common_types.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/result.h"
enum ThreadPriority : s32 {
THREADPRIO_HIGHEST = 0, ///< Highest thread priority
THREADPRIO_USERLAND_MAX = 24, ///< Highest thread priority for userland apps
THREADPRIO_DEFAULT = 48, ///< Default thread priority for userland apps
THREADPRIO_LOWEST = 63, ///< Lowest thread priority
};
enum ThreadProcessorId : s32 {
THREADPROCESSORID_DEFAULT = -2, ///< Run thread on default core specified by exheader
THREADPROCESSORID_ALL = -1, ///< Run thread on either core
THREADPROCESSORID_0 = 0, ///< Run thread on core 0 (AppCore)
THREADPROCESSORID_1 = 1, ///< Run thread on core 1 (SysCore)
THREADPROCESSORID_MAX = 2, ///< Processor ID must be less than this
};
enum ThreadStatus {
THREADSTATUS_RUNNING, ///< Currently running
THREADSTATUS_READY, ///< Ready to run
THREADSTATUS_WAIT_ARB, ///< Waiting on an address arbiter
THREADSTATUS_WAIT_SLEEP, ///< Waiting due to a SleepThread SVC
THREADSTATUS_WAIT_SYNCH, ///< Waiting due to a WaitSynchronization SVC
THREADSTATUS_DORMANT, ///< Created but not yet made ready
THREADSTATUS_DEAD ///< Run to completion, or forcefully terminated
};
namespace Kernel {
class Mutex;
class Process;
class Thread final : public WaitObject {
public:
/**
* Creates and returns a new thread. The new thread is immediately scheduled
* @param name The friendly name desired for the thread
* @param entry_point The address at which the thread should start execution
* @param priority The thread's priority
* @param arg User data to pass to the thread
* @param processor_id The ID(s) of the processors on which the thread is desired to be run
* @param stack_top The address of the thread's stack top
* @return A shared pointer to the newly created thread
*/
static ResultVal<SharedPtr<Thread>> Create(std::string name, VAddr entry_point, s32 priority,
u32 arg, s32 processor_id, VAddr stack_top);
std::string GetName() const override {
return name;
}
std::string GetTypeName() const override {
return "Thread";
}
static const HandleType HANDLE_TYPE = HandleType::Thread;
HandleType GetHandleType() const override {
return HANDLE_TYPE;
}
bool ShouldWait(Thread* thread) const override;
void Acquire(Thread* thread) override;
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
s32 GetPriority() const {
return current_priority;
}
/**
* Sets the thread's current priority
* @param priority The new priority
*/
void SetPriority(s32 priority);
/**
* Temporarily boosts the thread's priority until the next time it is scheduled
* @param priority The new priority
*/
void BoostPriority(s32 priority);
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
u32 GetThreadId() const {
return thread_id;
}
/**
* Resumes a thread from waiting
*/
void ResumeFromWait();
/**
* Schedules an event to wake up the specified thread after the specified delay
* @param nanoseconds The time this thread will be allowed to sleep for
*/
void WakeAfterDelay(s64 nanoseconds);
/**
* Sets the result after the thread awakens (from either WaitSynchronization SVC)
* @param result Value to set to the returned result
*/
void SetWaitSynchronizationResult(ResultCode result);
/**
* Sets the output parameter value after the thread awakens (from WaitSynchronizationN SVC only)
* @param output Value to set to the output parameter
*/
void SetWaitSynchronizationOutput(s32 output);
/**
* Retrieves the index that this particular object occupies in the list of objects
* that the thread passed to WaitSynchronizationN.
* It is used to set the output value of WaitSynchronizationN when the thread is awakened.
* @param object Object to query the index of.
*/
s32 GetWaitObjectIndex(const WaitObject* object) const {
return wait_objects_index.at(object->GetObjectId());
}
/**
* Stops a thread, invalidating it from further use
*/
void Stop();
/*
* Returns the Thread Local Storage address of the current thread
* @returns VAddr of the thread's TLS
*/
VAddr GetTLSAddress() const {
return tls_address;
}
/**
* Returns whether this thread is waiting for all the objects in
* its wait list to become ready, as a result of a WaitSynchronizationN call
* with wait_all = true, or a ReplyAndReceive call.
*/
bool IsSleepingOnWaitAll() const {
return !wait_objects.empty();
}
ARM_Interface::ThreadContext context;
u32 thread_id;
u32 status;
u32 entry_point;
u32 stack_top;
s32 nominal_priority; ///< Nominal thread priority, as set by the emulated application
s32 current_priority; ///< Current thread priority, can be temporarily changed
u64 last_running_ticks; ///< CPU tick when thread was last running
s32 processor_id;
VAddr tls_address; ///< Virtual address of the Thread Local Storage of the thread
/// Mutexes currently held by this thread, which will be released when it exits.
boost::container::flat_set<SharedPtr<Mutex>> held_mutexes;
SharedPtr<Process> owner_process; ///< Process that owns this thread
/// Objects that the thread is waiting on.
/// This is only populated when the thread should wait for all the objects to become ready.
std::vector<SharedPtr<WaitObject>> wait_objects;
/// Mapping of Object ids to their position in the last waitlist that this object waited on.
boost::container::flat_map<int, s32> wait_objects_index;
VAddr wait_address; ///< If waiting on an AddressArbiter, this is the arbitration address
/// True if the WaitSynchronizationN output parameter should be set on thread wakeup.
bool wait_set_output;
std::string name;
/// Handle used as userdata to reference this object when inserting into the CoreTiming queue.
Handle callback_handle;
private:
Thread();
~Thread() override;
};
/**
* Sets up the primary application thread
* @param entry_point The address at which the thread should start execution
* @param priority The priority to give the main thread
* @return A shared pointer to the main thread
*/
SharedPtr<Thread> SetupMainThread(u32 entry_point, s32 priority);
/**
* Reschedules to the next available thread (call after current thread is suspended)
*/
void Reschedule();
/**
* Arbitrate the highest priority thread that is waiting
* @param address The address for which waiting threads should be arbitrated
*/
Thread* ArbitrateHighestPriorityThread(u32 address);
/**
* Arbitrate all threads currently waiting.
* @param address The address for which waiting threads should be arbitrated
*/
void ArbitrateAllThreads(u32 address);
/**
* Gets the current thread
*/
Thread* GetCurrentThread();
/**
* Waits the current thread on a sleep
*/
void WaitCurrentThread_Sleep();
/**
* Waits the current thread from a WaitSynchronization call
* @param wait_objects Kernel objects that we are waiting on
* @param wait_set_output If true, set the output parameter on thread wakeup (for
* WaitSynchronizationN only)
*/
void WaitCurrentThread_WaitSynchronization(std::vector<SharedPtr<WaitObject>> wait_objects,
bool wait_set_output);
/**
* Waits the current thread from an ArbitrateAddress call
* @param wait_address Arbitration address used to resume from wait
*/
void WaitCurrentThread_ArbitrateAddress(VAddr wait_address);
/**
* Stops the current thread and removes it from the thread_list
*/
void ExitCurrentThread();
/**
* Initialize threading
*/
void ThreadingInit();
/**
* Shutdown threading
*/
void ThreadingShutdown();
/**
* Get a const reference to the thread list for debug use
*/
const std::vector<SharedPtr<Thread>>& GetThreadList();
} // namespace