// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <iterator>
#include <mutex>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_client_port.h"
#include "core/hle/kernel/k_client_session.h"
#include "core/hle/kernel/k_code_memory.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_memory_block.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_readable_event.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/k_transfer_memory.h"
#include "core/hle/kernel/k_writable_event.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/memory.h"
#include "core/reporter.h"
namespace Kernel::Svc {
namespace {
// Checks if address + size is greater than the given address
// This can return false if the size causes an overflow of a 64-bit type
// or if the given size is zero.
constexpr bool IsValidAddressRange(VAddr address, u64 size) {
return address + size > address;
}
// Helper function that performs the common sanity checks for svcMapMemory
// and svcUnmapMemory. This is doable, as both functions perform their sanitizing
// in the same order.
ResultCode MapUnmapMemorySanityChecks(const KPageTable& manager, VAddr dst_addr, VAddr src_addr,
u64 size) {
if (!Common::Is4KBAligned(dst_addr)) {
LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr);
return ResultInvalidAddress;
}
if (!Common::Is4KBAligned(src_addr)) {
LOG_ERROR(Kernel_SVC, "Source address is not aligned to 4KB, 0x{:016X}", src_addr);
return ResultInvalidSize;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is 0");
return ResultInvalidSize;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size);
return ResultInvalidSize;
}
if (!IsValidAddressRange(dst_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Destination is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
dst_addr, size);
return ResultInvalidCurrentMemory;
}
if (!IsValidAddressRange(src_addr, size)) {
LOG_ERROR(Kernel_SVC, "Source is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
src_addr, size);
return ResultInvalidCurrentMemory;
}
if (!manager.IsInsideAddressSpace(src_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Source is not within the address space, addr=0x{:016X}, size=0x{:016X}",
src_addr, size);
return ResultInvalidCurrentMemory;
}
if (manager.IsOutsideStackRegion(dst_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Destination is not within the stack region, addr=0x{:016X}, size=0x{:016X}",
dst_addr, size);
return ResultInvalidMemoryRegion;
}
if (manager.IsInsideHeapRegion(dst_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Destination does not fit within the heap region, addr=0x{:016X}, "
"size=0x{:016X}",
dst_addr, size);
return ResultInvalidMemoryRegion;
}
if (manager.IsInsideAliasRegion(dst_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Destination does not fit within the map region, addr=0x{:016X}, "
"size=0x{:016X}",
dst_addr, size);
return ResultInvalidMemoryRegion;
}
return ResultSuccess;
}
enum class ResourceLimitValueType {
CurrentValue,
LimitValue,
PeakValue,
};
} // Anonymous namespace
/// Set the process heap to a given Size. It can both extend and shrink the heap.
static ResultCode SetHeapSize(Core::System& system, VAddr* heap_addr, u64 heap_size) {
std::lock_guard lock{HLE::g_hle_lock};
LOG_TRACE(Kernel_SVC, "called, heap_size=0x{:X}", heap_size);
// Size must be a multiple of 0x200000 (2MB) and be equal to or less than 8GB.
if ((heap_size % 0x200000) != 0) {
LOG_ERROR(Kernel_SVC, "The heap size is not a multiple of 2MB, heap_size=0x{:016X}",
heap_size);
return ResultInvalidSize;
}
if (heap_size >= 0x200000000) {
LOG_ERROR(Kernel_SVC, "The heap size is not less than 8GB, heap_size=0x{:016X}", heap_size);
return ResultInvalidSize;
}
auto& page_table{system.Kernel().CurrentProcess()->PageTable()};
CASCADE_RESULT(*heap_addr, page_table.SetHeapSize(heap_size));
return ResultSuccess;
}
static ResultCode SetHeapSize32(Core::System& system, u32* heap_addr, u32 heap_size) {
VAddr temp_heap_addr{};
const ResultCode result{SetHeapSize(system, &temp_heap_addr, heap_size)};
*heap_addr = static_cast<u32>(temp_heap_addr);
return result;
}
static ResultCode SetMemoryAttribute(Core::System& system, VAddr address, u64 size, u32 mask,
u32 attribute) {
std::lock_guard lock{HLE::g_hle_lock};
LOG_DEBUG(Kernel_SVC,
"called, address=0x{:016X}, size=0x{:X}, mask=0x{:08X}, attribute=0x{:08X}", address,
size, mask, attribute);
if (!Common::Is4KBAligned(address)) {
LOG_ERROR(Kernel_SVC, "Address not page aligned (0x{:016X})", address);
return ResultInvalidAddress;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Invalid size (0x{:X}). Size must be non-zero and page aligned.",
size);
return ResultInvalidAddress;
}
if (!IsValidAddressRange(address, size)) {
LOG_ERROR(Kernel_SVC, "Address range overflowed (Address: 0x{:016X}, Size: 0x{:016X})",
address, size);
return ResultInvalidCurrentMemory;
}
const auto attributes{static_cast<MemoryAttribute>(mask | attribute)};
if (attributes != static_cast<MemoryAttribute>(mask) ||
(attributes | MemoryAttribute::Uncached) != MemoryAttribute::Uncached) {
LOG_ERROR(Kernel_SVC,
"Memory attribute doesn't match the given mask (Attribute: 0x{:X}, Mask: {:X}",
attribute, mask);
return ResultInvalidCombination;
}
auto& page_table{system.Kernel().CurrentProcess()->PageTable()};
return page_table.SetMemoryAttribute(address, size, static_cast<KMemoryAttribute>(mask),
static_cast<KMemoryAttribute>(attribute));
}
static ResultCode SetMemoryAttribute32(Core::System& system, u32 address, u32 size, u32 mask,
u32 attribute) {
return SetMemoryAttribute(system, address, size, mask, attribute);
}
/// Maps a memory range into a different range.
static ResultCode MapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size) {
std::lock_guard lock{HLE::g_hle_lock};
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
src_addr, size);
auto& page_table{system.Kernel().CurrentProcess()->PageTable()};
if (const ResultCode result{MapUnmapMemorySanityChecks(page_table, dst_addr, src_addr, size)};
result.IsError()) {
return result;
}
return page_table.Map(dst_addr, src_addr, size);
}
static ResultCode MapMemory32(Core::System& system, u32 dst_addr, u32 src_addr, u32 size) {
return MapMemory(system, dst_addr, src_addr, size);
}
/// Unmaps a region that was previously mapped with svcMapMemory
static ResultCode UnmapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size) {
std::lock_guard lock{HLE::g_hle_lock};
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
src_addr, size);
auto& page_table{system.Kernel().CurrentProcess()->PageTable()};
if (const ResultCode result{MapUnmapMemorySanityChecks(page_table, dst_addr, src_addr, size)};
result.IsError()) {
return result;
}
return page_table.Unmap(dst_addr, src_addr, size);
}
static ResultCode UnmapMemory32(Core::System& system, u32 dst_addr, u32 src_addr, u32 size) {
return UnmapMemory(system, dst_addr, src_addr, size);
}
/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToNamedPort(Core::System& system, Handle* out, VAddr port_name_address) {
auto& memory = system.Memory();
if (!memory.IsValidVirtualAddress(port_name_address)) {
LOG_ERROR(Kernel_SVC,
"Port Name Address is not a valid virtual address, port_name_address=0x{:016X}",
port_name_address);
return ResultNotFound;
}
static constexpr std::size_t PortNameMaxLength = 11;
// Read 1 char beyond the max allowed port name to detect names that are too long.
const std::string port_name = memory.ReadCString(port_name_address, PortNameMaxLength + 1);
if (port_name.size() > PortNameMaxLength) {
LOG_ERROR(Kernel_SVC, "Port name is too long, expected {} but got {}", PortNameMaxLength,
port_name.size());
return ResultOutOfRange;
}
LOG_TRACE(Kernel_SVC, "called port_name={}", port_name);
// Get the current handle table.
auto& kernel = system.Kernel();
auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
// Find the client port.
auto port = kernel.CreateNamedServicePort(port_name);
if (!port) {
LOG_ERROR(Kernel_SVC, "tried to connect to unknown port: {}", port_name);
return ResultNotFound;
}
// Reserve a handle for the port.
// NOTE: Nintendo really does write directly to the output handle here.
R_TRY(handle_table.Reserve(out));
auto handle_guard = SCOPE_GUARD({ handle_table.Unreserve(*out); });
// Create a session.
KClientSession* session{};
R_TRY(port->CreateSession(std::addressof(session)));
port->Close();
// Register the session in the table, close the extra reference.
handle_table.Register(*out, session);
session->Close();
// We succeeded.
handle_guard.Cancel();
return ResultSuccess;
}
static ResultCode ConnectToNamedPort32(Core::System& system, Handle* out_handle,
u32 port_name_address) {
return ConnectToNamedPort(system, out_handle, port_name_address);
}
/// Makes a blocking IPC call to an OS service.
static ResultCode SendSyncRequest(Core::System& system, Handle handle) {
auto& kernel = system.Kernel();
// Create the wait queue.
KThreadQueue wait_queue(kernel);
// Get the client session from its handle.
KScopedAutoObject session =
kernel.CurrentProcess()->GetHandleTable().GetObject<KClientSession>(handle);
R_UNLESS(session.IsNotNull(), ResultInvalidHandle);
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
auto thread = kernel.CurrentScheduler()->GetCurrentThread();
{
KScopedSchedulerLock lock(kernel);
// This is a synchronous request, so we should wait for our request to complete.
GetCurrentThread(kernel).BeginWait(std::addressof(wait_queue));
GetCurrentThread(kernel).SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
session->SendSyncRequest(&GetCurrentThread(kernel), system.Memory(), system.CoreTiming());
}
return thread->GetWaitResult();
}
static ResultCode SendSyncRequest32(Core::System& system, Handle handle) {
return SendSyncRequest(system, handle);
}
/// Get the ID for the specified thread.
static ResultCode GetThreadId(Core::System& system, u64* out_thread_id, Handle thread_handle) {
// Get the thread from its handle.
KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(thread_handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Get the thread's id.
*out_thread_id = thread->GetId();
return ResultSuccess;
}
static ResultCode GetThreadId32(Core::System& system, u32* out_thread_id_low,
u32* out_thread_id_high, Handle thread_handle) {
u64 out_thread_id{};
const ResultCode result{GetThreadId(system, &out_thread_id, thread_handle)};
*out_thread_id_low = static_cast<u32>(out_thread_id >> 32);
*out_thread_id_high = static_cast<u32>(out_thread_id & std::numeric_limits<u32>::max());
return result;
}
/// Gets the ID of the specified process or a specified thread's owning process.
static ResultCode GetProcessId(Core::System& system, u64* out_process_id, Handle handle) {
LOG_DEBUG(Kernel_SVC, "called handle=0x{:08X}", handle);
// Get the object from the handle table.
KScopedAutoObject obj =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KAutoObject>(
static_cast<Handle>(handle));
R_UNLESS(obj.IsNotNull(), ResultInvalidHandle);
// Get the process from the object.
KProcess* process = nullptr;
if (KProcess* p = obj->DynamicCast<KProcess*>(); p != nullptr) {
// The object is a process, so we can use it directly.
process = p;
} else if (KThread* t = obj->DynamicCast<KThread*>(); t != nullptr) {
// The object is a thread, so we want to use its parent.
process = reinterpret_cast<KThread*>(obj.GetPointerUnsafe())->GetOwnerProcess();
} else {
// TODO(bunnei): This should also handle debug objects before returning.
UNIMPLEMENTED_MSG("Debug objects not implemented");
}
// Make sure the target process exists.
R_UNLESS(process != nullptr, ResultInvalidHandle);
// Get the process id.
*out_process_id = process->GetId();
return ResultInvalidHandle;
}
static ResultCode GetProcessId32(Core::System& system, u32* out_process_id_low,
u32* out_process_id_high, Handle handle) {
u64 out_process_id{};
const auto result = GetProcessId(system, &out_process_id, handle);
*out_process_id_low = static_cast<u32>(out_process_id);
*out_process_id_high = static_cast<u32>(out_process_id >> 32);
return result;
}
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization(Core::System& system, s32* index, VAddr handles_address,
s32 num_handles, s64 nano_seconds) {
LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, num_handles={}, nano_seconds={}",
handles_address, num_handles, nano_seconds);
// Ensure number of handles is valid.
R_UNLESS(0 <= num_handles && num_handles <= ArgumentHandleCountMax, ResultOutOfRange);
auto& kernel = system.Kernel();
std::vector<KSynchronizationObject*> objs(num_handles);
const auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
Handle* handles = system.Memory().GetPointer<Handle>(handles_address);
// Copy user handles.
if (num_handles > 0) {
// Convert the handles to objects.
R_UNLESS(handle_table.GetMultipleObjects<KSynchronizationObject>(objs.data(), handles,
num_handles),
ResultInvalidHandle);
for (const auto& obj : objs) {
kernel.RegisterInUseObject(obj);
}
}
// Ensure handles are closed when we're done.
SCOPE_EXIT({
for (s32 i = 0; i < num_handles; ++i) {
kernel.UnregisterInUseObject(objs[i]);
objs[i]->Close();
}
});
return KSynchronizationObject::Wait(kernel, index, objs.data(), static_cast<s32>(objs.size()),
nano_seconds);
}
static ResultCode WaitSynchronization32(Core::System& system, u32 timeout_low, u32 handles_address,
s32 num_handles, u32 timeout_high, s32* index) {
const s64 nano_seconds{(static_cast<s64>(timeout_high) << 32) | static_cast<s64>(timeout_low)};
return WaitSynchronization(system, index, handles_address, num_handles, nano_seconds);
}
/// Resumes a thread waiting on WaitSynchronization
static ResultCode CancelSynchronization(Core::System& system, Handle handle) {
LOG_TRACE(Kernel_SVC, "called handle=0x{:X}", handle);
// Get the thread from its handle.
KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Cancel the thread's wait.
thread->WaitCancel();
return ResultSuccess;
}
static ResultCode CancelSynchronization32(Core::System& system, Handle handle) {
return CancelSynchronization(system, handle);
}
/// Attempts to locks a mutex
static ResultCode ArbitrateLock(Core::System& system, Handle thread_handle, VAddr address,
u32 tag) {
LOG_TRACE(Kernel_SVC, "called thread_handle=0x{:08X}, address=0x{:X}, tag=0x{:08X}",
thread_handle, address, tag);
// Validate the input address.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC, "Attempting to arbitrate a lock on a kernel address (address={:08X})",
address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(u32))) {
LOG_ERROR(Kernel_SVC, "Input address must be 4 byte aligned (address: {:08X})", address);
return ResultInvalidAddress;
}
return system.Kernel().CurrentProcess()->WaitForAddress(thread_handle, address, tag);
}
static ResultCode ArbitrateLock32(Core::System& system, Handle thread_handle, u32 address,
u32 tag) {
return ArbitrateLock(system, thread_handle, address, tag);
}
/// Unlock a mutex
static ResultCode ArbitrateUnlock(Core::System& system, VAddr address) {
LOG_TRACE(Kernel_SVC, "called address=0x{:X}", address);
// Validate the input address.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC,
"Attempting to arbitrate an unlock on a kernel address (address={:08X})",
address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(u32))) {
LOG_ERROR(Kernel_SVC, "Input address must be 4 byte aligned (address: {:08X})", address);
return ResultInvalidAddress;
}
return system.Kernel().CurrentProcess()->SignalToAddress(address);
}
static ResultCode ArbitrateUnlock32(Core::System& system, u32 address) {
return ArbitrateUnlock(system, address);
}
enum class BreakType : u32 {
Panic = 0,
AssertionFailed = 1,
PreNROLoad = 3,
PostNROLoad = 4,
PreNROUnload = 5,
PostNROUnload = 6,
CppException = 7,
};
struct BreakReason {
union {
u32 raw;
BitField<0, 30, BreakType> break_type;
BitField<31, 1, u32> signal_debugger;
};
};
/// Break program execution
static void Break(Core::System& system, u32 reason, u64 info1, u64 info2) {
BreakReason break_reason{reason};
bool has_dumped_buffer{};
std::vector<u8> debug_buffer;
const auto handle_debug_buffer = [&](VAddr addr, u64 sz) {
if (sz == 0 || addr == 0 || has_dumped_buffer) {
return;
}
auto& memory = system.Memory();
// This typically is an error code so we're going to assume this is the case
if (sz == sizeof(u32)) {
LOG_CRITICAL(Debug_Emulated, "debug_buffer_err_code={:X}", memory.Read32(addr));
} else {
// We don't know what's in here so we'll hexdump it
debug_buffer.resize(sz);
memory.ReadBlock(addr, debug_buffer.data(), sz);
std::string hexdump;
for (std::size_t i = 0; i < debug_buffer.size(); i++) {
hexdump += fmt::format("{:02X} ", debug_buffer[i]);
if (i != 0 && i % 16 == 0) {
hexdump += '\n';
}
}
LOG_CRITICAL(Debug_Emulated, "debug_buffer=\n{}", hexdump);
}
has_dumped_buffer = true;
};
switch (break_reason.break_type) {
case BreakType::Panic:
LOG_CRITICAL(Debug_Emulated, "Signalling debugger, PANIC! info1=0x{:016X}, info2=0x{:016X}",
info1, info2);
handle_debug_buffer(info1, info2);
break;
case BreakType::AssertionFailed:
LOG_CRITICAL(Debug_Emulated,
"Signalling debugger, Assertion failed! info1=0x{:016X}, info2=0x{:016X}",
info1, info2);
handle_debug_buffer(info1, info2);
break;
case BreakType::PreNROLoad:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Attempting to load an NRO at 0x{:016X} with size 0x{:016X}",
info1, info2);
break;
case BreakType::PostNROLoad:
LOG_WARNING(Debug_Emulated,
"Signalling debugger, Loaded an NRO at 0x{:016X} with size 0x{:016X}", info1,
info2);
break;
case BreakType::PreNROUnload:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Attempting to unload an NRO at 0x{:016X} with size 0x{:016X}",
info1, info2);
break;
case BreakType::PostNROUnload:
LOG_WARNING(Debug_Emulated,
"Signalling debugger, Unloaded an NRO at 0x{:016X} with size 0x{:016X}", info1,
info2);
break;
case BreakType::CppException:
LOG_CRITICAL(Debug_Emulated, "Signalling debugger. Uncaught C++ exception encountered.");
break;
default:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Unknown break reason {}, info1=0x{:016X}, info2=0x{:016X}",
static_cast<u32>(break_reason.break_type.Value()), info1, info2);
handle_debug_buffer(info1, info2);
break;
}
system.GetReporter().SaveSvcBreakReport(
static_cast<u32>(break_reason.break_type.Value()), break_reason.signal_debugger, info1,
info2, has_dumped_buffer ? std::make_optional(debug_buffer) : std::nullopt);
if (!break_reason.signal_debugger) {
LOG_CRITICAL(
Debug_Emulated,
"Emulated program broke execution! reason=0x{:016X}, info1=0x{:016X}, info2=0x{:016X}",
reason, info1, info2);
handle_debug_buffer(info1, info2);
auto* const current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread();
const auto thread_processor_id = current_thread->GetActiveCore();
system.ArmInterface(static_cast<std::size_t>(thread_processor_id)).LogBacktrace();
}
}
static void Break32(Core::System& system, u32 reason, u32 info1, u32 info2) {
Break(system, reason, info1, info2);
}
/// Used to output a message on a debug hardware unit - does nothing on a retail unit
static void OutputDebugString(Core::System& system, VAddr address, u64 len) {
if (len == 0) {
return;
}
std::string str(len, '\0');
system.Memory().ReadBlock(address, str.data(), str.size());
LOG_DEBUG(Debug_Emulated, "{}", str);
}
/// Gets system/memory information for the current process
static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, Handle handle,
u64 info_sub_id) {
std::lock_guard lock{HLE::g_hle_lock};
LOG_TRACE(Kernel_SVC, "called info_id=0x{:X}, info_sub_id=0x{:X}, handle=0x{:08X}", info_id,
info_sub_id, handle);
enum class GetInfoType : u64 {
// 1.0.0+
AllowedCPUCoreMask = 0,
AllowedThreadPriorityMask = 1,
MapRegionBaseAddr = 2,
MapRegionSize = 3,
HeapRegionBaseAddr = 4,
HeapRegionSize = 5,
TotalPhysicalMemoryAvailable = 6,
TotalPhysicalMemoryUsed = 7,
IsCurrentProcessBeingDebugged = 8,
RegisterResourceLimit = 9,
IdleTickCount = 10,
RandomEntropy = 11,
ThreadTickCount = 0xF0000002,
// 2.0.0+
ASLRRegionBaseAddr = 12,
ASLRRegionSize = 13,
StackRegionBaseAddr = 14,
StackRegionSize = 15,
// 3.0.0+
SystemResourceSize = 16,
SystemResourceUsage = 17,
TitleId = 18,
// 4.0.0+
PrivilegedProcessId = 19,
// 5.0.0+
UserExceptionContextAddr = 20,
// 6.0.0+
TotalPhysicalMemoryAvailableWithoutSystemResource = 21,
TotalPhysicalMemoryUsedWithoutSystemResource = 22,
};
const auto info_id_type = static_cast<GetInfoType>(info_id);
switch (info_id_type) {
case GetInfoType::AllowedCPUCoreMask:
case GetInfoType::AllowedThreadPriorityMask:
case GetInfoType::MapRegionBaseAddr:
case GetInfoType::MapRegionSize:
case GetInfoType::HeapRegionBaseAddr:
case GetInfoType::HeapRegionSize:
case GetInfoType::ASLRRegionBaseAddr:
case GetInfoType::ASLRRegionSize:
case GetInfoType::StackRegionBaseAddr:
case GetInfoType::StackRegionSize:
case GetInfoType::TotalPhysicalMemoryAvailable:
case GetInfoType::TotalPhysicalMemoryUsed:
case GetInfoType::SystemResourceSize:
case GetInfoType::SystemResourceUsage:
case GetInfoType::TitleId:
case GetInfoType::UserExceptionContextAddr:
case GetInfoType::TotalPhysicalMemoryAvailableWithoutSystemResource:
case GetInfoType::TotalPhysicalMemoryUsedWithoutSystemResource: {
if (info_sub_id != 0) {
LOG_ERROR(Kernel_SVC, "Info sub id is non zero! info_id={}, info_sub_id={}", info_id,
info_sub_id);
return ResultInvalidEnumValue;
}
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
KScopedAutoObject process = handle_table.GetObject<KProcess>(handle);
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Process is not valid! info_id={}, info_sub_id={}, handle={:08X}",
info_id, info_sub_id, handle);
return ResultInvalidHandle;
}
switch (info_id_type) {
case GetInfoType::AllowedCPUCoreMask:
*result = process->GetCoreMask();
return ResultSuccess;
case GetInfoType::AllowedThreadPriorityMask:
*result = process->GetPriorityMask();
return ResultSuccess;
case GetInfoType::MapRegionBaseAddr:
*result = process->PageTable().GetAliasRegionStart();
return ResultSuccess;
case GetInfoType::MapRegionSize:
*result = process->PageTable().GetAliasRegionSize();
return ResultSuccess;
case GetInfoType::HeapRegionBaseAddr:
*result = process->PageTable().GetHeapRegionStart();
return ResultSuccess;
case GetInfoType::HeapRegionSize:
*result = process->PageTable().GetHeapRegionSize();
return ResultSuccess;
case GetInfoType::ASLRRegionBaseAddr:
*result = process->PageTable().GetAliasCodeRegionStart();
return ResultSuccess;
case GetInfoType::ASLRRegionSize:
*result = process->PageTable().GetAliasCodeRegionSize();
return ResultSuccess;
case GetInfoType::StackRegionBaseAddr:
*result = process->PageTable().GetStackRegionStart();
return ResultSuccess;
case GetInfoType::StackRegionSize:
*result = process->PageTable().GetStackRegionSize();
return ResultSuccess;
case GetInfoType::TotalPhysicalMemoryAvailable:
*result = process->GetTotalPhysicalMemoryAvailable();
return ResultSuccess;
case GetInfoType::TotalPhysicalMemoryUsed:
*result = process->GetTotalPhysicalMemoryUsed();
return ResultSuccess;
case GetInfoType::SystemResourceSize:
*result = process->GetSystemResourceSize();
return ResultSuccess;
case GetInfoType::SystemResourceUsage:
LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query system resource usage");
*result = process->GetSystemResourceUsage();
return ResultSuccess;
case GetInfoType::TitleId:
*result = process->GetProgramID();
return ResultSuccess;
case GetInfoType::UserExceptionContextAddr:
*result = process->GetTLSRegionAddress();
return ResultSuccess;
case GetInfoType::TotalPhysicalMemoryAvailableWithoutSystemResource:
*result = process->GetTotalPhysicalMemoryAvailableWithoutSystemResource();
return ResultSuccess;
case GetInfoType::TotalPhysicalMemoryUsedWithoutSystemResource:
*result = process->GetTotalPhysicalMemoryUsedWithoutSystemResource();
return ResultSuccess;
default:
break;
}
LOG_ERROR(Kernel_SVC, "Unimplemented svcGetInfo id=0x{:016X}", info_id);
return ResultInvalidEnumValue;
}
case GetInfoType::IsCurrentProcessBeingDebugged:
*result = 0;
return ResultSuccess;
case GetInfoType::RegisterResourceLimit: {
if (handle != 0) {
LOG_ERROR(Kernel, "Handle is non zero! handle={:08X}", handle);
return ResultInvalidHandle;
}
if (info_sub_id != 0) {
LOG_ERROR(Kernel, "Info sub id is non zero! info_id={}, info_sub_id={}", info_id,
info_sub_id);
return ResultInvalidCombination;
}
KProcess* const current_process = system.Kernel().CurrentProcess();
KHandleTable& handle_table = current_process->GetHandleTable();
const auto resource_limit = current_process->GetResourceLimit();
if (!resource_limit) {
*result = Svc::InvalidHandle;
// Yes, the kernel considers this a successful operation.
return ResultSuccess;
}
Handle resource_handle{};
R_TRY(handle_table.Add(&resource_handle, resource_limit));
*result = resource_handle;
return ResultSuccess;
}
case GetInfoType::RandomEntropy:
if (handle != 0) {
LOG_ERROR(Kernel_SVC, "Process Handle is non zero, expected 0 result but got {:016X}",
handle);
return ResultInvalidHandle;
}
if (info_sub_id >= KProcess::RANDOM_ENTROPY_SIZE) {
LOG_ERROR(Kernel_SVC, "Entropy size is out of range, expected {} but got {}",
KProcess::RANDOM_ENTROPY_SIZE, info_sub_id);
return ResultInvalidCombination;
}
*result = system.Kernel().CurrentProcess()->GetRandomEntropy(info_sub_id);
return ResultSuccess;
case GetInfoType::PrivilegedProcessId:
LOG_WARNING(Kernel_SVC,
"(STUBBED) Attempted to query privileged process id bounds, returned 0");
*result = 0;
return ResultSuccess;
case GetInfoType::ThreadTickCount: {
constexpr u64 num_cpus = 4;
if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id >= num_cpus) {
LOG_ERROR(Kernel_SVC, "Core count is out of range, expected {} but got {}", num_cpus,
info_sub_id);
return ResultInvalidCombination;
}
KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(
static_cast<Handle>(handle));
if (thread.IsNull()) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}",
static_cast<Handle>(handle));
return ResultInvalidHandle;
}
const auto& core_timing = system.CoreTiming();
const auto& scheduler = *system.Kernel().CurrentScheduler();
const auto* const current_thread = scheduler.GetCurrentThread();
const bool same_thread = current_thread == thread.GetPointerUnsafe();
const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks();
u64 out_ticks = 0;
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
const u64 thread_ticks = current_thread->GetCpuTime();
out_ticks = thread_ticks + (core_timing.GetCPUTicks() - prev_ctx_ticks);
} else if (same_thread && info_sub_id == system.Kernel().CurrentPhysicalCoreIndex()) {
out_ticks = core_timing.GetCPUTicks() - prev_ctx_ticks;
}
*result = out_ticks;
return ResultSuccess;
}
case GetInfoType::IdleTickCount: {
if (handle == 0) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}",
static_cast<Handle>(handle));
return ResultInvalidHandle;
}
if (info_sub_id != 0xFFFFFFFFFFFFFFFF &&
info_sub_id != system.Kernel().CurrentPhysicalCoreIndex()) {
LOG_ERROR(Kernel_SVC, "Core is not the current core, got {}", info_sub_id);
return ResultInvalidCombination;
}
const auto& scheduler = *system.Kernel().CurrentScheduler();
const auto* const idle_thread = scheduler.GetIdleThread();
*result = idle_thread->GetCpuTime();
return ResultSuccess;
}
default:
LOG_ERROR(Kernel_SVC, "Unimplemented svcGetInfo id=0x{:016X}", info_id);
return ResultInvalidEnumValue;
}
}
static ResultCode GetInfo32(Core::System& system, u32* result_low, u32* result_high, u32 sub_id_low,
u32 info_id, u32 handle, u32 sub_id_high) {
const u64 sub_id{u64{sub_id_low} | (u64{sub_id_high} << 32)};
u64 res_value{};
const ResultCode result{GetInfo(system, &res_value, info_id, handle, sub_id)};
*result_high = static_cast<u32>(res_value >> 32);
*result_low = static_cast<u32>(res_value & std::numeric_limits<u32>::max());
return result;
}
/// Maps memory at a desired address
static ResultCode MapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
std::lock_guard lock{HLE::g_hle_lock};
LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr);
return ResultInvalidAddress;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size);
return ResultInvalidSize;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is zero");
return ResultInvalidSize;
}
if (!(addr < addr + size)) {
LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address");
return ResultInvalidMemoryRegion;
}
KProcess* const current_process{system.Kernel().CurrentProcess()};
auto& page_table{current_process->PageTable()};
if (current_process->GetSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
return ResultInvalidState;
}
if (!page_table.IsInsideAddressSpace(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ResultInvalidMemoryRegion;
}
if (page_table.IsOutsideAliasRegion(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ResultInvalidMemoryRegion;
}
return page_table.MapPhysicalMemory(addr, size);
}
static ResultCode MapPhysicalMemory32(Core::System& system, u32 addr, u32 size) {
return MapPhysicalMemory(system, addr, size);
}
/// Unmaps memory previously mapped via MapPhysicalMemory
static ResultCode UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
std::lock_guard lock{HLE::g_hle_lock};
LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr);
return ResultInvalidAddress;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size);
return ResultInvalidSize;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is zero");
return ResultInvalidSize;
}
if (!(addr < addr + size)) {
LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address");
return ResultInvalidMemoryRegion;
}
KProcess* const current_process{system.Kernel().CurrentProcess()};
auto& page_table{current_process->PageTable()};
if (current_process->GetSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
return ResultInvalidState;
}
if (!page_table.IsInsideAddressSpace(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ResultInvalidMemoryRegion;
}
if (page_table.IsOutsideAliasRegion(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ResultInvalidMemoryRegion;
}
return page_table.UnmapPhysicalMemory(addr, size);
}
static ResultCode UnmapPhysicalMemory32(Core::System& system, u32 addr, u32 size) {
return UnmapPhysicalMemory(system, addr, size);
}
/// Sets the thread activity
static ResultCode SetThreadActivity(Core::System& system, Handle thread_handle,
ThreadActivity thread_activity) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", thread_handle,
thread_activity);
// Validate the activity.
constexpr auto IsValidThreadActivity = [](ThreadActivity activity) {
return activity == ThreadActivity::Runnable || activity == ThreadActivity::Paused;
};
R_UNLESS(IsValidThreadActivity(thread_activity), ResultInvalidEnumValue);
// Get the thread from its handle.
KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(thread_handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Check that the activity is being set on a non-current thread for the current process.
R_UNLESS(thread->GetOwnerProcess() == system.Kernel().CurrentProcess(), ResultInvalidHandle);
R_UNLESS(thread.GetPointerUnsafe() != GetCurrentThreadPointer(system.Kernel()), ResultBusy);
// Set the activity.
R_TRY(thread->SetActivity(thread_activity));
return ResultSuccess;
}
static ResultCode SetThreadActivity32(Core::System& system, Handle thread_handle,
Svc::ThreadActivity thread_activity) {
return SetThreadActivity(system, thread_handle, thread_activity);
}
/// Gets the thread context
static ResultCode GetThreadContext(Core::System& system, VAddr out_context, Handle thread_handle) {
LOG_DEBUG(Kernel_SVC, "called, out_context=0x{:08X}, thread_handle=0x{:X}", out_context,
thread_handle);
auto& kernel = system.Kernel();
// Get the thread from its handle.
KScopedAutoObject thread =
kernel.CurrentProcess()->GetHandleTable().GetObject<KThread>(thread_handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Require the handle be to a non-current thread in the current process.
const auto* current_process = kernel.CurrentProcess();
R_UNLESS(current_process == thread->GetOwnerProcess(), ResultInvalidId);
// Verify that the thread isn't terminated.
R_UNLESS(thread->GetState() != ThreadState::Terminated, ResultTerminationRequested);
/// Check that the thread is not the current one.
/// NOTE: Nintendo does not check this, and thus the following loop will deadlock.
R_UNLESS(thread.GetPointerUnsafe() != GetCurrentThreadPointer(kernel), ResultInvalidId);
// Try to get the thread context until the thread isn't current on any core.
while (true) {
KScopedSchedulerLock sl{kernel};
// TODO(bunnei): Enforce that thread is suspended for debug here.
// If the thread's raw state isn't runnable, check if it's current on some core.
if (thread->GetRawState() != ThreadState::Runnable) {
bool current = false;
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
if (thread.GetPointerUnsafe() == kernel.Scheduler(i).GetCurrentThread()) {
current = true;
break;
}
}
// If the thread is current, retry until it isn't.
if (current) {
continue;
}
}
// Get the thread context.
std::vector<u8> context;
R_TRY(thread->GetThreadContext3(context));
// Copy the thread context to user space.
system.Memory().WriteBlock(out_context, context.data(), context.size());
return ResultSuccess;
}
return ResultSuccess;
}
static ResultCode GetThreadContext32(Core::System& system, u32 out_context, Handle thread_handle) {
return GetThreadContext(system, out_context, thread_handle);
}
/// Gets the priority for the specified thread
static ResultCode GetThreadPriority(Core::System& system, u32* out_priority, Handle handle) {
LOG_TRACE(Kernel_SVC, "called");
// Get the thread from its handle.
KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Get the thread's priority.
*out_priority = thread->GetPriority();
return ResultSuccess;
}
static ResultCode GetThreadPriority32(Core::System& system, u32* out_priority, Handle handle) {
return GetThreadPriority(system, out_priority, handle);
}
/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Core::System& system, Handle thread_handle, u32 priority) {
// Get the current process.
KProcess& process = *system.Kernel().CurrentProcess();
// Validate the priority.
R_UNLESS(HighestThreadPriority <= priority && priority <= LowestThreadPriority,
ResultInvalidPriority);
R_UNLESS(process.CheckThreadPriority(priority), ResultInvalidPriority);
// Get the thread from its handle.
KScopedAutoObject thread = process.GetHandleTable().GetObject<KThread>(thread_handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Set the thread priority.
thread->SetBasePriority(priority);
return ResultSuccess;
}
static ResultCode SetThreadPriority32(Core::System& system, Handle thread_handle, u32 priority) {
return SetThreadPriority(system, thread_handle, priority);
}
/// Get which CPU core is executing the current thread
static u32 GetCurrentProcessorNumber(Core::System& system) {
LOG_TRACE(Kernel_SVC, "called");
return static_cast<u32>(system.CurrentPhysicalCore().CoreIndex());
}
static u32 GetCurrentProcessorNumber32(Core::System& system) {
return GetCurrentProcessorNumber(system);
}
namespace {
constexpr bool IsValidSharedMemoryPermission(Svc::MemoryPermission perm) {
switch (perm) {
case Svc::MemoryPermission::Read:
case Svc::MemoryPermission::ReadWrite:
return true;
default:
return false;
}
}
[[maybe_unused]] constexpr bool IsValidRemoteSharedMemoryPermission(Svc::MemoryPermission perm) {
return IsValidSharedMemoryPermission(perm) || perm == Svc::MemoryPermission::DontCare;
}
constexpr bool IsValidProcessMemoryPermission(Svc::MemoryPermission perm) {
switch (perm) {
case Svc::MemoryPermission::None:
case Svc::MemoryPermission::Read:
case Svc::MemoryPermission::ReadWrite:
case Svc::MemoryPermission::ReadExecute:
return true;
default:
return false;
}
}
constexpr bool IsValidMapCodeMemoryPermission(Svc::MemoryPermission perm) {
return perm == Svc::MemoryPermission::ReadWrite;
}
constexpr bool IsValidMapToOwnerCodeMemoryPermission(Svc::MemoryPermission perm) {
return perm == Svc::MemoryPermission::Read || perm == Svc::MemoryPermission::ReadExecute;
}
constexpr bool IsValidUnmapCodeMemoryPermission(Svc::MemoryPermission perm) {
return perm == Svc::MemoryPermission::None;
}
constexpr bool IsValidUnmapFromOwnerCodeMemoryPermission(Svc::MemoryPermission perm) {
return perm == Svc::MemoryPermission::None;
}
} // Anonymous namespace
static ResultCode MapSharedMemory(Core::System& system, Handle shmem_handle, VAddr address,
u64 size, Svc::MemoryPermission map_perm) {
LOG_TRACE(Kernel_SVC,
"called, shared_memory_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}",
shmem_handle, address, size, map_perm);
// Validate the address/size.
R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize);
R_UNLESS(size > 0, ResultInvalidSize);
R_UNLESS((address < address + size), ResultInvalidCurrentMemory);
// Validate the permission.
R_UNLESS(IsValidSharedMemoryPermission(map_perm), ResultInvalidNewMemoryPermission);
// Get the current process.
auto& process = *system.Kernel().CurrentProcess();
auto& page_table = process.PageTable();
// Get the shared memory.
KScopedAutoObject shmem = process.GetHandleTable().GetObject<KSharedMemory>(shmem_handle);
R_UNLESS(shmem.IsNotNull(), ResultInvalidHandle);
// Verify that the mapping is in range.
R_UNLESS(page_table.CanContain(address, size, KMemoryState::Shared), ResultInvalidMemoryRegion);
// Add the shared memory to the process.
R_TRY(process.AddSharedMemory(shmem.GetPointerUnsafe(), address, size));
// Ensure that we clean up the shared memory if we fail to map it.
auto guard =
SCOPE_GUARD({ process.RemoveSharedMemory(shmem.GetPointerUnsafe(), address, size); });
// Map the shared memory.
R_TRY(shmem->Map(process, address, size, map_perm));
// We succeeded.
guard.Cancel();
return ResultSuccess;
}
static ResultCode MapSharedMemory32(Core::System& system, Handle shmem_handle, u32 address,
u32 size, Svc::MemoryPermission map_perm) {
return MapSharedMemory(system, shmem_handle, address, size, map_perm);
}
static ResultCode UnmapSharedMemory(Core::System& system, Handle shmem_handle, VAddr address,
u64 size) {
// Validate the address/size.
R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize);
R_UNLESS(size > 0, ResultInvalidSize);
R_UNLESS((address < address + size), ResultInvalidCurrentMemory);
// Get the current process.
auto& process = *system.Kernel().CurrentProcess();
auto& page_table = process.PageTable();
// Get the shared memory.
KScopedAutoObject shmem = process.GetHandleTable().GetObject<KSharedMemory>(shmem_handle);
R_UNLESS(shmem.IsNotNull(), ResultInvalidHandle);
// Verify that the mapping is in range.
R_UNLESS(page_table.CanContain(address, size, KMemoryState::Shared), ResultInvalidMemoryRegion);
// Unmap the shared memory.
R_TRY(shmem->Unmap(process, address, size));
// Remove the shared memory from the process.
process.RemoveSharedMemory(shmem.GetPointerUnsafe(), address, size);
return ResultSuccess;
}
static ResultCode UnmapSharedMemory32(Core::System& system, Handle shmem_handle, u32 address,
u32 size) {
return UnmapSharedMemory(system, shmem_handle, address, size);
}
static ResultCode SetProcessMemoryPermission(Core::System& system, Handle process_handle,
VAddr address, u64 size, Svc::MemoryPermission perm) {
LOG_TRACE(Kernel_SVC,
"called, process_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}",
process_handle, address, size, perm);
// Validate the address/size.
R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize);
R_UNLESS(size > 0, ResultInvalidSize);
R_UNLESS((address < address + size), ResultInvalidCurrentMemory);
// Validate the memory permission.
R_UNLESS(IsValidProcessMemoryPermission(perm), ResultInvalidNewMemoryPermission);
// Get the process from its handle.
KScopedAutoObject process =
system.CurrentProcess()->GetHandleTable().GetObject<KProcess>(process_handle);
R_UNLESS(process.IsNotNull(), ResultInvalidHandle);
// Validate that the address is in range.
auto& page_table = process->PageTable();
R_UNLESS(page_table.Contains(address, size), ResultInvalidCurrentMemory);
// Set the memory permission.
return page_table.SetProcessMemoryPermission(address, size, ConvertToKMemoryPermission(perm));
}
static ResultCode MapProcessMemory(Core::System& system, VAddr dst_address, Handle process_handle,
VAddr src_address, u64 size) {
LOG_TRACE(Kernel_SVC,
"called, dst_address=0x{:X}, process_handle=0x{:X}, src_address=0x{:X}, size=0x{:X}",
dst_address, process_handle, src_address, size);
// Validate the address/size.
R_UNLESS(Common::IsAligned(dst_address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(src_address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize);
R_UNLESS(size > 0, ResultInvalidSize);
R_UNLESS((dst_address < dst_address + size), ResultInvalidCurrentMemory);
R_UNLESS((src_address < src_address + size), ResultInvalidCurrentMemory);
// Get the processes.
KProcess* dst_process = system.CurrentProcess();
KScopedAutoObject src_process =
dst_process->GetHandleTable().GetObjectWithoutPseudoHandle<KProcess>(process_handle);
R_UNLESS(src_process.IsNotNull(), ResultInvalidHandle);
// Get the page tables.
auto& dst_pt = dst_process->PageTable();
auto& src_pt = src_process->PageTable();
// Validate that the mapping is in range.
R_UNLESS(src_pt.Contains(src_address, size), ResultInvalidCurrentMemory);
R_UNLESS(dst_pt.CanContain(dst_address, size, KMemoryState::SharedCode),
ResultInvalidMemoryRegion);
// Create a new page group.
KMemoryInfo kBlockInfo = dst_pt.QueryInfo(dst_address);
KPageLinkedList pg(kBlockInfo.GetAddress(), kBlockInfo.GetNumPages());
// Map the group.
R_TRY(dst_pt.MapPages(dst_address, pg, KMemoryState::SharedCode,
KMemoryPermission::UserReadWrite));
return ResultSuccess;
}
static ResultCode UnmapProcessMemory(Core::System& system, VAddr dst_address, Handle process_handle,
VAddr src_address, u64 size) {
LOG_TRACE(Kernel_SVC,
"called, dst_address=0x{:X}, process_handle=0x{:X}, src_address=0x{:X}, size=0x{:X}",
dst_address, process_handle, src_address, size);
// Validate the address/size.
R_UNLESS(Common::IsAligned(dst_address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(src_address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize);
R_UNLESS(size > 0, ResultInvalidSize);
R_UNLESS((dst_address < dst_address + size), ResultInvalidCurrentMemory);
R_UNLESS((src_address < src_address + size), ResultInvalidCurrentMemory);
// Get the processes.
KProcess* dst_process = system.CurrentProcess();
KScopedAutoObject src_process =
dst_process->GetHandleTable().GetObjectWithoutPseudoHandle<KProcess>(process_handle);
R_UNLESS(src_process.IsNotNull(), ResultInvalidHandle);
// Get the page tables.
auto& dst_pt = dst_process->PageTable();
auto& src_pt = src_process->PageTable();
// Validate that the mapping is in range.
R_UNLESS(src_pt.Contains(src_address, size), ResultInvalidCurrentMemory);
R_UNLESS(dst_pt.CanContain(dst_address, size, KMemoryState::SharedCode),
ResultInvalidMemoryRegion);
// Unmap the memory.
R_TRY(dst_pt.UnmapProcessMemory(dst_address, size, src_pt, src_address));
return ResultSuccess;
}
static ResultCode CreateCodeMemory(Core::System& system, Handle* out, VAddr address, size_t size) {
LOG_TRACE(Kernel_SVC, "called, handle_out=0x{:X}, address=0x{:X}, size=0x{:X}",
static_cast<void*>(out), address, size);
// Get kernel instance.
auto& kernel = system.Kernel();
// Validate address / size.
R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize);
R_UNLESS(size > 0, ResultInvalidSize);
R_UNLESS((address < address + size), ResultInvalidCurrentMemory);
// Create the code memory.
KCodeMemory* code_mem = KCodeMemory::Create(kernel);
R_UNLESS(code_mem != nullptr, ResultOutOfResource);
// Verify that the region is in range.
R_UNLESS(system.CurrentProcess()->PageTable().Contains(address, size),
ResultInvalidCurrentMemory);
// Initialize the code memory.
R_TRY(code_mem->Initialize(system.DeviceMemory(), address, size));
// Register the code memory.
KCodeMemory::Register(kernel, code_mem);
// Add the code memory to the handle table.
R_TRY(system.CurrentProcess()->GetHandleTable().Add(out, code_mem));
code_mem->Close();
return ResultSuccess;
}
static ResultCode ControlCodeMemory(Core::System& system, Handle code_memory_handle, u32 operation,
VAddr address, size_t size, Svc::MemoryPermission perm) {
LOG_TRACE(Kernel_SVC,
"called, code_memory_handle=0x{:X}, operation=0x{:X}, address=0x{:X}, size=0x{:X}, "
"permission=0x{:X}",
code_memory_handle, operation, address, size, perm);
// Validate the address / size.
R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize);
R_UNLESS(size > 0, ResultInvalidSize);
R_UNLESS((address < address + size), ResultInvalidCurrentMemory);
// Get the code memory from its handle.
KScopedAutoObject code_mem =
system.CurrentProcess()->GetHandleTable().GetObject<KCodeMemory>(code_memory_handle);
R_UNLESS(code_mem.IsNotNull(), ResultInvalidHandle);
// NOTE: Here, Atmosphere extends the SVC to allow code memory operations on one's own process.
// This enables homebrew usage of these SVCs for JIT.
// Perform the operation.
switch (static_cast<CodeMemoryOperation>(operation)) {
case CodeMemoryOperation::Map: {
// Check that the region is in range.
R_UNLESS(
system.CurrentProcess()->PageTable().CanContain(address, size, KMemoryState::CodeOut),
ResultInvalidMemoryRegion);
// Check the memory permission.
R_UNLESS(IsValidMapCodeMemoryPermission(perm), ResultInvalidNewMemoryPermission);
// Map the memory.
R_TRY(code_mem->Map(address, size));
} break;
case CodeMemoryOperation::Unmap: {
// Check that the region is in range.
R_UNLESS(
system.CurrentProcess()->PageTable().CanContain(address, size, KMemoryState::CodeOut),
ResultInvalidMemoryRegion);
// Check the memory permission.
R_UNLESS(IsValidUnmapCodeMemoryPermission(perm), ResultInvalidNewMemoryPermission);
// Unmap the memory.
R_TRY(code_mem->Unmap(address, size));
} break;
case CodeMemoryOperation::MapToOwner: {
// Check that the region is in range.
R_UNLESS(code_mem->GetOwner()->PageTable().CanContain(address, size,
KMemoryState::GeneratedCode),
ResultInvalidMemoryRegion);
// Check the memory permission.
R_UNLESS(IsValidMapToOwnerCodeMemoryPermission(perm), ResultInvalidNewMemoryPermission);
// Map the memory to its owner.
R_TRY(code_mem->MapToOwner(address, size, perm));
} break;
case CodeMemoryOperation::UnmapFromOwner: {
// Check that the region is in range.
R_UNLESS(code_mem->GetOwner()->PageTable().CanContain(address, size,
KMemoryState::GeneratedCode),
ResultInvalidMemoryRegion);
// Check the memory permission.
R_UNLESS(IsValidUnmapFromOwnerCodeMemoryPermission(perm), ResultInvalidNewMemoryPermission);
// Unmap the memory from its owner.
R_TRY(code_mem->UnmapFromOwner(address, size));
} break;
default:
return ResultInvalidEnumValue;
}
return ResultSuccess;
}
static ResultCode QueryProcessMemory(Core::System& system, VAddr memory_info_address,
VAddr page_info_address, Handle process_handle,
VAddr address) {
std::lock_guard lock{HLE::g_hle_lock};
LOG_TRACE(Kernel_SVC, "called process=0x{:08X} address={:X}", process_handle, address);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
KScopedAutoObject process = handle_table.GetObject<KProcess>(process_handle);
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}",
process_handle);
return ResultInvalidHandle;
}
auto& memory{system.Memory()};
const auto memory_info{process->PageTable().QueryInfo(address).GetSvcMemoryInfo()};
memory.Write64(memory_info_address + 0x00, memory_info.addr);
memory.Write64(memory_info_address + 0x08, memory_info.size);
memory.Write32(memory_info_address + 0x10, static_cast<u32>(memory_info.state) & 0xff);
memory.Write32(memory_info_address + 0x14, static_cast<u32>(memory_info.attr));
memory.Write32(memory_info_address + 0x18, static_cast<u32>(memory_info.perm));
memory.Write32(memory_info_address + 0x1c, memory_info.ipc_refcount);
memory.Write32(memory_info_address + 0x20, memory_info.device_refcount);
memory.Write32(memory_info_address + 0x24, 0);
// Page info appears to be currently unused by the kernel and is always set to zero.
memory.Write32(page_info_address, 0);
return ResultSuccess;
}
static ResultCode QueryMemory(Core::System& system, VAddr memory_info_address,
VAddr page_info_address, VAddr query_address) {
LOG_TRACE(Kernel_SVC,
"called, memory_info_address=0x{:016X}, page_info_address=0x{:016X}, "
"query_address=0x{:016X}",
memory_info_address, page_info_address, query_address);
return QueryProcessMemory(system, memory_info_address, page_info_address, CurrentProcess,
query_address);
}
static ResultCode QueryMemory32(Core::System& system, u32 memory_info_address,
u32 page_info_address, u32 query_address) {
return QueryMemory(system, memory_info_address, page_info_address, query_address);
}
static ResultCode MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address,
u64 src_address, u64 size) {
LOG_DEBUG(Kernel_SVC,
"called. process_handle=0x{:08X}, dst_address=0x{:016X}, "
"src_address=0x{:016X}, size=0x{:016X}",
process_handle, dst_address, src_address, size);
if (!Common::Is4KBAligned(src_address)) {
LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).",
src_address);
return ResultInvalidAddress;
}
if (!Common::Is4KBAligned(dst_address)) {
LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).",
dst_address);
return ResultInvalidAddress;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X})", size);
return ResultInvalidSize;
}
if (!IsValidAddressRange(dst_address, size)) {
LOG_ERROR(Kernel_SVC,
"Destination address range overflows the address space (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ResultInvalidCurrentMemory;
}
if (!IsValidAddressRange(src_address, size)) {
LOG_ERROR(Kernel_SVC,
"Source address range overflows the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ResultInvalidCurrentMemory;
}
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
KScopedAutoObject process = handle_table.GetObject<KProcess>(process_handle);
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).",
process_handle);
return ResultInvalidHandle;
}
auto& page_table = process->PageTable();
if (!page_table.IsInsideAddressSpace(src_address, size)) {
LOG_ERROR(Kernel_SVC,
"Source address range is not within the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ResultInvalidCurrentMemory;
}
if (!page_table.IsInsideASLRRegion(dst_address, size)) {
LOG_ERROR(Kernel_SVC,
"Destination address range is not within the ASLR region (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ResultInvalidMemoryRegion;
}
return page_table.MapProcessCodeMemory(dst_address, src_address, size);
}
static ResultCode UnmapProcessCodeMemory(Core::System& system, Handle process_handle,
u64 dst_address, u64 src_address, u64 size) {
LOG_DEBUG(Kernel_SVC,
"called. process_handle=0x{:08X}, dst_address=0x{:016X}, src_address=0x{:016X}, "
"size=0x{:016X}",
process_handle, dst_address, src_address, size);
if (!Common::Is4KBAligned(dst_address)) {
LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).",
dst_address);
return ResultInvalidAddress;
}
if (!Common::Is4KBAligned(src_address)) {
LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).",
src_address);
return ResultInvalidAddress;
}
if (size == 0 || Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X}).", size);
return ResultInvalidSize;
}
if (!IsValidAddressRange(dst_address, size)) {
LOG_ERROR(Kernel_SVC,
"Destination address range overflows the address space (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ResultInvalidCurrentMemory;
}
if (!IsValidAddressRange(src_address, size)) {
LOG_ERROR(Kernel_SVC,
"Source address range overflows the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ResultInvalidCurrentMemory;
}
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
KScopedAutoObject process = handle_table.GetObject<KProcess>(process_handle);
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).",
process_handle);
return ResultInvalidHandle;
}
auto& page_table = process->PageTable();
if (!page_table.IsInsideAddressSpace(src_address, size)) {
LOG_ERROR(Kernel_SVC,
"Source address range is not within the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ResultInvalidCurrentMemory;
}
if (!page_table.IsInsideASLRRegion(dst_address, size)) {
LOG_ERROR(Kernel_SVC,
"Destination address range is not within the ASLR region (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ResultInvalidMemoryRegion;
}
return page_table.UnmapProcessCodeMemory(dst_address, src_address, size);
}
/// Exits the current process
static void ExitProcess(Core::System& system) {
auto* current_process = system.Kernel().CurrentProcess();
UNIMPLEMENTED();
LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessID());
ASSERT_MSG(current_process->GetStatus() == ProcessStatus::Running,
"Process has already exited");
}
static void ExitProcess32(Core::System& system) {
ExitProcess(system);
}
namespace {
constexpr bool IsValidVirtualCoreId(int32_t core_id) {
return (0 <= core_id && core_id < static_cast<int32_t>(Core::Hardware::NUM_CPU_CORES));
}
} // Anonymous namespace
/// Creates a new thread
static ResultCode CreateThread(Core::System& system, Handle* out_handle, VAddr entry_point, u64 arg,
VAddr stack_bottom, u32 priority, s32 core_id) {
LOG_DEBUG(Kernel_SVC,
"called entry_point=0x{:08X}, arg=0x{:08X}, stack_bottom=0x{:08X}, "
"priority=0x{:08X}, core_id=0x{:08X}",
entry_point, arg, stack_bottom, priority, core_id);
// Adjust core id, if it's the default magic.
auto& kernel = system.Kernel();
auto& process = *kernel.CurrentProcess();
if (core_id == IdealCoreUseProcessValue) {
core_id = process.GetIdealCoreId();
}
// Validate arguments.
if (!IsValidVirtualCoreId(core_id)) {
LOG_ERROR(Kernel_SVC, "Invalid Core ID specified (id={})", core_id);
return ResultInvalidCoreId;
}
if (((1ULL << core_id) & process.GetCoreMask()) == 0) {
LOG_ERROR(Kernel_SVC, "Core ID doesn't fall within allowable cores (id={})", core_id);
return ResultInvalidCoreId;
}
if (HighestThreadPriority > priority || priority > LowestThreadPriority) {
LOG_ERROR(Kernel_SVC, "Invalid priority specified (priority={})", priority);
return ResultInvalidPriority;
}
if (!process.CheckThreadPriority(priority)) {
LOG_ERROR(Kernel_SVC, "Invalid allowable thread priority (priority={})", priority);
return ResultInvalidPriority;
}
// Reserve a new thread from the process resource limit (waiting up to 100ms).
KScopedResourceReservation thread_reservation(
kernel.CurrentProcess(), LimitableResource::Threads, 1,
system.CoreTiming().GetGlobalTimeNs().count() + 100000000);
if (!thread_reservation.Succeeded()) {
LOG_ERROR(Kernel_SVC, "Could not reserve a new thread");
return ResultLimitReached;
}
// Create the thread.
KThread* thread = KThread::Create(kernel);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Unable to create new threads. Thread creation limit reached.");
return ResultOutOfResource;
}
SCOPE_EXIT({ thread->Close(); });
// Initialize the thread.
{
KScopedLightLock lk{process.GetStateLock()};
R_TRY(KThread::InitializeUserThread(system, thread, entry_point, arg, stack_bottom,
priority, core_id, &process));
}
// Set the thread name for debugging purposes.
thread->SetName(fmt::format("thread[entry_point={:X}, handle={:X}]", entry_point, *out_handle));
// Commit the thread reservation.
thread_reservation.Commit();
// Register the new thread.
KThread::Register(kernel, thread);
// Add the thread to the handle table.
R_TRY(process.GetHandleTable().Add(out_handle, thread));
return ResultSuccess;
}
static ResultCode CreateThread32(Core::System& system, Handle* out_handle, u32 priority,
u32 entry_point, u32 arg, u32 stack_top, s32 processor_id) {
return CreateThread(system, out_handle, entry_point, arg, stack_top, priority, processor_id);
}
/// Starts the thread for the provided handle
static ResultCode StartThread(Core::System& system, Handle thread_handle) {
LOG_DEBUG(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
// Get the thread from its handle.
KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(thread_handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Try to start the thread.
R_TRY(thread->Run());
// If we succeeded, persist a reference to the thread.
thread->Open();
system.Kernel().RegisterInUseObject(thread.GetPointerUnsafe());
return ResultSuccess;
}
static ResultCode StartThread32(Core::System& system, Handle thread_handle) {
return StartThread(system, thread_handle);
}
/// Called when a thread exits
static void ExitThread(Core::System& system) {
LOG_DEBUG(Kernel_SVC, "called, pc=0x{:08X}", system.CurrentArmInterface().GetPC());
auto* const current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread();
system.GlobalSchedulerContext().RemoveThread(current_thread);
current_thread->Exit();
system.Kernel().UnregisterInUseObject(current_thread);
}
static void ExitThread32(Core::System& system) {
ExitThread(system);
}
/// Sleep the current thread
static void SleepThread(Core::System& system, s64 nanoseconds) {
auto& kernel = system.Kernel();
const auto yield_type = static_cast<Svc::YieldType>(nanoseconds);
LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds);
// When the input tick is positive, sleep.
if (nanoseconds > 0) {
// Convert the timeout from nanoseconds to ticks.
// NOTE: Nintendo does not use this conversion logic in WaitSynchronization...
// Sleep.
// NOTE: Nintendo does not check the result of this sleep.
static_cast<void>(GetCurrentThread(kernel).Sleep(nanoseconds));
} else if (yield_type == Svc::YieldType::WithoutCoreMigration) {
KScheduler::YieldWithoutCoreMigration(kernel);
} else if (yield_type == Svc::YieldType::WithCoreMigration) {
KScheduler::YieldWithCoreMigration(kernel);
} else if (yield_type == Svc::YieldType::ToAnyThread) {
KScheduler::YieldToAnyThread(kernel);
} else {
// Nintendo does nothing at all if an otherwise invalid value is passed.
UNREACHABLE_MSG("Unimplemented sleep yield type '{:016X}'!", nanoseconds);
}
}
static void SleepThread32(Core::System& system, u32 nanoseconds_low, u32 nanoseconds_high) {
const auto nanoseconds = static_cast<s64>(u64{nanoseconds_low} | (u64{nanoseconds_high} << 32));
SleepThread(system, nanoseconds);
}
/// Wait process wide key atomic
static ResultCode WaitProcessWideKeyAtomic(Core::System& system, VAddr address, VAddr cv_key,
u32 tag, s64 timeout_ns) {
LOG_TRACE(Kernel_SVC, "called address={:X}, cv_key={:X}, tag=0x{:08X}, timeout_ns={}", address,
cv_key, tag, timeout_ns);
// Validate input.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC, "Attempted to wait on kernel address (address={:08X})", address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(s32))) {
LOG_ERROR(Kernel_SVC, "Address must be 4 byte aligned (address={:08X})", address);
return ResultInvalidAddress;
}
// Convert timeout from nanoseconds to ticks.
s64 timeout{};
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = timeout_ns;
}
// Wait on the condition variable.
return system.Kernel().CurrentProcess()->WaitConditionVariable(
address, Common::AlignDown(cv_key, sizeof(u32)), tag, timeout);
}
static ResultCode WaitProcessWideKeyAtomic32(Core::System& system, u32 address, u32 cv_key, u32 tag,
u32 timeout_ns_low, u32 timeout_ns_high) {
const auto timeout_ns = static_cast<s64>(timeout_ns_low | (u64{timeout_ns_high} << 32));
return WaitProcessWideKeyAtomic(system, address, cv_key, tag, timeout_ns);
}
/// Signal process wide key
static void SignalProcessWideKey(Core::System& system, VAddr cv_key, s32 count) {
LOG_TRACE(Kernel_SVC, "called, cv_key=0x{:X}, count=0x{:08X}", cv_key, count);
// Signal the condition variable.
return system.Kernel().CurrentProcess()->SignalConditionVariable(
Common::AlignDown(cv_key, sizeof(u32)), count);
}
static void SignalProcessWideKey32(Core::System& system, u32 cv_key, s32 count) {
SignalProcessWideKey(system, cv_key, count);
}
namespace {
constexpr bool IsValidSignalType(Svc::SignalType type) {
switch (type) {
case Svc::SignalType::Signal:
case Svc::SignalType::SignalAndIncrementIfEqual:
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
return true;
default:
return false;
}
}
constexpr bool IsValidArbitrationType(Svc::ArbitrationType type) {
switch (type) {
case Svc::ArbitrationType::WaitIfLessThan:
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
case Svc::ArbitrationType::WaitIfEqual:
return true;
default:
return false;
}
}
} // namespace
// Wait for an address (via Address Arbiter)
static ResultCode WaitForAddress(Core::System& system, VAddr address, Svc::ArbitrationType arb_type,
s32 value, s64 timeout_ns) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, arb_type=0x{:X}, value=0x{:X}, timeout_ns={}",
address, arb_type, value, timeout_ns);
// Validate input.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC, "Attempting to wait on kernel address (address={:08X})", address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(s32))) {
LOG_ERROR(Kernel_SVC, "Wait address must be 4 byte aligned (address={:08X})", address);
return ResultInvalidAddress;
}
if (!IsValidArbitrationType(arb_type)) {
LOG_ERROR(Kernel_SVC, "Invalid arbitration type specified (type={})", arb_type);
return ResultInvalidEnumValue;
}
// Convert timeout from nanoseconds to ticks.
s64 timeout{};
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = timeout_ns;
}
return system.Kernel().CurrentProcess()->WaitAddressArbiter(address, arb_type, value, timeout);
}
static ResultCode WaitForAddress32(Core::System& system, u32 address, Svc::ArbitrationType arb_type,
s32 value, u32 timeout_ns_low, u32 timeout_ns_high) {
const auto timeout = static_cast<s64>(timeout_ns_low | (u64{timeout_ns_high} << 32));
return WaitForAddress(system, address, arb_type, value, timeout);
}
// Signals to an address (via Address Arbiter)
static ResultCode SignalToAddress(Core::System& system, VAddr address, Svc::SignalType signal_type,
s32 value, s32 count) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, signal_type=0x{:X}, value=0x{:X}, count=0x{:X}",
address, signal_type, value, count);
// Validate input.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC, "Attempting to signal to a kernel address (address={:08X})", address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(s32))) {
LOG_ERROR(Kernel_SVC, "Signaled address must be 4 byte aligned (address={:08X})", address);
return ResultInvalidAddress;
}
if (!IsValidSignalType(signal_type)) {
LOG_ERROR(Kernel_SVC, "Invalid signal type specified (type={})", signal_type);
return ResultInvalidEnumValue;
}
return system.Kernel().CurrentProcess()->SignalAddressArbiter(address, signal_type, value,
count);
}
static ResultCode SignalToAddress32(Core::System& system, u32 address, Svc::SignalType signal_type,
s32 value, s32 count) {
return SignalToAddress(system, address, signal_type, value, count);
}
static void KernelDebug([[maybe_unused]] Core::System& system,
[[maybe_unused]] u32 kernel_debug_type, [[maybe_unused]] u64 param1,
[[maybe_unused]] u64 param2, [[maybe_unused]] u64 param3) {
// Intentionally do nothing, as this does nothing in released kernel binaries.
}
static void ChangeKernelTraceState([[maybe_unused]] Core::System& system,
[[maybe_unused]] u32 trace_state) {
// Intentionally do nothing, as this does nothing in released kernel binaries.
}
/// This returns the total CPU ticks elapsed since the CPU was powered-on
static u64 GetSystemTick(Core::System& system) {
LOG_TRACE(Kernel_SVC, "called");
auto& core_timing = system.CoreTiming();
// Returns the value of cntpct_el0 (https://switchbrew.org/wiki/SVC#svcGetSystemTick)
const u64 result{system.CoreTiming().GetClockTicks()};
if (!system.Kernel().IsMulticore()) {
core_timing.AddTicks(400U);
}
return result;
}
static void GetSystemTick32(Core::System& system, u32* time_low, u32* time_high) {
const auto time = GetSystemTick(system);
*time_low = static_cast<u32>(time);
*time_high = static_cast<u32>(time >> 32);
}
/// Close a handle
static ResultCode CloseHandle(Core::System& system, Handle handle) {
LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle);
// Remove the handle.
R_UNLESS(system.Kernel().CurrentProcess()->GetHandleTable().Remove(handle),
ResultInvalidHandle);
return ResultSuccess;
}
static ResultCode CloseHandle32(Core::System& system, Handle handle) {
return CloseHandle(system, handle);
}
/// Clears the signaled state of an event or process.
static ResultCode ResetSignal(Core::System& system, Handle handle) {
LOG_DEBUG(Kernel_SVC, "called handle 0x{:08X}", handle);
// Get the current handle table.
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
// Try to reset as readable event.
{
KScopedAutoObject readable_event = handle_table.GetObject<KReadableEvent>(handle);
if (readable_event.IsNotNull()) {
return readable_event->Reset();
}
}
// Try to reset as process.
{
KScopedAutoObject process = handle_table.GetObject<KProcess>(handle);
if (process.IsNotNull()) {
return process->Reset();
}
}
LOG_ERROR(Kernel_SVC, "invalid handle (0x{:08X})", handle);
return ResultInvalidHandle;
}
static ResultCode ResetSignal32(Core::System& system, Handle handle) {
return ResetSignal(system, handle);
}
namespace {
constexpr bool IsValidTransferMemoryPermission(MemoryPermission perm) {
switch (perm) {
case MemoryPermission::None:
case MemoryPermission::Read:
case MemoryPermission::ReadWrite:
return true;
default:
return false;
}
}
} // Anonymous namespace
/// Creates a TransferMemory object
static ResultCode CreateTransferMemory(Core::System& system, Handle* out, VAddr address, u64 size,
MemoryPermission map_perm) {
auto& kernel = system.Kernel();
// Validate the size.
R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress);
R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize);
R_UNLESS(size > 0, ResultInvalidSize);
R_UNLESS((address < address + size), ResultInvalidCurrentMemory);
// Validate the permissions.
R_UNLESS(IsValidTransferMemoryPermission(map_perm), ResultInvalidNewMemoryPermission);
// Get the current process and handle table.
auto& process = *kernel.CurrentProcess();
auto& handle_table = process.GetHandleTable();
// Reserve a new transfer memory from the process resource limit.
KScopedResourceReservation trmem_reservation(kernel.CurrentProcess(),
LimitableResource::TransferMemory);
R_UNLESS(trmem_reservation.Succeeded(), ResultLimitReached);
// Create the transfer memory.
KTransferMemory* trmem = KTransferMemory::Create(kernel);
R_UNLESS(trmem != nullptr, ResultOutOfResource);
// Ensure the only reference is in the handle table when we're done.
SCOPE_EXIT({ trmem->Close(); });
// Ensure that the region is in range.
R_UNLESS(process.PageTable().Contains(address, size), ResultInvalidCurrentMemory);
// Initialize the transfer memory.
R_TRY(trmem->Initialize(address, size, map_perm));
// Commit the reservation.
trmem_reservation.Commit();
// Register the transfer memory.
KTransferMemory::Register(kernel, trmem);
// Add the transfer memory to the handle table.
R_TRY(handle_table.Add(out, trmem));
return ResultSuccess;
}
static ResultCode CreateTransferMemory32(Core::System& system, Handle* out, u32 address, u32 size,
MemoryPermission map_perm) {
return CreateTransferMemory(system, out, address, size, map_perm);
}
static ResultCode GetThreadCoreMask(Core::System& system, Handle thread_handle, s32* out_core_id,
u64* out_affinity_mask) {
LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle);
// Get the thread from its handle.
KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(thread_handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Get the core mask.
R_TRY(thread->GetCoreMask(out_core_id, out_affinity_mask));
return ResultSuccess;
}
static ResultCode GetThreadCoreMask32(Core::System& system, Handle thread_handle, s32* out_core_id,
u32* out_affinity_mask_low, u32* out_affinity_mask_high) {
u64 out_affinity_mask{};
const auto result = GetThreadCoreMask(system, thread_handle, out_core_id, &out_affinity_mask);
*out_affinity_mask_high = static_cast<u32>(out_affinity_mask >> 32);
*out_affinity_mask_low = static_cast<u32>(out_affinity_mask);
return result;
}
static ResultCode SetThreadCoreMask(Core::System& system, Handle thread_handle, s32 core_id,
u64 affinity_mask) {
// Determine the core id/affinity mask.
if (core_id == IdealCoreUseProcessValue) {
core_id = system.Kernel().CurrentProcess()->GetIdealCoreId();
affinity_mask = (1ULL << core_id);
} else {
// Validate the affinity mask.
const u64 process_core_mask = system.Kernel().CurrentProcess()->GetCoreMask();
R_UNLESS((affinity_mask | process_core_mask) == process_core_mask, ResultInvalidCoreId);
R_UNLESS(affinity_mask != 0, ResultInvalidCombination);
// Validate the core id.
if (IsValidVirtualCoreId(core_id)) {
R_UNLESS(((1ULL << core_id) & affinity_mask) != 0, ResultInvalidCombination);
} else {
R_UNLESS(core_id == IdealCoreNoUpdate || core_id == IdealCoreDontCare,
ResultInvalidCoreId);
}
}
// Get the thread from its handle.
KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(thread_handle);
R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
// Set the core mask.
R_TRY(thread->SetCoreMask(core_id, affinity_mask));
return ResultSuccess;
}
static ResultCode SetThreadCoreMask32(Core::System& system, Handle thread_handle, s32 core_id,
u32 affinity_mask_low, u32 affinity_mask_high) {
const auto affinity_mask = u64{affinity_mask_low} | (u64{affinity_mask_high} << 32);
return SetThreadCoreMask(system, thread_handle, core_id, affinity_mask);
}
static ResultCode SignalEvent(Core::System& system, Handle event_handle) {
LOG_DEBUG(Kernel_SVC, "called, event_handle=0x{:08X}", event_handle);
// Get the current handle table.
const KHandleTable& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
// Get the writable event.
KScopedAutoObject writable_event = handle_table.GetObject<KWritableEvent>(event_handle);
R_UNLESS(writable_event.IsNotNull(), ResultInvalidHandle);
return writable_event->Signal();
}
static ResultCode SignalEvent32(Core::System& system, Handle event_handle) {
return SignalEvent(system, event_handle);
}
static ResultCode ClearEvent(Core::System& system, Handle event_handle) {
LOG_TRACE(Kernel_SVC, "called, event_handle=0x{:08X}", event_handle);
// Get the current handle table.
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
// Try to clear the writable event.
{
KScopedAutoObject writable_event = handle_table.GetObject<KWritableEvent>(event_handle);
if (writable_event.IsNotNull()) {
return writable_event->Clear();
}
}
// Try to clear the readable event.
{
KScopedAutoObject readable_event = handle_table.GetObject<KReadableEvent>(event_handle);
if (readable_event.IsNotNull()) {
return readable_event->Clear();
}
}
LOG_ERROR(Kernel_SVC, "Event handle does not exist, event_handle=0x{:08X}", event_handle);
return ResultInvalidHandle;
}
static ResultCode ClearEvent32(Core::System& system, Handle event_handle) {
return ClearEvent(system, event_handle);
}
static ResultCode CreateEvent(Core::System& system, Handle* out_write, Handle* out_read) {
LOG_DEBUG(Kernel_SVC, "called");
// Get the kernel reference and handle table.
auto& kernel = system.Kernel();
auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
// Reserve a new event from the process resource limit
KScopedResourceReservation event_reservation(kernel.CurrentProcess(),
LimitableResource::Events);
R_UNLESS(event_reservation.Succeeded(), ResultLimitReached);
// Create a new event.
KEvent* event = KEvent::Create(kernel);
R_UNLESS(event != nullptr, ResultOutOfResource);
// Initialize the event.
event->Initialize("CreateEvent");
// Commit the thread reservation.
event_reservation.Commit();
// Ensure that we clean up the event (and its only references are handle table) on function end.
SCOPE_EXIT({
event->GetWritableEvent().Close();
event->GetReadableEvent().Close();
});
// Register the event.
KEvent::Register(kernel, event);
// Add the writable event to the handle table.
R_TRY(handle_table.Add(out_write, std::addressof(event->GetWritableEvent())));
// Add the writable event to the handle table.
auto handle_guard = SCOPE_GUARD({ handle_table.Remove(*out_write); });
// Add the readable event to the handle table.
R_TRY(handle_table.Add(out_read, std::addressof(event->GetReadableEvent())));
// We succeeded.
handle_guard.Cancel();
return ResultSuccess;
}
static ResultCode CreateEvent32(Core::System& system, Handle* out_write, Handle* out_read) {
return CreateEvent(system, out_write, out_read);
}
static ResultCode GetProcessInfo(Core::System& system, u64* out, Handle process_handle, u32 type) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, type=0x{:X}", process_handle, type);
// This function currently only allows retrieving a process' status.
enum class InfoType {
Status,
};
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
KScopedAutoObject process = handle_table.GetObject<KProcess>(process_handle);
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}",
process_handle);
return ResultInvalidHandle;
}
const auto info_type = static_cast<InfoType>(type);
if (info_type != InfoType::Status) {
LOG_ERROR(Kernel_SVC, "Expected info_type to be Status but got {} instead", type);
return ResultInvalidEnumValue;
}
*out = static_cast<u64>(process->GetStatus());
return ResultSuccess;
}
static ResultCode CreateResourceLimit(Core::System& system, Handle* out_handle) {
LOG_DEBUG(Kernel_SVC, "called");
// Create a new resource limit.
auto& kernel = system.Kernel();
KResourceLimit* resource_limit = KResourceLimit::Create(kernel);
R_UNLESS(resource_limit != nullptr, ResultOutOfResource);
// Ensure we don't leak a reference to the limit.
SCOPE_EXIT({ resource_limit->Close(); });
// Initialize the resource limit.
resource_limit->Initialize(&system.CoreTiming());
// Register the limit.
KResourceLimit::Register(kernel, resource_limit);
// Add the limit to the handle table.
R_TRY(kernel.CurrentProcess()->GetHandleTable().Add(out_handle, resource_limit));
return ResultSuccess;
}
static ResultCode GetResourceLimitLimitValue(Core::System& system, u64* out_limit_value,
Handle resource_limit_handle,
LimitableResource which) {
LOG_DEBUG(Kernel_SVC, "called, resource_limit_handle={:08X}, which={}", resource_limit_handle,
which);
// Validate the resource.
R_UNLESS(IsValidResourceType(which), ResultInvalidEnumValue);
// Get the resource limit.
auto& kernel = system.Kernel();
KScopedAutoObject resource_limit =
kernel.CurrentProcess()->GetHandleTable().GetObject<KResourceLimit>(resource_limit_handle);
R_UNLESS(resource_limit.IsNotNull(), ResultInvalidHandle);
// Get the limit value.
*out_limit_value = resource_limit->GetLimitValue(which);
return ResultSuccess;
}
static ResultCode GetResourceLimitCurrentValue(Core::System& system, u64* out_current_value,
Handle resource_limit_handle,
LimitableResource which) {
LOG_DEBUG(Kernel_SVC, "called, resource_limit_handle={:08X}, which={}", resource_limit_handle,
which);
// Validate the resource.
R_UNLESS(IsValidResourceType(which), ResultInvalidEnumValue);
// Get the resource limit.
auto& kernel = system.Kernel();
KScopedAutoObject resource_limit =
kernel.CurrentProcess()->GetHandleTable().GetObject<KResourceLimit>(resource_limit_handle);
R_UNLESS(resource_limit.IsNotNull(), ResultInvalidHandle);
// Get the current value.
*out_current_value = resource_limit->GetCurrentValue(which);
return ResultSuccess;
}
static ResultCode SetResourceLimitLimitValue(Core::System& system, Handle resource_limit_handle,
LimitableResource which, u64 limit_value) {
LOG_DEBUG(Kernel_SVC, "called, resource_limit_handle={:08X}, which={}, limit_value={}",
resource_limit_handle, which, limit_value);
// Validate the resource.
R_UNLESS(IsValidResourceType(which), ResultInvalidEnumValue);
// Get the resource limit.
auto& kernel = system.Kernel();
KScopedAutoObject resource_limit =
kernel.CurrentProcess()->GetHandleTable().GetObject<KResourceLimit>(resource_limit_handle);
R_UNLESS(resource_limit.IsNotNull(), ResultInvalidHandle);
// Set the limit value.
R_TRY(resource_limit->SetLimitValue(which, limit_value));
return ResultSuccess;
}
static ResultCode GetProcessList(Core::System& system, u32* out_num_processes,
VAddr out_process_ids, u32 out_process_ids_size) {
LOG_DEBUG(Kernel_SVC, "called. out_process_ids=0x{:016X}, out_process_ids_size={}",
out_process_ids, out_process_ids_size);
// If the supplied size is negative or greater than INT32_MAX / sizeof(u64), bail.
if ((out_process_ids_size & 0xF0000000) != 0) {
LOG_ERROR(Kernel_SVC,
"Supplied size outside [0, 0x0FFFFFFF] range. out_process_ids_size={}",
out_process_ids_size);
return ResultOutOfRange;
}
const auto& kernel = system.Kernel();
const auto total_copy_size = out_process_ids_size * sizeof(u64);
if (out_process_ids_size > 0 && !kernel.CurrentProcess()->PageTable().IsInsideAddressSpace(
out_process_ids, total_copy_size)) {
LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}",
out_process_ids, out_process_ids + total_copy_size);
return ResultInvalidCurrentMemory;
}
auto& memory = system.Memory();
const auto& process_list = kernel.GetProcessList();
const auto num_processes = process_list.size();
const auto copy_amount = std::min(std::size_t{out_process_ids_size}, num_processes);
for (std::size_t i = 0; i < copy_amount; ++i) {
memory.Write64(out_process_ids, process_list[i]->GetProcessID());
out_process_ids += sizeof(u64);
}
*out_num_processes = static_cast<u32>(num_processes);
return ResultSuccess;
}
static ResultCode GetThreadList(Core::System& system, u32* out_num_threads, VAddr out_thread_ids,
u32 out_thread_ids_size, Handle debug_handle) {
// TODO: Handle this case when debug events are supported.
UNIMPLEMENTED_IF(debug_handle != InvalidHandle);
LOG_DEBUG(Kernel_SVC, "called. out_thread_ids=0x{:016X}, out_thread_ids_size={}",
out_thread_ids, out_thread_ids_size);
// If the size is negative or larger than INT32_MAX / sizeof(u64)
if ((out_thread_ids_size & 0xF0000000) != 0) {
LOG_ERROR(Kernel_SVC, "Supplied size outside [0, 0x0FFFFFFF] range. size={}",
out_thread_ids_size);
return ResultOutOfRange;
}
const auto* const current_process = system.Kernel().CurrentProcess();
const auto total_copy_size = out_thread_ids_size * sizeof(u64);
if (out_thread_ids_size > 0 &&
!current_process->PageTable().IsInsideAddressSpace(out_thread_ids, total_copy_size)) {
LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}",
out_thread_ids, out_thread_ids + total_copy_size);
return ResultInvalidCurrentMemory;
}
auto& memory = system.Memory();
const auto& thread_list = current_process->GetThreadList();
const auto num_threads = thread_list.size();
const auto copy_amount = std::min(std::size_t{out_thread_ids_size}, num_threads);
auto list_iter = thread_list.cbegin();
for (std::size_t i = 0; i < copy_amount; ++i, ++list_iter) {
memory.Write64(out_thread_ids, (*list_iter)->GetThreadID());
out_thread_ids += sizeof(u64);
}
*out_num_threads = static_cast<u32>(num_threads);
return ResultSuccess;
}
static ResultCode FlushProcessDataCache32([[maybe_unused]] Core::System& system,
[[maybe_unused]] Handle handle,
[[maybe_unused]] u32 address, [[maybe_unused]] u32 size) {
// Note(Blinkhawk): For emulation purposes of the data cache this is mostly a no-op,
// as all emulation is done in the same cache level in host architecture, thus data cache
// does not need flushing.
LOG_DEBUG(Kernel_SVC, "called");
return ResultSuccess;
}
namespace {
struct FunctionDef {
using Func = void(Core::System&);
u32 id;
Func* func;
const char* name;
};
} // namespace
static const FunctionDef SVC_Table_32[] = {
{0x00, nullptr, "Unknown"},
{0x01, SvcWrap32<SetHeapSize32>, "SetHeapSize32"},
{0x02, nullptr, "Unknown"},
{0x03, SvcWrap32<SetMemoryAttribute32>, "SetMemoryAttribute32"},
{0x04, SvcWrap32<MapMemory32>, "MapMemory32"},
{0x05, SvcWrap32<UnmapMemory32>, "UnmapMemory32"},
{0x06, SvcWrap32<QueryMemory32>, "QueryMemory32"},
{0x07, SvcWrap32<ExitProcess32>, "ExitProcess32"},
{0x08, SvcWrap32<CreateThread32>, "CreateThread32"},
{0x09, SvcWrap32<StartThread32>, "StartThread32"},
{0x0a, SvcWrap32<ExitThread32>, "ExitThread32"},
{0x0b, SvcWrap32<SleepThread32>, "SleepThread32"},
{0x0c, SvcWrap32<GetThreadPriority32>, "GetThreadPriority32"},
{0x0d, SvcWrap32<SetThreadPriority32>, "SetThreadPriority32"},
{0x0e, SvcWrap32<GetThreadCoreMask32>, "GetThreadCoreMask32"},
{0x0f, SvcWrap32<SetThreadCoreMask32>, "SetThreadCoreMask32"},
{0x10, SvcWrap32<GetCurrentProcessorNumber32>, "GetCurrentProcessorNumber32"},
{0x11, SvcWrap32<SignalEvent32>, "SignalEvent32"},
{0x12, SvcWrap32<ClearEvent32>, "ClearEvent32"},
{0x13, SvcWrap32<MapSharedMemory32>, "MapSharedMemory32"},
{0x14, SvcWrap32<UnmapSharedMemory32>, "UnmapSharedMemory32"},
{0x15, SvcWrap32<CreateTransferMemory32>, "CreateTransferMemory32"},
{0x16, SvcWrap32<CloseHandle32>, "CloseHandle32"},
{0x17, SvcWrap32<ResetSignal32>, "ResetSignal32"},
{0x18, SvcWrap32<WaitSynchronization32>, "WaitSynchronization32"},
{0x19, SvcWrap32<CancelSynchronization32>, "CancelSynchronization32"},
{0x1a, SvcWrap32<ArbitrateLock32>, "ArbitrateLock32"},
{0x1b, SvcWrap32<ArbitrateUnlock32>, "ArbitrateUnlock32"},
{0x1c, SvcWrap32<WaitProcessWideKeyAtomic32>, "WaitProcessWideKeyAtomic32"},
{0x1d, SvcWrap32<SignalProcessWideKey32>, "SignalProcessWideKey32"},
{0x1e, SvcWrap32<GetSystemTick32>, "GetSystemTick32"},
{0x1f, SvcWrap32<ConnectToNamedPort32>, "ConnectToNamedPort32"},
{0x20, nullptr, "Unknown"},
{0x21, SvcWrap32<SendSyncRequest32>, "SendSyncRequest32"},
{0x22, nullptr, "SendSyncRequestWithUserBuffer32"},
{0x23, nullptr, "Unknown"},
{0x24, SvcWrap32<GetProcessId32>, "GetProcessId32"},
{0x25, SvcWrap32<GetThreadId32>, "GetThreadId32"},
{0x26, SvcWrap32<Break32>, "Break32"},
{0x27, nullptr, "OutputDebugString32"},
{0x28, nullptr, "Unknown"},
{0x29, SvcWrap32<GetInfo32>, "GetInfo32"},
{0x2a, nullptr, "Unknown"},
{0x2b, nullptr, "Unknown"},
{0x2c, SvcWrap32<MapPhysicalMemory32>, "MapPhysicalMemory32"},
{0x2d, SvcWrap32<UnmapPhysicalMemory32>, "UnmapPhysicalMemory32"},
{0x2e, nullptr, "Unknown"},
{0x2f, nullptr, "Unknown"},
{0x30, nullptr, "Unknown"},
{0x31, nullptr, "Unknown"},
{0x32, SvcWrap32<SetThreadActivity32>, "SetThreadActivity32"},
{0x33, SvcWrap32<GetThreadContext32>, "GetThreadContext32"},
{0x34, SvcWrap32<WaitForAddress32>, "WaitForAddress32"},
{0x35, SvcWrap32<SignalToAddress32>, "SignalToAddress32"},
{0x36, nullptr, "Unknown"},
{0x37, nullptr, "Unknown"},
{0x38, nullptr, "Unknown"},
{0x39, nullptr, "Unknown"},
{0x3a, nullptr, "Unknown"},
{0x3b, nullptr, "Unknown"},
{0x3c, nullptr, "Unknown"},
{0x3d, nullptr, "Unknown"},
{0x3e, nullptr, "Unknown"},
{0x3f, nullptr, "Unknown"},
{0x40, nullptr, "CreateSession32"},
{0x41, nullptr, "AcceptSession32"},
{0x42, nullptr, "Unknown"},
{0x43, nullptr, "ReplyAndReceive32"},
{0x44, nullptr, "Unknown"},
{0x45, SvcWrap32<CreateEvent32>, "CreateEvent32"},
{0x46, nullptr, "Unknown"},
{0x47, nullptr, "Unknown"},
{0x48, nullptr, "Unknown"},
{0x49, nullptr, "Unknown"},
{0x4a, nullptr, "Unknown"},
{0x4b, nullptr, "Unknown"},
{0x4c, nullptr, "Unknown"},
{0x4d, nullptr, "Unknown"},
{0x4e, nullptr, "Unknown"},
{0x4f, nullptr, "Unknown"},
{0x50, nullptr, "Unknown"},
{0x51, nullptr, "Unknown"},
{0x52, nullptr, "Unknown"},
{0x53, nullptr, "Unknown"},
{0x54, nullptr, "Unknown"},
{0x55, nullptr, "Unknown"},
{0x56, nullptr, "Unknown"},
{0x57, nullptr, "Unknown"},
{0x58, nullptr, "Unknown"},
{0x59, nullptr, "Unknown"},
{0x5a, nullptr, "Unknown"},
{0x5b, nullptr, "Unknown"},
{0x5c, nullptr, "Unknown"},
{0x5d, nullptr, "Unknown"},
{0x5e, nullptr, "Unknown"},
{0x5F, SvcWrap32<FlushProcessDataCache32>, "FlushProcessDataCache32"},
{0x60, nullptr, "Unknown"},
{0x61, nullptr, "Unknown"},
{0x62, nullptr, "Unknown"},
{0x63, nullptr, "Unknown"},
{0x64, nullptr, "Unknown"},
{0x65, nullptr, "GetProcessList32"},
{0x66, nullptr, "Unknown"},
{0x67, nullptr, "Unknown"},
{0x68, nullptr, "Unknown"},
{0x69, nullptr, "Unknown"},
{0x6A, nullptr, "Unknown"},
{0x6B, nullptr, "Unknown"},
{0x6C, nullptr, "Unknown"},
{0x6D, nullptr, "Unknown"},
{0x6E, nullptr, "Unknown"},
{0x6f, nullptr, "GetSystemInfo32"},
{0x70, nullptr, "CreatePort32"},
{0x71, nullptr, "ManageNamedPort32"},
{0x72, nullptr, "ConnectToPort32"},
{0x73, nullptr, "SetProcessMemoryPermission32"},
{0x74, nullptr, "Unknown"},
{0x75, nullptr, "Unknown"},
{0x76, nullptr, "Unknown"},
{0x77, nullptr, "MapProcessCodeMemory32"},
{0x78, nullptr, "UnmapProcessCodeMemory32"},
{0x79, nullptr, "Unknown"},
{0x7A, nullptr, "Unknown"},
{0x7B, nullptr, "TerminateProcess32"},
{0x7C, nullptr, "GetProcessInfo32"},
{0x7D, nullptr, "CreateResourceLimit32"},
{0x7E, nullptr, "SetResourceLimitLimitValue32"},
{0x7F, nullptr, "CallSecureMonitor32"},
{0x80, nullptr, "Unknown"},
{0x81, nullptr, "Unknown"},
{0x82, nullptr, "Unknown"},
{0x83, nullptr, "Unknown"},
{0x84, nullptr, "Unknown"},
{0x85, nullptr, "Unknown"},
{0x86, nullptr, "Unknown"},
{0x87, nullptr, "Unknown"},
{0x88, nullptr, "Unknown"},
{0x89, nullptr, "Unknown"},
{0x8A, nullptr, "Unknown"},
{0x8B, nullptr, "Unknown"},
{0x8C, nullptr, "Unknown"},
{0x8D, nullptr, "Unknown"},
{0x8E, nullptr, "Unknown"},
{0x8F, nullptr, "Unknown"},
{0x90, nullptr, "Unknown"},
{0x91, nullptr, "Unknown"},
{0x92, nullptr, "Unknown"},
{0x93, nullptr, "Unknown"},
{0x94, nullptr, "Unknown"},
{0x95, nullptr, "Unknown"},
{0x96, nullptr, "Unknown"},
{0x97, nullptr, "Unknown"},
{0x98, nullptr, "Unknown"},
{0x99, nullptr, "Unknown"},
{0x9A, nullptr, "Unknown"},
{0x9B, nullptr, "Unknown"},
{0x9C, nullptr, "Unknown"},
{0x9D, nullptr, "Unknown"},
{0x9E, nullptr, "Unknown"},
{0x9F, nullptr, "Unknown"},
{0xA0, nullptr, "Unknown"},
{0xA1, nullptr, "Unknown"},
{0xA2, nullptr, "Unknown"},
{0xA3, nullptr, "Unknown"},
{0xA4, nullptr, "Unknown"},
{0xA5, nullptr, "Unknown"},
{0xA6, nullptr, "Unknown"},
{0xA7, nullptr, "Unknown"},
{0xA8, nullptr, "Unknown"},
{0xA9, nullptr, "Unknown"},
{0xAA, nullptr, "Unknown"},
{0xAB, nullptr, "Unknown"},
{0xAC, nullptr, "Unknown"},
{0xAD, nullptr, "Unknown"},
{0xAE, nullptr, "Unknown"},
{0xAF, nullptr, "Unknown"},
{0xB0, nullptr, "Unknown"},
{0xB1, nullptr, "Unknown"},
{0xB2, nullptr, "Unknown"},
{0xB3, nullptr, "Unknown"},
{0xB4, nullptr, "Unknown"},
{0xB5, nullptr, "Unknown"},
{0xB6, nullptr, "Unknown"},
{0xB7, nullptr, "Unknown"},
{0xB8, nullptr, "Unknown"},
{0xB9, nullptr, "Unknown"},
{0xBA, nullptr, "Unknown"},
{0xBB, nullptr, "Unknown"},
{0xBC, nullptr, "Unknown"},
{0xBD, nullptr, "Unknown"},
{0xBE, nullptr, "Unknown"},
{0xBF, nullptr, "Unknown"},
};
static const FunctionDef SVC_Table_64[] = {
{0x00, nullptr, "Unknown"},
{0x01, SvcWrap64<SetHeapSize>, "SetHeapSize"},
{0x02, nullptr, "SetMemoryPermission"},
{0x03, SvcWrap64<SetMemoryAttribute>, "SetMemoryAttribute"},
{0x04, SvcWrap64<MapMemory>, "MapMemory"},
{0x05, SvcWrap64<UnmapMemory>, "UnmapMemory"},
{0x06, SvcWrap64<QueryMemory>, "QueryMemory"},
{0x07, SvcWrap64<ExitProcess>, "ExitProcess"},
{0x08, SvcWrap64<CreateThread>, "CreateThread"},
{0x09, SvcWrap64<StartThread>, "StartThread"},
{0x0A, SvcWrap64<ExitThread>, "ExitThread"},
{0x0B, SvcWrap64<SleepThread>, "SleepThread"},
{0x0C, SvcWrap64<GetThreadPriority>, "GetThreadPriority"},
{0x0D, SvcWrap64<SetThreadPriority>, "SetThreadPriority"},
{0x0E, SvcWrap64<GetThreadCoreMask>, "GetThreadCoreMask"},
{0x0F, SvcWrap64<SetThreadCoreMask>, "SetThreadCoreMask"},
{0x10, SvcWrap64<GetCurrentProcessorNumber>, "GetCurrentProcessorNumber"},
{0x11, SvcWrap64<SignalEvent>, "SignalEvent"},
{0x12, SvcWrap64<ClearEvent>, "ClearEvent"},
{0x13, SvcWrap64<MapSharedMemory>, "MapSharedMemory"},
{0x14, SvcWrap64<UnmapSharedMemory>, "UnmapSharedMemory"},
{0x15, SvcWrap64<CreateTransferMemory>, "CreateTransferMemory"},
{0x16, SvcWrap64<CloseHandle>, "CloseHandle"},
{0x17, SvcWrap64<ResetSignal>, "ResetSignal"},
{0x18, SvcWrap64<WaitSynchronization>, "WaitSynchronization"},
{0x19, SvcWrap64<CancelSynchronization>, "CancelSynchronization"},
{0x1A, SvcWrap64<ArbitrateLock>, "ArbitrateLock"},
{0x1B, SvcWrap64<ArbitrateUnlock>, "ArbitrateUnlock"},
{0x1C, SvcWrap64<WaitProcessWideKeyAtomic>, "WaitProcessWideKeyAtomic"},
{0x1D, SvcWrap64<SignalProcessWideKey>, "SignalProcessWideKey"},
{0x1E, SvcWrap64<GetSystemTick>, "GetSystemTick"},
{0x1F, SvcWrap64<ConnectToNamedPort>, "ConnectToNamedPort"},
{0x20, nullptr, "SendSyncRequestLight"},
{0x21, SvcWrap64<SendSyncRequest>, "SendSyncRequest"},
{0x22, nullptr, "SendSyncRequestWithUserBuffer"},
{0x23, nullptr, "SendAsyncRequestWithUserBuffer"},
{0x24, SvcWrap64<GetProcessId>, "GetProcessId"},
{0x25, SvcWrap64<GetThreadId>, "GetThreadId"},
{0x26, SvcWrap64<Break>, "Break"},
{0x27, SvcWrap64<OutputDebugString>, "OutputDebugString"},
{0x28, nullptr, "ReturnFromException"},
{0x29, SvcWrap64<GetInfo>, "GetInfo"},
{0x2A, nullptr, "FlushEntireDataCache"},
{0x2B, nullptr, "FlushDataCache"},
{0x2C, SvcWrap64<MapPhysicalMemory>, "MapPhysicalMemory"},
{0x2D, SvcWrap64<UnmapPhysicalMemory>, "UnmapPhysicalMemory"},
{0x2E, nullptr, "GetFutureThreadInfo"},
{0x2F, nullptr, "GetLastThreadInfo"},
{0x30, SvcWrap64<GetResourceLimitLimitValue>, "GetResourceLimitLimitValue"},
{0x31, SvcWrap64<GetResourceLimitCurrentValue>, "GetResourceLimitCurrentValue"},
{0x32, SvcWrap64<SetThreadActivity>, "SetThreadActivity"},
{0x33, SvcWrap64<GetThreadContext>, "GetThreadContext"},
{0x34, SvcWrap64<WaitForAddress>, "WaitForAddress"},
{0x35, SvcWrap64<SignalToAddress>, "SignalToAddress"},
{0x36, nullptr, "SynchronizePreemptionState"},
{0x37, nullptr, "Unknown"},
{0x38, nullptr, "Unknown"},
{0x39, nullptr, "Unknown"},
{0x3A, nullptr, "Unknown"},
{0x3B, nullptr, "Unknown"},
{0x3C, SvcWrap64<KernelDebug>, "KernelDebug"},
{0x3D, SvcWrap64<ChangeKernelTraceState>, "ChangeKernelTraceState"},
{0x3E, nullptr, "Unknown"},
{0x3F, nullptr, "Unknown"},
{0x40, nullptr, "CreateSession"},
{0x41, nullptr, "AcceptSession"},
{0x42, nullptr, "ReplyAndReceiveLight"},
{0x43, nullptr, "ReplyAndReceive"},
{0x44, nullptr, "ReplyAndReceiveWithUserBuffer"},
{0x45, SvcWrap64<CreateEvent>, "CreateEvent"},
{0x46, nullptr, "Unknown"},
{0x47, nullptr, "Unknown"},
{0x48, nullptr, "MapPhysicalMemoryUnsafe"},
{0x49, nullptr, "UnmapPhysicalMemoryUnsafe"},
{0x4A, nullptr, "SetUnsafeLimit"},
{0x4B, SvcWrap64<CreateCodeMemory>, "CreateCodeMemory"},
{0x4C, SvcWrap64<ControlCodeMemory>, "ControlCodeMemory"},
{0x4D, nullptr, "SleepSystem"},
{0x4E, nullptr, "ReadWriteRegister"},
{0x4F, nullptr, "SetProcessActivity"},
{0x50, nullptr, "CreateSharedMemory"},
{0x51, nullptr, "MapTransferMemory"},
{0x52, nullptr, "UnmapTransferMemory"},
{0x53, nullptr, "CreateInterruptEvent"},
{0x54, nullptr, "QueryPhysicalAddress"},
{0x55, nullptr, "QueryIoMapping"},
{0x56, nullptr, "CreateDeviceAddressSpace"},
{0x57, nullptr, "AttachDeviceAddressSpace"},
{0x58, nullptr, "DetachDeviceAddressSpace"},
{0x59, nullptr, "MapDeviceAddressSpaceByForce"},
{0x5A, nullptr, "MapDeviceAddressSpaceAligned"},
{0x5B, nullptr, "MapDeviceAddressSpace"},
{0x5C, nullptr, "UnmapDeviceAddressSpace"},
{0x5D, nullptr, "InvalidateProcessDataCache"},
{0x5E, nullptr, "StoreProcessDataCache"},
{0x5F, nullptr, "FlushProcessDataCache"},
{0x60, nullptr, "DebugActiveProcess"},
{0x61, nullptr, "BreakDebugProcess"},
{0x62, nullptr, "TerminateDebugProcess"},
{0x63, nullptr, "GetDebugEvent"},
{0x64, nullptr, "ContinueDebugEvent"},
{0x65, SvcWrap64<GetProcessList>, "GetProcessList"},
{0x66, SvcWrap64<GetThreadList>, "GetThreadList"},
{0x67, nullptr, "GetDebugThreadContext"},
{0x68, nullptr, "SetDebugThreadContext"},
{0x69, nullptr, "QueryDebugProcessMemory"},
{0x6A, nullptr, "ReadDebugProcessMemory"},
{0x6B, nullptr, "WriteDebugProcessMemory"},
{0x6C, nullptr, "SetHardwareBreakPoint"},
{0x6D, nullptr, "GetDebugThreadParam"},
{0x6E, nullptr, "Unknown"},
{0x6F, nullptr, "GetSystemInfo"},
{0x70, nullptr, "CreatePort"},
{0x71, nullptr, "ManageNamedPort"},
{0x72, nullptr, "ConnectToPort"},
{0x73, SvcWrap64<SetProcessMemoryPermission>, "SetProcessMemoryPermission"},
{0x74, SvcWrap64<MapProcessMemory>, "MapProcessMemory"},
{0x75, SvcWrap64<UnmapProcessMemory>, "UnmapProcessMemory"},
{0x76, SvcWrap64<QueryProcessMemory>, "QueryProcessMemory"},
{0x77, SvcWrap64<MapProcessCodeMemory>, "MapProcessCodeMemory"},
{0x78, SvcWrap64<UnmapProcessCodeMemory>, "UnmapProcessCodeMemory"},
{0x79, nullptr, "CreateProcess"},
{0x7A, nullptr, "StartProcess"},
{0x7B, nullptr, "TerminateProcess"},
{0x7C, SvcWrap64<GetProcessInfo>, "GetProcessInfo"},
{0x7D, SvcWrap64<CreateResourceLimit>, "CreateResourceLimit"},
{0x7E, SvcWrap64<SetResourceLimitLimitValue>, "SetResourceLimitLimitValue"},
{0x7F, nullptr, "CallSecureMonitor"},
{0x80, nullptr, "Unknown"},
{0x81, nullptr, "Unknown"},
{0x82, nullptr, "Unknown"},
{0x83, nullptr, "Unknown"},
{0x84, nullptr, "Unknown"},
{0x85, nullptr, "Unknown"},
{0x86, nullptr, "Unknown"},
{0x87, nullptr, "Unknown"},
{0x88, nullptr, "Unknown"},
{0x89, nullptr, "Unknown"},
{0x8A, nullptr, "Unknown"},
{0x8B, nullptr, "Unknown"},
{0x8C, nullptr, "Unknown"},
{0x8D, nullptr, "Unknown"},
{0x8E, nullptr, "Unknown"},
{0x8F, nullptr, "Unknown"},
{0x90, nullptr, "Unknown"},
{0x91, nullptr, "Unknown"},
{0x92, nullptr, "Unknown"},
{0x93, nullptr, "Unknown"},
{0x94, nullptr, "Unknown"},
{0x95, nullptr, "Unknown"},
{0x96, nullptr, "Unknown"},
{0x97, nullptr, "Unknown"},
{0x98, nullptr, "Unknown"},
{0x99, nullptr, "Unknown"},
{0x9A, nullptr, "Unknown"},
{0x9B, nullptr, "Unknown"},
{0x9C, nullptr, "Unknown"},
{0x9D, nullptr, "Unknown"},
{0x9E, nullptr, "Unknown"},
{0x9F, nullptr, "Unknown"},
{0xA0, nullptr, "Unknown"},
{0xA1, nullptr, "Unknown"},
{0xA2, nullptr, "Unknown"},
{0xA3, nullptr, "Unknown"},
{0xA4, nullptr, "Unknown"},
{0xA5, nullptr, "Unknown"},
{0xA6, nullptr, "Unknown"},
{0xA7, nullptr, "Unknown"},
{0xA8, nullptr, "Unknown"},
{0xA9, nullptr, "Unknown"},
{0xAA, nullptr, "Unknown"},
{0xAB, nullptr, "Unknown"},
{0xAC, nullptr, "Unknown"},
{0xAD, nullptr, "Unknown"},
{0xAE, nullptr, "Unknown"},
{0xAF, nullptr, "Unknown"},
{0xB0, nullptr, "Unknown"},
{0xB1, nullptr, "Unknown"},
{0xB2, nullptr, "Unknown"},
{0xB3, nullptr, "Unknown"},
{0xB4, nullptr, "Unknown"},
{0xB5, nullptr, "Unknown"},
{0xB6, nullptr, "Unknown"},
{0xB7, nullptr, "Unknown"},
{0xB8, nullptr, "Unknown"},
{0xB9, nullptr, "Unknown"},
{0xBA, nullptr, "Unknown"},
{0xBB, nullptr, "Unknown"},
{0xBC, nullptr, "Unknown"},
{0xBD, nullptr, "Unknown"},
{0xBE, nullptr, "Unknown"},
{0xBF, nullptr, "Unknown"},
};
static const FunctionDef* GetSVCInfo32(u32 func_num) {
if (func_num >= std::size(SVC_Table_32)) {
LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num);
return nullptr;
}
return &SVC_Table_32[func_num];
}
static const FunctionDef* GetSVCInfo64(u32 func_num) {
if (func_num >= std::size(SVC_Table_64)) {
LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num);
return nullptr;
}
return &SVC_Table_64[func_num];
}
void Call(Core::System& system, u32 immediate) {
system.ExitDynarmicProfile();
auto& kernel = system.Kernel();
kernel.EnterSVCProfile();
auto* thread = kernel.CurrentScheduler()->GetCurrentThread();
thread->SetIsCallingSvc();
const FunctionDef* info = system.CurrentProcess()->Is64BitProcess() ? GetSVCInfo64(immediate)
: GetSVCInfo32(immediate);
if (info) {
if (info->func) {
info->func(system);
} else {
LOG_CRITICAL(Kernel_SVC, "Unimplemented SVC function {}(..)", info->name);
}
} else {
LOG_CRITICAL(Kernel_SVC, "Unknown SVC function 0x{:X}", immediate);
}
kernel.ExitSVCProfile();
if (!thread->IsCallingSvc()) {
auto* host_context = thread->GetHostContext().get();
host_context->Rewind();
}
system.EnterDynarmicProfile();
}
} // namespace Kernel::Svc