// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
namespace Kernel {
SharedPtr<CodeSet> CodeSet::Create(KernelCore& kernel, std::string name) {
SharedPtr<CodeSet> codeset(new CodeSet(kernel));
codeset->name = std::move(name);
return codeset;
}
CodeSet::CodeSet(KernelCore& kernel) : Object{kernel} {}
CodeSet::~CodeSet() = default;
SharedPtr<Process> Process::Create(KernelCore& kernel, std::string&& name) {
SharedPtr<Process> process(new Process(kernel));
process->name = std::move(name);
process->flags.raw = 0;
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
process->resource_limit = kernel.ResourceLimitForCategory(ResourceLimitCategory::APPLICATION);
process->status = ProcessStatus::Created;
process->program_id = 0;
process->process_id = kernel.CreateNewProcessID();
process->svc_access_mask.set();
kernel.AppendNewProcess(process);
return process;
}
void Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
program_id = metadata.GetTitleID();
is_64bit_process = metadata.Is64BitProgram();
vm_manager.Reset(metadata.GetAddressSpaceType());
}
void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) {
for (std::size_t i = 0; i < len; ++i) {
u32 descriptor = kernel_caps[i];
u32 type = descriptor >> 20;
if (descriptor == 0xFFFFFFFF) {
// Unused descriptor entry
continue;
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
// Allowed interrupts list
LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
// Allowed syscalls mask
unsigned int index = ((descriptor >> 24) & 7) * 24;
u32 bits = descriptor & 0xFFFFFF;
while (bits && index < svc_access_mask.size()) {
svc_access_mask.set(index, bits & 1);
++index;
bits >>= 1;
}
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
// Handle table size
handle_table_size = descriptor & 0x3FF;
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
// Misc. flags
flags.raw = descriptor & 0xFFFF;
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
// Mapped memory range
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
continue;
}
u32 end_desc = kernel_caps[i + 1];
++i; // Skip over the second descriptor on the next iteration
AddressMapping mapping;
mapping.address = descriptor << 12;
VAddr end_address = end_desc << 12;
if (mapping.address < end_address) {
mapping.size = end_address - mapping.address;
} else {
mapping.size = 0;
}
mapping.read_only = (descriptor & (1 << 20)) != 0;
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
address_mappings.push_back(mapping);
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
// Mapped memory page
AddressMapping mapping;
mapping.address = descriptor << 12;
mapping.size = Memory::PAGE_SIZE;
mapping.read_only = false;
mapping.unk_flag = false;
address_mappings.push_back(mapping);
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
// Kernel version
kernel_version = descriptor & 0xFFFF;
int minor = kernel_version & 0xFF;
int major = (kernel_version >> 8) & 0xFF;
LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
} else {
LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
}
}
}
void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
// Allocate and map the main thread stack
// TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
// of the user address space.
vm_manager
.MapMemoryBlock(vm_manager.GetTLSIORegionEndAddress() - stack_size,
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
MemoryState::Mapped)
.Unwrap();
vm_manager.LogLayout();
status = ProcessStatus::Running;
Kernel::SetupMainThread(kernel, entry_point, main_thread_priority, *this);
}
void Process::PrepareForTermination() {
status = ProcessStatus::Exited;
const auto stop_threads = [this](const std::vector<SharedPtr<Thread>>& thread_list) {
for (auto& thread : thread_list) {
if (thread->owner_process != this)
continue;
if (thread == GetCurrentThread())
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->status == ThreadStatus::WaitSynchAny ||
thread->status == ThreadStatus::WaitSynchAll,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
}
};
auto& system = Core::System::GetInstance();
stop_threads(system.Scheduler(0)->GetThreadList());
stop_threads(system.Scheduler(1)->GetThreadList());
stop_threads(system.Scheduler(2)->GetThreadList());
stop_threads(system.Scheduler(3)->GetThreadList());
}
/**
* Finds a free location for the TLS section of a thread.
* @param tls_slots The TLS page array of the thread's owner process.
* Returns a tuple of (page, slot, alloc_needed) where:
* page: The index of the first allocated TLS page that has free slots.
* slot: The index of the first free slot in the indicated page.
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
*/
static std::tuple<std::size_t, std::size_t, bool> FindFreeThreadLocalSlot(
const std::vector<std::bitset<8>>& tls_slots) {
// Iterate over all the allocated pages, and try to find one where not all slots are used.
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
const auto& page_tls_slots = tls_slots[page];
if (!page_tls_slots.all()) {
// We found a page with at least one free slot, find which slot it is
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
if (!page_tls_slots.test(slot)) {
return std::make_tuple(page, slot, false);
}
}
}
}
return std::make_tuple(0, 0, true);
}
VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) {
auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots);
const VAddr tls_begin = vm_manager.GetTLSIORegionBaseAddress();
if (needs_allocation) {
tls_slots.emplace_back(0); // The page is completely available at the start
available_page = tls_slots.size() - 1;
available_slot = 0; // Use the first slot in the new page
// Allocate some memory from the end of the linear heap for this region.
auto& tls_memory = thread.GetTLSMemory();
tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0);
vm_manager.RefreshMemoryBlockMappings(tls_memory.get());
vm_manager.MapMemoryBlock(tls_begin + available_page * Memory::PAGE_SIZE, tls_memory, 0,
Memory::PAGE_SIZE, MemoryState::ThreadLocal);
}
tls_slots[available_page].set(available_slot);
return tls_begin + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE;
}
void Process::FreeTLSSlot(VAddr tls_address) {
const VAddr tls_base = tls_address - vm_manager.GetTLSIORegionBaseAddress();
const VAddr tls_page = tls_base / Memory::PAGE_SIZE;
const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
tls_slots[tls_page].reset(tls_slot);
}
void Process::LoadModule(SharedPtr<CodeSet> module_, VAddr base_addr) {
const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
auto vma = vm_manager
.MapMemoryBlock(segment.addr + base_addr, module_->memory, segment.offset,
segment.size, memory_state)
.Unwrap();
vm_manager.Reprotect(vma, permissions);
};
// Map CodeSet segments
MapSegment(module_->CodeSegment(), VMAPermission::ReadExecute, MemoryState::CodeStatic);
MapSegment(module_->RODataSegment(), VMAPermission::Read, MemoryState::CodeMutable);
MapSegment(module_->DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeMutable);
}
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u64 size, VMAPermission perms) {
if (target < vm_manager.GetHeapRegionBaseAddress() ||
target + size > vm_manager.GetHeapRegionEndAddress() || target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (heap_memory == nullptr) {
// Initialize heap
heap_memory = std::make_shared<std::vector<u8>>();
heap_start = heap_end = target;
} else {
vm_manager.UnmapRange(heap_start, heap_end - heap_start);
}
// If necessary, expand backing vector to cover new heap extents.
if (target < heap_start) {
heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
heap_start = target;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
if (target + size > heap_end) {
heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
heap_end = target + size;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
ASSERT(heap_end - heap_start == heap_memory->size());
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start,
size, MemoryState::Heap));
vm_manager.Reprotect(vma, perms);
heap_used = size;
return MakeResult<VAddr>(heap_end - size);
}
ResultCode Process::HeapFree(VAddr target, u32 size) {
if (target < vm_manager.GetHeapRegionBaseAddress() ||
target + size > vm_manager.GetHeapRegionEndAddress() || target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError())
return result;
heap_used -= size;
return RESULT_SUCCESS;
}
ResultCode Process::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
auto vma = vm_manager.FindVMA(src_addr);
ASSERT_MSG(vma != vm_manager.vma_map.end(), "Invalid memory address");
ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");
// The returned VMA might be a bigger one encompassing the desired address.
auto vma_offset = src_addr - vma->first;
ASSERT_MSG(vma_offset + size <= vma->second.size,
"Shared memory exceeds bounds of mapped block");
const std::shared_ptr<std::vector<u8>>& backing_block = vma->second.backing_block;
std::size_t backing_block_offset = vma->second.offset + vma_offset;
CASCADE_RESULT(auto new_vma,
vm_manager.MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size,
MemoryState::Mapped));
// Protect mirror with permissions from old region
vm_manager.Reprotect(new_vma, vma->second.permissions);
// Remove permissions from old region
vm_manager.Reprotect(vma, VMAPermission::None);
return RESULT_SUCCESS;
}
ResultCode Process::UnmapMemory(VAddr dst_addr, VAddr /*src_addr*/, u64 size) {
return vm_manager.UnmapRange(dst_addr, size);
}
Kernel::Process::Process(KernelCore& kernel) : Object{kernel} {}
Kernel::Process::~Process() {}
} // namespace Kernel