summaryrefslogblamecommitdiffstats
path: root/src/core/hle/kernel/k_scheduler.cpp
blob: c7e2eabd43fea8bd12743dc8fc6f9aa0b416f15c (plain) (tree)
1
2
3
4
5
6
7
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599






                                                                                                   







                                   
                                        


                                          










                                                             





































































































































































                                                                                                    


















































































































































































































































































































































































































                                                                                                    



































































































































































































































                                                                                                    
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

// This file references various implementation details from Atmosphere, an open-source firmware for
// the Nintendo Switch. Copyright 2018-2020 Atmosphere-NX.

#include "common/assert.h"
#include "common/bit_util.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/cpu_manager.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"

namespace Kernel {

static void IncrementScheduledCount(Kernel::Thread* thread) {
    if (auto process = thread->GetOwnerProcess(); process) {
        process->IncrementScheduledCount();
    }
}

/*static*/ void KScheduler::RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule,
                                            Core::EmuThreadHandle global_thread) {
    u32 current_core = global_thread.host_handle;
    bool must_context_switch = global_thread.guest_handle != InvalidHandle &&
                               (current_core < Core::Hardware::NUM_CPU_CORES);

    while (cores_pending_reschedule != 0) {
        u32 core = Common::CountTrailingZeroes64(cores_pending_reschedule);
        ASSERT(core < Core::Hardware::NUM_CPU_CORES);
        if (!must_context_switch || core != current_core) {
            auto& phys_core = kernel.PhysicalCore(core);
            phys_core.Interrupt();
        } else {
            must_context_switch = true;
        }
        cores_pending_reschedule &= ~(1ULL << core);
    }
    if (must_context_switch) {
        auto core_scheduler = kernel.CurrentScheduler();
        kernel.ExitSVCProfile();
        core_scheduler->RescheduleCurrentCore();
        kernel.EnterSVCProfile();
    }
}

u64 KScheduler::UpdateHighestPriorityThread(Thread* highest_thread) {
    std::scoped_lock lock{guard};
    if (Thread* prev_highest_thread = this->state.highest_priority_thread;
        prev_highest_thread != highest_thread) {
        if (prev_highest_thread != nullptr) {
            IncrementScheduledCount(prev_highest_thread);
            prev_highest_thread->SetLastScheduledTick(system.CoreTiming().GetCPUTicks());
        }
        if (this->state.should_count_idle) {
            if (highest_thread != nullptr) {
                // if (Process* process = highest_thread->GetOwnerProcess(); process != nullptr) {
                //    process->SetRunningThread(this->core_id, highest_thread,
                //                              this->state.idle_count);
                //}
            } else {
                this->state.idle_count++;
            }
        }

        this->state.highest_priority_thread = highest_thread;
        this->state.needs_scheduling = true;
        return (1ULL << this->core_id);
    } else {
        return 0;
    }
}

/*static*/ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    /* Clear that we need to update. */
    ClearSchedulerUpdateNeeded(kernel);

    u64 cores_needing_scheduling = 0, idle_cores = 0;
    Thread* top_threads[Core::Hardware::NUM_CPU_CORES];
    auto& priority_queue = GetPriorityQueue(kernel);

    /* We want to go over all cores, finding the highest priority thread and determining if
     * scheduling is needed for that core. */
    for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
        Thread* top_thread = priority_queue.GetScheduledFront((s32)core_id);
        if (top_thread != nullptr) {
            ///* If the thread has no waiters, we need to check if the process has a thread pinned.
            ///*/
            // if (top_thread->GetNumKernelWaiters() == 0) {
            //    if (Process* parent = top_thread->GetOwnerProcess(); parent != nullptr) {
            //        if (Thread* pinned = parent->GetPinnedThread(core_id);
            //            pinned != nullptr && pinned != top_thread) {
            //            /* We prefer our parent's pinned thread if possible. However, we also
            //            don't
            //             * want to schedule un-runnable threads. */
            //            if (pinned->GetRawState() == Thread::ThreadState_Runnable) {
            //                top_thread = pinned;
            //            } else {
            //                top_thread = nullptr;
            //            }
            //        }
            //    }
            //}
        } else {
            idle_cores |= (1ULL << core_id);
        }

        top_threads[core_id] = top_thread;
        cores_needing_scheduling |=
            kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
    }

    /* Idle cores are bad. We're going to try to migrate threads to each idle core in turn. */
    while (idle_cores != 0) {
        u32 core_id = Common::CountTrailingZeroes64(idle_cores);
        if (Thread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) {
            s32 migration_candidates[Core::Hardware::NUM_CPU_CORES];
            size_t num_candidates = 0;

            /* While we have a suggested thread, try to migrate it! */
            while (suggested != nullptr) {
                /* Check if the suggested thread is the top thread on its core. */
                const s32 suggested_core = suggested->GetActiveCore();
                if (Thread* top_thread =
                        (suggested_core >= 0) ? top_threads[suggested_core] : nullptr;
                    top_thread != suggested) {
                    /* Make sure we're not dealing with threads too high priority for migration. */
                    if (top_thread != nullptr &&
                        top_thread->GetPriority() < HighestCoreMigrationAllowedPriority) {
                        break;
                    }

                    /* The suggested thread isn't bound to its core, so we can migrate it! */
                    suggested->SetActiveCore(core_id);
                    priority_queue.ChangeCore(suggested_core, suggested);

                    top_threads[core_id] = suggested;
                    cores_needing_scheduling |=
                        kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
                    break;
                }

                /* Note this core as a candidate for migration. */
                ASSERT(num_candidates < Core::Hardware::NUM_CPU_CORES);
                migration_candidates[num_candidates++] = suggested_core;
                suggested = priority_queue.GetSuggestedNext(core_id, suggested);
            }

            /* If suggested is nullptr, we failed to migrate a specific thread. So let's try all our
             * candidate cores' top threads. */
            if (suggested == nullptr) {
                for (size_t i = 0; i < num_candidates; i++) {
                    /* Check if there's some other thread that can run on the candidate core. */
                    const s32 candidate_core = migration_candidates[i];
                    suggested = top_threads[candidate_core];
                    if (Thread* next_on_candidate_core =
                            priority_queue.GetScheduledNext(candidate_core, suggested);
                        next_on_candidate_core != nullptr) {
                        /* The candidate core can run some other thread! We'll migrate its current
                         * top thread to us. */
                        top_threads[candidate_core] = next_on_candidate_core;
                        cores_needing_scheduling |=
                            kernel.Scheduler(candidate_core)
                                .UpdateHighestPriorityThread(top_threads[candidate_core]);

                        /* Perform the migration. */
                        suggested->SetActiveCore(core_id);
                        priority_queue.ChangeCore(candidate_core, suggested);

                        top_threads[core_id] = suggested;
                        cores_needing_scheduling |=
                            kernel.Scheduler(core_id).UpdateHighestPriorityThread(
                                top_threads[core_id]);
                        break;
                    }
                }
            }
        }

        idle_cores &= ~(1ULL << core_id);
    }

    return cores_needing_scheduling;
}

/*static*/ void KScheduler::OnThreadStateChanged(KernelCore& kernel, Thread* thread,
                                                 u32 old_state) {
    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    /* Check if the state has changed, because if it hasn't there's nothing to do. */
    const auto cur_state = thread->scheduling_state;
    if (cur_state == old_state) {
        return;
    }

    /* Update the priority queues. */
    if (old_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
        /* If we were previously runnable, then we're not runnable now, and we should remove. */
        GetPriorityQueue(kernel).Remove(thread);
        IncrementScheduledCount(thread);
        SetSchedulerUpdateNeeded(kernel);
    } else if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
        /* If we're now runnable, then we weren't previously, and we should add. */
        GetPriorityQueue(kernel).PushBack(thread);
        IncrementScheduledCount(thread);
        SetSchedulerUpdateNeeded(kernel);
    }
}

/*static*/ void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, Thread* thread,
                                                    Thread* current_thread, u32 old_priority) {

    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    /* If the thread is runnable, we want to change its priority in the queue. */
    if (thread->scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
        GetPriorityQueue(kernel).ChangePriority(
            old_priority, thread == kernel.CurrentScheduler()->GetCurrentThread(), thread);
        IncrementScheduledCount(thread);
        SetSchedulerUpdateNeeded(kernel);
    }
}

/*static*/ void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, Thread* thread,
                                                        const KAffinityMask& old_affinity,
                                                        s32 old_core) {
    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    /* If the thread is runnable, we want to change its affinity in the queue. */
    if (thread->scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
        GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread);
        IncrementScheduledCount(thread);
        SetSchedulerUpdateNeeded(kernel);
    }
}

void KScheduler::RotateScheduledQueue(s32 core_id, s32 priority) {
    ASSERT(system.GlobalSchedulerContext().IsLocked());

    /* Get a reference to the priority queue. */
    auto& kernel = system.Kernel();
    auto& priority_queue = GetPriorityQueue(kernel);

    /* Rotate the front of the queue to the end. */
    Thread* top_thread = priority_queue.GetScheduledFront(core_id, priority);
    Thread* next_thread = nullptr;
    if (top_thread != nullptr) {
        next_thread = priority_queue.MoveToScheduledBack(top_thread);
        if (next_thread != top_thread) {
            IncrementScheduledCount(top_thread);
            IncrementScheduledCount(next_thread);
        }
    }

    /* While we have a suggested thread, try to migrate it! */
    {
        Thread* suggested = priority_queue.GetSuggestedFront(core_id, priority);
        while (suggested != nullptr) {
            /* Check if the suggested thread is the top thread on its core. */
            const s32 suggested_core = suggested->GetActiveCore();
            if (Thread* top_on_suggested_core =
                    (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
                                          : nullptr;
                top_on_suggested_core != suggested) {
                /* If the next thread is a new thread that has been waiting longer than our
                 * suggestion, we prefer it to our suggestion. */
                if (top_thread != next_thread && next_thread != nullptr &&
                    next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick()) {
                    suggested = nullptr;
                    break;
                }

                /* If we're allowed to do a migration, do one. */
                /* NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the suggestion
                 * to the front of the queue. */
                if (top_on_suggested_core == nullptr ||
                    top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) {
                    suggested->SetActiveCore(core_id);
                    priority_queue.ChangeCore(suggested_core, suggested, true);
                    IncrementScheduledCount(suggested);
                    break;
                }
            }

            /* Get the next suggestion. */
            suggested = priority_queue.GetSamePriorityNext(core_id, suggested);
        }
    }

    /* Now that we might have migrated a thread with the same priority, check if we can do better.
     */
    {
        Thread* best_thread = priority_queue.GetScheduledFront(core_id);
        if (best_thread == GetCurrentThread()) {
            best_thread = priority_queue.GetScheduledNext(core_id, best_thread);
        }

        /* If the best thread we can choose has a priority the same or worse than ours, try to
         * migrate a higher priority thread. */
        if (best_thread != nullptr && best_thread->GetPriority() >= static_cast<u32>(priority)) {
            Thread* suggested = priority_queue.GetSuggestedFront(core_id);
            while (suggested != nullptr) {
                /* If the suggestion's priority is the same as ours, don't bother. */
                if (suggested->GetPriority() >= best_thread->GetPriority()) {
                    break;
                }

                /* Check if the suggested thread is the top thread on its core. */
                const s32 suggested_core = suggested->GetActiveCore();
                if (Thread* top_on_suggested_core =
                        (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
                                              : nullptr;
                    top_on_suggested_core != suggested) {
                    /* If we're allowed to do a migration, do one. */
                    /* NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
                     * suggestion to the front of the queue. */
                    if (top_on_suggested_core == nullptr ||
                        top_on_suggested_core->GetPriority() >=
                            HighestCoreMigrationAllowedPriority) {
                        suggested->SetActiveCore(core_id);
                        priority_queue.ChangeCore(suggested_core, suggested, true);
                        IncrementScheduledCount(suggested);
                        break;
                    }
                }

                /* Get the next suggestion. */
                suggested = priority_queue.GetSuggestedNext(core_id, suggested);
            }
        }
    }

    /* After a rotation, we need a scheduler update. */
    SetSchedulerUpdateNeeded(kernel);
}

/*static*/ bool KScheduler::CanSchedule(KernelCore& kernel) {
    return kernel.CurrentScheduler()->GetCurrentThread()->GetDisableDispatchCount() <= 1;
}

/*static*/ bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) {
    return kernel.GlobalSchedulerContext().scheduler_update_needed.load(std::memory_order_acquire);
}

/*static*/ void KScheduler::SetSchedulerUpdateNeeded(KernelCore& kernel) {
    kernel.GlobalSchedulerContext().scheduler_update_needed.store(true, std::memory_order_release);
}

/*static*/ void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) {
    kernel.GlobalSchedulerContext().scheduler_update_needed.store(false, std::memory_order_release);
}

/*static*/ void KScheduler::DisableScheduling(KernelCore& kernel) {
    if (auto* scheduler = kernel.CurrentScheduler(); scheduler) {
        ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 0);
        scheduler->GetCurrentThread()->DisableDispatch();
    }
}

/*static*/ void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling,
                                             Core::EmuThreadHandle global_thread) {
    if (auto* scheduler = kernel.CurrentScheduler(); scheduler) {
        scheduler->GetCurrentThread()->EnableDispatch();
    }
    RescheduleCores(kernel, cores_needing_scheduling, global_thread);
}

/*static*/ u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
    if (IsSchedulerUpdateNeeded(kernel)) {
        return UpdateHighestPriorityThreadsImpl(kernel);
    } else {
        return 0;
    }
}

/*static*/ KSchedulerPriorityQueue& KScheduler::GetPriorityQueue(KernelCore& kernel) {
    return kernel.GlobalSchedulerContext().priority_queue;
}

void KScheduler::YieldWithoutCoreMigration() {
    auto& kernel = system.Kernel();

    /* Validate preconditions. */
    ASSERT(CanSchedule(kernel));
    ASSERT(kernel.CurrentProcess() != nullptr);

    /* Get the current thread and process. */
    Thread& cur_thread = *GetCurrentThread();
    Process& cur_process = *kernel.CurrentProcess();

    /* If the thread's yield count matches, there's nothing for us to do. */
    if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
        return;
    }

    /* Get a reference to the priority queue. */
    auto& priority_queue = GetPriorityQueue(kernel);

    /* Perform the yield. */
    {
        SchedulerLock lock(kernel);

        const auto cur_state = cur_thread.scheduling_state;
        if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
            /* Put the current thread at the back of the queue. */
            Thread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
            IncrementScheduledCount(std::addressof(cur_thread));

            /* If the next thread is different, we have an update to perform. */
            if (next_thread != std::addressof(cur_thread)) {
                SetSchedulerUpdateNeeded(kernel);
            } else {
                /* Otherwise, set the thread's yield count so that we won't waste work until the
                 * process is scheduled again. */
                cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
            }
        }
    }
}

void KScheduler::YieldWithCoreMigration() {
    auto& kernel = system.Kernel();

    /* Validate preconditions. */
    ASSERT(CanSchedule(kernel));
    ASSERT(kernel.CurrentProcess() != nullptr);

    /* Get the current thread and process. */
    Thread& cur_thread = *GetCurrentThread();
    Process& cur_process = *kernel.CurrentProcess();

    /* If the thread's yield count matches, there's nothing for us to do. */
    if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
        return;
    }

    /* Get a reference to the priority queue. */
    auto& priority_queue = GetPriorityQueue(kernel);

    /* Perform the yield. */
    {
        SchedulerLock lock(kernel);

        const auto cur_state = cur_thread.scheduling_state;
        if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
            /* Get the current active core. */
            const s32 core_id = cur_thread.GetActiveCore();

            /* Put the current thread at the back of the queue. */
            Thread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
            IncrementScheduledCount(std::addressof(cur_thread));

            /* While we have a suggested thread, try to migrate it! */
            bool recheck = false;
            Thread* suggested = priority_queue.GetSuggestedFront(core_id);
            while (suggested != nullptr) {
                /* Check if the suggested thread is the thread running on its core. */
                const s32 suggested_core = suggested->GetActiveCore();

                if (Thread* running_on_suggested_core =
                        (suggested_core >= 0)
                            ? kernel.Scheduler(suggested_core).state.highest_priority_thread
                            : nullptr;
                    running_on_suggested_core != suggested) {
                    /* If the current thread's priority is higher than our suggestion's we prefer
                     * the next thread to the suggestion. */
                    /* We also prefer the next thread when the current thread's priority is equal to
                     * the suggestions, but the next thread has been waiting longer. */
                    if ((suggested->GetPriority() > cur_thread.GetPriority()) ||
                        (suggested->GetPriority() == cur_thread.GetPriority() &&
                         next_thread != std::addressof(cur_thread) &&
                         next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick())) {
                        suggested = nullptr;
                        break;
                    }

                    /* If we're allowed to do a migration, do one. */
                    /* NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
                     * suggestion to the front of the queue. */
                    if (running_on_suggested_core == nullptr ||
                        running_on_suggested_core->GetPriority() >=
                            HighestCoreMigrationAllowedPriority) {
                        suggested->SetActiveCore(core_id);
                        priority_queue.ChangeCore(suggested_core, suggested, true);
                        IncrementScheduledCount(suggested);
                        break;
                    } else {
                        /* We couldn't perform a migration, but we should check again on a future
                         * yield. */
                        recheck = true;
                    }
                }

                /* Get the next suggestion. */
                suggested = priority_queue.GetSuggestedNext(core_id, suggested);
            }

            /* If we still have a suggestion or the next thread is different, we have an update to
             * perform. */
            if (suggested != nullptr || next_thread != std::addressof(cur_thread)) {
                SetSchedulerUpdateNeeded(kernel);
            } else if (!recheck) {
                /* Otherwise if we don't need to re-check, set the thread's yield count so that we
                 * won't waste work until the process is scheduled again. */
                cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
            }
        }
    }
}

void KScheduler::YieldToAnyThread() {
    auto& kernel = system.Kernel();

    /* Validate preconditions. */
    ASSERT(CanSchedule(kernel));
    ASSERT(kernel.CurrentProcess() != nullptr);

    /* Get the current thread and process. */
    Thread& cur_thread = *GetCurrentThread();
    Process& cur_process = *kernel.CurrentProcess();

    /* If the thread's yield count matches, there's nothing for us to do. */
    if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
        return;
    }

    /* Get a reference to the priority queue. */
    auto& priority_queue = GetPriorityQueue(kernel);

    /* Perform the yield. */
    {
        SchedulerLock lock(kernel);

        const auto cur_state = cur_thread.scheduling_state;
        if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
            /* Get the current active core. */
            const s32 core_id = cur_thread.GetActiveCore();

            /* Migrate the current thread to core -1. */
            cur_thread.SetActiveCore(-1);
            priority_queue.ChangeCore(core_id, std::addressof(cur_thread));
            IncrementScheduledCount(std::addressof(cur_thread));

            /* If there's nothing scheduled, we can try to perform a migration. */
            if (priority_queue.GetScheduledFront(core_id) == nullptr) {
                /* While we have a suggested thread, try to migrate it! */
                Thread* suggested = priority_queue.GetSuggestedFront(core_id);
                while (suggested != nullptr) {
                    /* Check if the suggested thread is the top thread on its core. */
                    const s32 suggested_core = suggested->GetActiveCore();
                    if (Thread* top_on_suggested_core =
                            (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
                                                  : nullptr;
                        top_on_suggested_core != suggested) {
                        /* If we're allowed to do a migration, do one. */
                        if (top_on_suggested_core == nullptr ||
                            top_on_suggested_core->GetPriority() >=
                                HighestCoreMigrationAllowedPriority) {
                            suggested->SetActiveCore(core_id);
                            priority_queue.ChangeCore(suggested_core, suggested);
                            IncrementScheduledCount(suggested);
                        }

                        /* Regardless of whether we migrated, we had a candidate, so we're done. */
                        break;
                    }

                    /* Get the next suggestion. */
                    suggested = priority_queue.GetSuggestedNext(core_id, suggested);
                }

                /* If the suggestion is different from the current thread, we need to perform an
                 * update. */
                if (suggested != std::addressof(cur_thread)) {
                    SetSchedulerUpdateNeeded(kernel);
                } else {
                    /* Otherwise, set the thread's yield count so that we won't waste work until the
                     * process is scheduled again. */
                    cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
                }
            } else {
                /* Otherwise, we have an update to perform. */
                SetSchedulerUpdateNeeded(kernel);
            }
        }
    }
}

KScheduler::KScheduler(Core::System& system, std::size_t core_id)
    : system(system), core_id(core_id) {
    switch_fiber = std::make_shared<Common::Fiber>(std::function<void(void*)>(OnSwitch), this);
    this->state.needs_scheduling = true;
    this->state.interrupt_task_thread_runnable = false;
    this->state.should_count_idle = false;
    this->state.idle_count = 0;
    this->state.idle_thread_stack = nullptr;
    this->state.highest_priority_thread = nullptr;
}

KScheduler::~KScheduler() = default;

Thread* KScheduler::GetCurrentThread() const {
    if (current_thread) {
        return current_thread;
    }
    return idle_thread;
}

u64 KScheduler::GetLastContextSwitchTicks() const {
    return last_context_switch_time;
}

void KScheduler::RescheduleCurrentCore() {
    ASSERT(GetCurrentThread()->GetDisableDispatchCount() == 1);

    auto& phys_core = system.Kernel().PhysicalCore(core_id);
    if (phys_core.IsInterrupted()) {
        phys_core.ClearInterrupt();
    }
    guard.lock();
    if (this->state.needs_scheduling) {
        Schedule();
    } else {
        guard.unlock();
    }
}

void KScheduler::OnThreadStart() {
    SwitchContextStep2();
}

void KScheduler::Unload(Thread* thread) {
    if (thread) {
        thread->SetIsRunning(false);
        if (thread->IsContinuousOnSVC() && !thread->IsHLEThread()) {
            system.ArmInterface(core_id).ExceptionalExit();
            thread->SetContinuousOnSVC(false);
        }
        if (!thread->IsHLEThread() && !thread->HasExited()) {
            Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
            cpu_core.SaveContext(thread->GetContext32());
            cpu_core.SaveContext(thread->GetContext64());
            // Save the TPIDR_EL0 system register in case it was modified.
            thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
            cpu_core.ClearExclusiveState();
        }
        thread->context_guard.unlock();
    }
}

void KScheduler::Reload(Thread* thread) {
    if (thread) {
        ASSERT_MSG(thread->GetSchedulingStatus() == ThreadSchedStatus::Runnable,
                   "Thread must be runnable.");

        // Cancel any outstanding wakeup events for this thread
        thread->SetIsRunning(true);
        thread->SetWasRunning(false);

        auto* const thread_owner_process = thread->GetOwnerProcess();
        if (thread_owner_process != nullptr) {
            system.Kernel().MakeCurrentProcess(thread_owner_process);
        }
        if (!thread->IsHLEThread()) {
            Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
            cpu_core.LoadContext(thread->GetContext32());
            cpu_core.LoadContext(thread->GetContext64());
            cpu_core.SetTlsAddress(thread->GetTLSAddress());
            cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
            cpu_core.ClearExclusiveState();
        }
    }
}

void KScheduler::SwitchContextStep2() {
    // Load context of new thread
    Reload(current_thread);

    RescheduleCurrentCore();
}

void KScheduler::ScheduleImpl() {
    Thread* previous_thread = current_thread;
    current_thread = state.highest_priority_thread;

    this->state.needs_scheduling = false;

    if (current_thread == previous_thread) {
        guard.unlock();
        return;
    }

    Process* const previous_process = system.Kernel().CurrentProcess();

    UpdateLastContextSwitchTime(previous_thread, previous_process);

    // Save context for previous thread
    Unload(previous_thread);

    std::shared_ptr<Common::Fiber>* old_context;
    if (previous_thread != nullptr) {
        old_context = &previous_thread->GetHostContext();
    } else {
        old_context = &idle_thread->GetHostContext();
    }
    guard.unlock();

    Common::Fiber::YieldTo(*old_context, switch_fiber);
    /// When a thread wakes up, the scheduler may have changed to other in another core.
    auto& next_scheduler = *system.Kernel().CurrentScheduler();
    next_scheduler.SwitchContextStep2();
}

void KScheduler::OnSwitch(void* this_scheduler) {
    KScheduler* sched = static_cast<KScheduler*>(this_scheduler);
    sched->SwitchToCurrent();
}

void KScheduler::SwitchToCurrent() {
    while (true) {
        {
            std::scoped_lock lock{guard};
            current_thread = state.highest_priority_thread;
            this->state.needs_scheduling = false;
        }
        const auto is_switch_pending = [this] {
            std::scoped_lock lock{guard};
            return !!this->state.needs_scheduling;
        };
        do {
            if (current_thread != nullptr && !current_thread->IsHLEThread()) {
                current_thread->context_guard.lock();
                if (!current_thread->IsRunnable()) {
                    current_thread->context_guard.unlock();
                    break;
                }
                if (static_cast<u32>(current_thread->GetProcessorID()) != core_id) {
                    current_thread->context_guard.unlock();
                    break;
                }
            }
            std::shared_ptr<Common::Fiber>* next_context;
            if (current_thread != nullptr) {
                next_context = &current_thread->GetHostContext();
            } else {
                next_context = &idle_thread->GetHostContext();
            }
            Common::Fiber::YieldTo(switch_fiber, *next_context);
        } while (!is_switch_pending());
    }
}

void KScheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
    const u64 prev_switch_ticks = last_context_switch_time;
    const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
    const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;

    if (thread != nullptr) {
        thread->UpdateCPUTimeTicks(update_ticks);
    }

    if (process != nullptr) {
        process->UpdateCPUTimeTicks(update_ticks);
    }

    last_context_switch_time = most_recent_switch_ticks;
}

void KScheduler::Initialize() {
    std::string name = "Idle Thread Id:" + std::to_string(core_id);
    std::function<void(void*)> init_func = Core::CpuManager::GetIdleThreadStartFunc();
    void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
    ThreadType type = static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_IDLE);
    auto thread_res = Thread::Create(system, type, name, 0, 64, 0, static_cast<u32>(core_id), 0,
                                     nullptr, std::move(init_func), init_func_parameter);
    idle_thread = thread_res.Unwrap().get();

    {
        KScopedSchedulerLock lock{system.Kernel()};
        idle_thread->SetStatus(ThreadStatus::Ready);
    }
}

SchedulerLock::SchedulerLock(KernelCore& kernel) : kernel{kernel} {
    kernel.GlobalSchedulerContext().Lock();
}

SchedulerLock::~SchedulerLock() {
    kernel.GlobalSchedulerContext().Unlock();
}

SchedulerLockAndSleep::SchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle,
                                             Thread* time_task, s64 nanoseconds)
    : SchedulerLock{kernel}, event_handle{event_handle}, time_task{time_task}, nanoseconds{
                                                                                   nanoseconds} {
    event_handle = InvalidHandle;
}

SchedulerLockAndSleep::~SchedulerLockAndSleep() {
    if (sleep_cancelled) {
        return;
    }
    auto& time_manager = kernel.TimeManager();
    time_manager.ScheduleTimeEvent(event_handle, time_task, nanoseconds);
}

void SchedulerLockAndSleep::Release() {
    if (sleep_cancelled) {
        return;
    }
    auto& time_manager = kernel.TimeManager();
    time_manager.ScheduleTimeEvent(event_handle, time_task, nanoseconds);
    sleep_cancelled = true;
}

} // namespace Kernel