// SPDX-FileCopyrightText: 2015 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <bitset>
#include <ctime>
#include <memory>
#include <random>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/k_memory_block_manager.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/kernel/k_shared_memory_info.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/memory.h"
namespace Kernel {
namespace {
/**
* Sets up the primary application thread
*
* @param system The system instance to create the main thread under.
* @param owner_process The parent process for the main thread
* @param priority The priority to give the main thread
*/
void SetupMainThread(Core::System& system, KProcess& owner_process, u32 priority,
KProcessAddress stack_top) {
const KProcessAddress entry_point = owner_process.GetEntryPoint();
ASSERT(owner_process.GetResourceLimit()->Reserve(LimitableResource::ThreadCountMax, 1));
KThread* thread = KThread::Create(system.Kernel());
SCOPE_EXIT({ thread->Close(); });
ASSERT(KThread::InitializeUserThread(system, thread, entry_point, 0, stack_top, priority,
owner_process.GetIdealCoreId(),
std::addressof(owner_process))
.IsSuccess());
// Register 1 must be a handle to the main thread
Handle thread_handle{};
owner_process.GetHandleTable().Add(std::addressof(thread_handle), thread);
thread->GetContext32().cpu_registers[0] = 0;
thread->GetContext64().cpu_registers[0] = 0;
thread->GetContext32().cpu_registers[1] = thread_handle;
thread->GetContext64().cpu_registers[1] = thread_handle;
if (system.DebuggerEnabled()) {
thread->RequestSuspend(SuspendType::Debug);
}
// Run our thread.
void(thread->Run());
}
} // Anonymous namespace
Result KProcess::Initialize(KProcess* process, Core::System& system, std::string process_name,
ProcessType type, KResourceLimit* res_limit) {
auto& kernel = system.Kernel();
process->name = std::move(process_name);
process->m_resource_limit = res_limit;
process->m_system_resource_address = 0;
process->m_state = State::Created;
process->m_program_id = 0;
process->m_process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
: kernel.CreateNewUserProcessID();
process->m_capabilities.InitializeForMetadatalessProcess();
process->m_is_initialized = true;
std::mt19937 rng(Settings::values.rng_seed_enabled ? Settings::values.rng_seed.GetValue()
: static_cast<u32>(std::time(nullptr)));
std::uniform_int_distribution<u64> distribution;
std::generate(process->m_random_entropy.begin(), process->m_random_entropy.end(),
[&] { return distribution(rng); });
kernel.AppendNewProcess(process);
// Clear remaining fields.
process->m_num_running_threads = 0;
process->m_is_signaled = false;
process->m_exception_thread = nullptr;
process->m_is_suspended = false;
process->m_schedule_count = 0;
process->m_is_handle_table_initialized = false;
// Open a reference to the resource limit.
process->m_resource_limit->Open();
R_SUCCEED();
}
void KProcess::DoWorkerTaskImpl() {
UNIMPLEMENTED();
}
KResourceLimit* KProcess::GetResourceLimit() const {
return m_resource_limit;
}
void KProcess::IncrementRunningThreadCount() {
ASSERT(m_num_running_threads.load() >= 0);
++m_num_running_threads;
}
void KProcess::DecrementRunningThreadCount() {
ASSERT(m_num_running_threads.load() > 0);
if (const auto prev = m_num_running_threads--; prev == 1) {
// TODO(bunnei): Process termination to be implemented when multiprocess is supported.
}
}
u64 KProcess::GetTotalPhysicalMemoryAvailable() {
const u64 capacity{m_resource_limit->GetFreeValue(LimitableResource::PhysicalMemoryMax) +
m_page_table.GetNormalMemorySize() + GetSystemResourceSize() + m_image_size +
m_main_thread_stack_size};
if (const auto pool_size = m_kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
capacity != pool_size) {
LOG_WARNING(Kernel, "capacity {} != application pool size {}", capacity, pool_size);
}
if (capacity < m_memory_usage_capacity) {
return capacity;
}
return m_memory_usage_capacity;
}
u64 KProcess::GetTotalPhysicalMemoryAvailableWithoutSystemResource() {
return this->GetTotalPhysicalMemoryAvailable() - this->GetSystemResourceSize();
}
u64 KProcess::GetTotalPhysicalMemoryUsed() {
return m_image_size + m_main_thread_stack_size + m_page_table.GetNormalMemorySize() +
this->GetSystemResourceSize();
}
u64 KProcess::GetTotalPhysicalMemoryUsedWithoutSystemResource() {
return this->GetTotalPhysicalMemoryUsed() - this->GetSystemResourceUsage();
}
bool KProcess::ReleaseUserException(KThread* thread) {
KScopedSchedulerLock sl{m_kernel};
if (m_exception_thread == thread) {
m_exception_thread = nullptr;
// Remove waiter thread.
bool has_waiters{};
if (KThread* next = thread->RemoveKernelWaiterByKey(
std::addressof(has_waiters),
reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)));
next != nullptr) {
next->EndWait(ResultSuccess);
}
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
return true;
} else {
return false;
}
}
void KProcess::PinCurrentThread(s32 core_id) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
KThread* cur_thread =
m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// If the thread isn't terminated, pin it.
if (!cur_thread->IsTerminationRequested()) {
// Pin it.
this->PinThread(core_id, cur_thread);
cur_thread->Pin(core_id);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
}
void KProcess::UnpinCurrentThread(s32 core_id) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
KThread* cur_thread =
m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// Unpin it.
cur_thread->Unpin();
this->UnpinThread(core_id, cur_thread);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
void KProcess::UnpinThread(KThread* thread) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the thread's core id.
const auto core_id = thread->GetActiveCore();
// Unpin it.
this->UnpinThread(core_id, thread);
thread->Unpin();
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
Result KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] KProcessAddress address,
[[maybe_unused]] size_t size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(m_state_lock);
// Try to find an existing info for the memory.
KSharedMemoryInfo* shemen_info = nullptr;
const auto iter = std::find_if(
m_shared_memory_list.begin(), m_shared_memory_list.end(),
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
if (iter != m_shared_memory_list.end()) {
shemen_info = *iter;
}
if (shemen_info == nullptr) {
shemen_info = KSharedMemoryInfo::Allocate(m_kernel);
R_UNLESS(shemen_info != nullptr, ResultOutOfMemory);
shemen_info->Initialize(shmem);
m_shared_memory_list.push_back(shemen_info);
}
// Open a reference to the shared memory and its info.
shmem->Open();
shemen_info->Open();
R_SUCCEED();
}
void KProcess::RemoveSharedMemory(KSharedMemory* shmem, [[maybe_unused]] KProcessAddress address,
[[maybe_unused]] size_t size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(m_state_lock);
KSharedMemoryInfo* shemen_info = nullptr;
const auto iter = std::find_if(
m_shared_memory_list.begin(), m_shared_memory_list.end(),
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
if (iter != m_shared_memory_list.end()) {
shemen_info = *iter;
}
ASSERT(shemen_info != nullptr);
if (shemen_info->Close()) {
m_shared_memory_list.erase(iter);
KSharedMemoryInfo::Free(m_kernel, shemen_info);
}
// Close a reference to the shared memory.
shmem->Close();
}
void KProcess::RegisterThread(KThread* thread) {
KScopedLightLock lk{m_list_lock};
m_thread_list.push_back(thread);
}
void KProcess::UnregisterThread(KThread* thread) {
KScopedLightLock lk{m_list_lock};
m_thread_list.remove(thread);
}
u64 KProcess::GetFreeThreadCount() const {
if (m_resource_limit != nullptr) {
const auto current_value =
m_resource_limit->GetCurrentValue(LimitableResource::ThreadCountMax);
const auto limit_value = m_resource_limit->GetLimitValue(LimitableResource::ThreadCountMax);
return limit_value - current_value;
} else {
return 0;
}
}
Result KProcess::Reset() {
// Lock the process and the scheduler.
KScopedLightLock lk(m_state_lock);
KScopedSchedulerLock sl{m_kernel};
// Validate that we're in a state that we can reset.
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
R_UNLESS(m_is_signaled, ResultInvalidState);
// Clear signaled.
m_is_signaled = false;
R_SUCCEED();
}
Result KProcess::SetActivity(ProcessActivity activity) {
// Lock ourselves and the scheduler.
KScopedLightLock lk{m_state_lock};
KScopedLightLock list_lk{m_list_lock};
KScopedSchedulerLock sl{m_kernel};
// Validate our state.
R_UNLESS(m_state != State::Terminating, ResultInvalidState);
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
// Either pause or resume.
if (activity == ProcessActivity::Paused) {
// Verify that we're not suspended.
R_UNLESS(!m_is_suspended, ResultInvalidState);
// Suspend all threads.
for (auto* thread : this->GetThreadList()) {
thread->RequestSuspend(SuspendType::Process);
}
// Set ourselves as suspended.
this->SetSuspended(true);
} else {
ASSERT(activity == ProcessActivity::Runnable);
// Verify that we're suspended.
R_UNLESS(m_is_suspended, ResultInvalidState);
// Resume all threads.
for (auto* thread : this->GetThreadList()) {
thread->Resume(SuspendType::Process);
}
// Set ourselves as resumed.
this->SetSuspended(false);
}
R_SUCCEED();
}
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size) {
m_program_id = metadata.GetTitleID();
m_ideal_core = metadata.GetMainThreadCore();
m_is_64bit_process = metadata.Is64BitProgram();
m_system_resource_size = metadata.GetSystemResourceSize();
m_image_size = code_size;
if (metadata.GetAddressSpaceType() == FileSys::ProgramAddressSpaceType::Is39Bit) {
// For 39-bit processes, the ASLR region starts at 0x800'0000 and is ~512GiB large.
// However, some (buggy) programs/libraries like skyline incorrectly depend on the
// existence of ASLR pages before the entry point, so we will adjust the load address
// to point to about 2GiB into the ASLR region.
m_code_address = 0x8000'0000;
} else {
// All other processes can be mapped at the beginning of the code region.
if (metadata.GetAddressSpaceType() == FileSys::ProgramAddressSpaceType::Is36Bit) {
m_code_address = 0x800'0000;
} else {
m_code_address = 0x20'0000;
}
}
KScopedResourceReservation memory_reservation(
m_resource_limit, LimitableResource::PhysicalMemoryMax, code_size + m_system_resource_size);
if (!memory_reservation.Succeeded()) {
LOG_ERROR(Kernel, "Could not reserve process memory requirements of size {:X} bytes",
code_size + m_system_resource_size);
R_RETURN(ResultLimitReached);
}
// Initialize process address space
if (const Result result{m_page_table.InitializeForProcess(
metadata.GetAddressSpaceType(), false, false, false, KMemoryManager::Pool::Application,
this->GetEntryPoint(), code_size, std::addressof(m_kernel.GetAppSystemResource()),
m_resource_limit, m_kernel.System().ApplicationMemory())};
result.IsError()) {
R_RETURN(result);
}
// Map process code region
if (const Result result{m_page_table.MapProcessCode(this->GetEntryPoint(), code_size / PageSize,
KMemoryState::Code,
KMemoryPermission::None)};
result.IsError()) {
R_RETURN(result);
}
// Initialize process capabilities
const auto& caps{metadata.GetKernelCapabilities()};
if (const Result result{
m_capabilities.InitializeForUserProcess(caps.data(), caps.size(), m_page_table)};
result.IsError()) {
R_RETURN(result);
}
// Set memory usage capacity
switch (metadata.GetAddressSpaceType()) {
case FileSys::ProgramAddressSpaceType::Is32Bit:
case FileSys::ProgramAddressSpaceType::Is36Bit:
case FileSys::ProgramAddressSpaceType::Is39Bit:
m_memory_usage_capacity =
m_page_table.GetHeapRegionEnd() - m_page_table.GetHeapRegionStart();
break;
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
m_memory_usage_capacity =
(m_page_table.GetHeapRegionEnd() - m_page_table.GetHeapRegionStart()) +
(m_page_table.GetAliasRegionEnd() - m_page_table.GetAliasRegionStart());
break;
default:
ASSERT(false);
break;
}
// Create TLS region
R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
memory_reservation.Commit();
R_RETURN(m_handle_table.Initialize(m_capabilities.GetHandleTableSize()));
}
void KProcess::Run(s32 main_thread_priority, u64 stack_size) {
ASSERT(this->AllocateMainThreadStack(stack_size) == ResultSuccess);
m_resource_limit->Reserve(LimitableResource::ThreadCountMax, 1);
const std::size_t heap_capacity{m_memory_usage_capacity -
(m_main_thread_stack_size + m_image_size)};
ASSERT(!m_page_table.SetMaxHeapSize(heap_capacity).IsError());
this->ChangeState(State::Running);
SetupMainThread(m_kernel.System(), *this, main_thread_priority, m_main_thread_stack_top);
}
void KProcess::PrepareForTermination() {
this->ChangeState(State::Terminating);
const auto stop_threads = [this](const std::vector<KThread*>& in_thread_list) {
for (auto* thread : in_thread_list) {
if (thread->GetOwnerProcess() != this)
continue;
if (thread == GetCurrentThreadPointer(m_kernel))
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->GetState() == ThreadState::Waiting,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Exit();
}
};
stop_threads(m_kernel.System().GlobalSchedulerContext().GetThreadList());
this->DeleteThreadLocalRegion(m_plr_address);
m_plr_address = 0;
if (m_resource_limit) {
m_resource_limit->Release(LimitableResource::PhysicalMemoryMax,
m_main_thread_stack_size + m_image_size);
}
this->ChangeState(State::Terminated);
}
void KProcess::Finalize() {
// Free all shared memory infos.
{
auto it = m_shared_memory_list.begin();
while (it != m_shared_memory_list.end()) {
KSharedMemoryInfo* info = *it;
KSharedMemory* shmem = info->GetSharedMemory();
while (!info->Close()) {
shmem->Close();
}
shmem->Close();
it = m_shared_memory_list.erase(it);
KSharedMemoryInfo::Free(m_kernel, info);
}
}
// Release memory to the resource limit.
if (m_resource_limit != nullptr) {
m_resource_limit->Close();
m_resource_limit = nullptr;
}
// Finalize the page table.
m_page_table.Finalize();
// Perform inherited finalization.
KSynchronizationObject::Finalize();
}
Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
KThreadLocalPage* tlp = nullptr;
KProcessAddress tlr = 0;
// See if we can get a region from a partially used TLP.
{
KScopedSchedulerLock sl{m_kernel};
if (auto it = m_partially_used_tlp_tree.begin(); it != m_partially_used_tlp_tree.end()) {
tlr = it->Reserve();
ASSERT(tlr != 0);
if (it->IsAllUsed()) {
tlp = std::addressof(*it);
m_partially_used_tlp_tree.erase(it);
m_fully_used_tlp_tree.insert(*tlp);
}
*out = tlr;
R_SUCCEED();
}
}
// Allocate a new page.
tlp = KThreadLocalPage::Allocate(m_kernel);
R_UNLESS(tlp != nullptr, ResultOutOfMemory);
auto tlp_guard = SCOPE_GUARD({ KThreadLocalPage::Free(m_kernel, tlp); });
// Initialize the new page.
R_TRY(tlp->Initialize(m_kernel, this));
// Reserve a TLR.
tlr = tlp->Reserve();
ASSERT(tlr != 0);
// Insert into our tree.
{
KScopedSchedulerLock sl{m_kernel};
if (tlp->IsAllUsed()) {
m_fully_used_tlp_tree.insert(*tlp);
} else {
m_partially_used_tlp_tree.insert(*tlp);
}
}
// We succeeded!
tlp_guard.Cancel();
*out = tlr;
R_SUCCEED();
}
Result KProcess::DeleteThreadLocalRegion(KProcessAddress addr) {
KThreadLocalPage* page_to_free = nullptr;
// Release the region.
{
KScopedSchedulerLock sl{m_kernel};
// Try to find the page in the partially used list.
auto it = m_partially_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
if (it == m_partially_used_tlp_tree.end()) {
// If we don't find it, it has to be in the fully used list.
it = m_fully_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
R_UNLESS(it != m_fully_used_tlp_tree.end(), ResultInvalidAddress);
// Release the region.
it->Release(addr);
// Move the page out of the fully used list.
KThreadLocalPage* tlp = std::addressof(*it);
m_fully_used_tlp_tree.erase(it);
if (tlp->IsAllFree()) {
page_to_free = tlp;
} else {
m_partially_used_tlp_tree.insert(*tlp);
}
} else {
// Release the region.
it->Release(addr);
// Handle the all-free case.
KThreadLocalPage* tlp = std::addressof(*it);
if (tlp->IsAllFree()) {
m_partially_used_tlp_tree.erase(it);
page_to_free = tlp;
}
}
}
// If we should free the page it was in, do so.
if (page_to_free != nullptr) {
page_to_free->Finalize();
KThreadLocalPage::Free(m_kernel, page_to_free);
}
R_SUCCEED();
}
bool KProcess::InsertWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.type == DebugWatchpointType::None;
})};
if (watch == m_watchpoints.end()) {
return false;
}
watch->start_address = addr;
watch->end_address = addr + size;
watch->type = type;
for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
page += PageSize) {
m_debug_page_refcounts[page]++;
this->GetMemory().MarkRegionDebug(page, PageSize, true);
}
return true;
}
bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
})};
if (watch == m_watchpoints.end()) {
return false;
}
watch->start_address = 0;
watch->end_address = 0;
watch->type = DebugWatchpointType::None;
for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
page += PageSize) {
m_debug_page_refcounts[page]--;
if (!m_debug_page_refcounts[page]) {
this->GetMemory().MarkRegionDebug(page, PageSize, false);
}
}
return true;
}
void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
Svc::MemoryPermission permission) {
m_page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
};
this->GetMemory().WriteBlock(base_addr, code_set.memory.data(), code_set.memory.size());
ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
}
bool KProcess::IsSignaled() const {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
return m_is_signaled;
}
KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_page_table{m_kernel.System()},
m_handle_table{m_kernel}, m_address_arbiter{m_kernel.System()},
m_condition_var{m_kernel.System()}, m_state_lock{m_kernel}, m_list_lock{m_kernel} {}
KProcess::~KProcess() = default;
void KProcess::ChangeState(State new_state) {
if (m_state == new_state) {
return;
}
m_state = new_state;
m_is_signaled = true;
this->NotifyAvailable();
}
Result KProcess::AllocateMainThreadStack(std::size_t stack_size) {
// Ensure that we haven't already allocated stack.
ASSERT(m_main_thread_stack_size == 0);
// Ensure that we're allocating a valid stack.
stack_size = Common::AlignUp(stack_size, PageSize);
// R_UNLESS(stack_size + image_size <= m_max_process_memory, ResultOutOfMemory);
R_UNLESS(stack_size + m_image_size >= m_image_size, ResultOutOfMemory);
// Place a tentative reservation of memory for our new stack.
KScopedResourceReservation mem_reservation(this, Svc::LimitableResource::PhysicalMemoryMax,
stack_size);
R_UNLESS(mem_reservation.Succeeded(), ResultLimitReached);
// Allocate and map our stack.
if (stack_size) {
KProcessAddress stack_bottom;
R_TRY(m_page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
KMemoryState::Stack, KMemoryPermission::UserReadWrite));
m_main_thread_stack_top = stack_bottom + stack_size;
m_main_thread_stack_size = stack_size;
}
// We succeeded! Commit our memory reservation.
mem_reservation.Commit();
R_SUCCEED();
}
Core::Memory::Memory& KProcess::GetMemory() const {
// TODO: per-process memory
return m_kernel.System().ApplicationMemory();
}
} // namespace Kernel