// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <array>
#include <sstream>
#include <boost/range/algorithm_ext/erase.hpp>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/hle/ipc_helpers.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/k_auto_object.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_server_port.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/service_thread.h"
#include "core/memory.h"
namespace Kernel {
SessionRequestHandler::SessionRequestHandler(KernelCore& kernel_, const char* service_name_,
ServiceThreadType thread_type)
: kernel{kernel_}, service_thread{thread_type == ServiceThreadType::CreateNew
? kernel.CreateServiceThread(service_name_)
: kernel.GetDefaultServiceThread()} {}
SessionRequestHandler::~SessionRequestHandler() {
kernel.ReleaseServiceThread(service_thread);
}
void SessionRequestHandler::AcceptSession(KServerPort* server_port) {
auto* server_session = server_port->AcceptSession();
ASSERT(server_session != nullptr);
RegisterSession(server_session, std::make_shared<SessionRequestManager>(kernel));
}
void SessionRequestHandler::RegisterSession(KServerSession* server_session,
std::shared_ptr<SessionRequestManager> manager) {
manager->SetSessionHandler(shared_from_this());
service_thread.RegisterServerSession(server_session, manager);
server_session->Close();
}
SessionRequestManager::SessionRequestManager(KernelCore& kernel_) : kernel{kernel_} {}
SessionRequestManager::~SessionRequestManager() = default;
bool SessionRequestManager::HasSessionRequestHandler(const HLERequestContext& context) const {
if (IsDomain() && context.HasDomainMessageHeader()) {
const auto& message_header = context.GetDomainMessageHeader();
const auto object_id = message_header.object_id;
if (object_id > DomainHandlerCount()) {
LOG_CRITICAL(IPC, "object_id {} is too big!", object_id);
return false;
}
return !DomainHandler(object_id - 1).expired();
} else {
return session_handler != nullptr;
}
}
Result SessionRequestManager::CompleteSyncRequest(KServerSession* server_session,
HLERequestContext& context) {
Result result = ResultSuccess;
// If the session has been converted to a domain, handle the domain request
if (this->HasSessionRequestHandler(context)) {
if (IsDomain() && context.HasDomainMessageHeader()) {
result = HandleDomainSyncRequest(server_session, context);
// If there is no domain header, the regular session handler is used
} else if (this->HasSessionHandler()) {
// If this manager has an associated HLE handler, forward the request to it.
result = this->SessionHandler().HandleSyncRequest(*server_session, context);
}
} else {
ASSERT_MSG(false, "Session handler is invalid, stubbing response!");
IPC::ResponseBuilder rb(context, 2);
rb.Push(ResultSuccess);
}
if (convert_to_domain) {
ASSERT_MSG(!IsDomain(), "ServerSession is already a domain instance.");
this->ConvertToDomain();
convert_to_domain = false;
}
return result;
}
Result SessionRequestManager::HandleDomainSyncRequest(KServerSession* server_session,
HLERequestContext& context) {
if (!context.HasDomainMessageHeader()) {
return ResultSuccess;
}
// Set domain handlers in HLE context, used for domain objects (IPC interfaces) as inputs
ASSERT(context.GetManager().get() == this);
// If there is a DomainMessageHeader, then this is CommandType "Request"
const auto& domain_message_header = context.GetDomainMessageHeader();
const u32 object_id{domain_message_header.object_id};
switch (domain_message_header.command) {
case IPC::DomainMessageHeader::CommandType::SendMessage:
if (object_id > this->DomainHandlerCount()) {
LOG_CRITICAL(IPC,
"object_id {} is too big! This probably means a recent service call "
"needed to return a new interface!",
object_id);
ASSERT(false);
return ResultSuccess; // Ignore error if asserts are off
}
if (auto strong_ptr = this->DomainHandler(object_id - 1).lock()) {
return strong_ptr->HandleSyncRequest(*server_session, context);
} else {
ASSERT(false);
return ResultSuccess;
}
case IPC::DomainMessageHeader::CommandType::CloseVirtualHandle: {
LOG_DEBUG(IPC, "CloseVirtualHandle, object_id=0x{:08X}", object_id);
this->CloseDomainHandler(object_id - 1);
IPC::ResponseBuilder rb{context, 2};
rb.Push(ResultSuccess);
return ResultSuccess;
}
}
LOG_CRITICAL(IPC, "Unknown domain command={}", domain_message_header.command.Value());
ASSERT(false);
return ResultSuccess;
}
HLERequestContext::HLERequestContext(KernelCore& kernel_, Core::Memory::Memory& memory_,
KServerSession* server_session_, KThread* thread_)
: server_session(server_session_), thread(thread_), kernel{kernel_}, memory{memory_} {
cmd_buf[0] = 0;
}
HLERequestContext::~HLERequestContext() = default;
void HLERequestContext::ParseCommandBuffer(const KHandleTable& handle_table, u32_le* src_cmdbuf,
bool incoming) {
IPC::RequestParser rp(src_cmdbuf);
command_header = rp.PopRaw<IPC::CommandHeader>();
if (command_header->IsCloseCommand()) {
// Close does not populate the rest of the IPC header
return;
}
// If handle descriptor is present, add size of it
if (command_header->enable_handle_descriptor) {
handle_descriptor_header = rp.PopRaw<IPC::HandleDescriptorHeader>();
if (handle_descriptor_header->send_current_pid) {
pid = rp.Pop<u64>();
}
if (incoming) {
// Populate the object lists with the data in the IPC request.
incoming_copy_handles.reserve(handle_descriptor_header->num_handles_to_copy);
incoming_move_handles.reserve(handle_descriptor_header->num_handles_to_move);
for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_copy; ++handle) {
incoming_copy_handles.push_back(rp.Pop<Handle>());
}
for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_move; ++handle) {
incoming_move_handles.push_back(rp.Pop<Handle>());
}
} else {
// For responses we just ignore the handles, they're empty and will be populated when
// translating the response.
rp.Skip(handle_descriptor_header->num_handles_to_copy, false);
rp.Skip(handle_descriptor_header->num_handles_to_move, false);
}
}
buffer_x_desciptors.reserve(command_header->num_buf_x_descriptors);
buffer_a_desciptors.reserve(command_header->num_buf_a_descriptors);
buffer_b_desciptors.reserve(command_header->num_buf_b_descriptors);
buffer_w_desciptors.reserve(command_header->num_buf_w_descriptors);
for (u32 i = 0; i < command_header->num_buf_x_descriptors; ++i) {
buffer_x_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorX>());
}
for (u32 i = 0; i < command_header->num_buf_a_descriptors; ++i) {
buffer_a_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
for (u32 i = 0; i < command_header->num_buf_b_descriptors; ++i) {
buffer_b_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
for (u32 i = 0; i < command_header->num_buf_w_descriptors; ++i) {
buffer_w_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
}
const auto buffer_c_offset = rp.GetCurrentOffset() + command_header->data_size;
if (!command_header->IsTipc()) {
// Padding to align to 16 bytes
rp.AlignWithPadding();
if (GetManager()->IsDomain() &&
((command_header->type == IPC::CommandType::Request ||
command_header->type == IPC::CommandType::RequestWithContext) ||
!incoming)) {
// If this is an incoming message, only CommandType "Request" has a domain header
// All outgoing domain messages have the domain header, if only incoming has it
if (incoming || domain_message_header) {
domain_message_header = rp.PopRaw<IPC::DomainMessageHeader>();
} else {
if (GetManager()->IsDomain()) {
LOG_WARNING(IPC, "Domain request has no DomainMessageHeader!");
}
}
}
data_payload_header = rp.PopRaw<IPC::DataPayloadHeader>();
data_payload_offset = rp.GetCurrentOffset();
if (domain_message_header &&
domain_message_header->command ==
IPC::DomainMessageHeader::CommandType::CloseVirtualHandle) {
// CloseVirtualHandle command does not have SFC* or any data
return;
}
if (incoming) {
ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'I'));
} else {
ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'O'));
}
}
rp.SetCurrentOffset(buffer_c_offset);
// For Inline buffers, the response data is written directly to buffer_c_offset
// and in this case we don't have any BufferDescriptorC on the request.
if (command_header->buf_c_descriptor_flags >
IPC::CommandHeader::BufferDescriptorCFlag::InlineDescriptor) {
if (command_header->buf_c_descriptor_flags ==
IPC::CommandHeader::BufferDescriptorCFlag::OneDescriptor) {
buffer_c_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorC>());
} else {
u32 num_buf_c_descriptors =
static_cast<u32>(command_header->buf_c_descriptor_flags.Value()) - 2;
// This is used to detect possible underflows, in case something is broken
// with the two ifs above and the flags value is == 0 || == 1.
ASSERT(num_buf_c_descriptors < 14);
for (u32 i = 0; i < num_buf_c_descriptors; ++i) {
buffer_c_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorC>());
}
}
}
rp.SetCurrentOffset(data_payload_offset);
command = rp.Pop<u32_le>();
rp.Skip(1, false); // The command is actually an u64, but we don't use the high part.
}
Result HLERequestContext::PopulateFromIncomingCommandBuffer(const KHandleTable& handle_table,
u32_le* src_cmdbuf) {
ParseCommandBuffer(handle_table, src_cmdbuf, true);
if (command_header->IsCloseCommand()) {
// Close does not populate the rest of the IPC header
return ResultSuccess;
}
std::copy_n(src_cmdbuf, IPC::COMMAND_BUFFER_LENGTH, cmd_buf.begin());
return ResultSuccess;
}
Result HLERequestContext::WriteToOutgoingCommandBuffer(KThread& requesting_thread) {
auto current_offset = handles_offset;
auto& owner_process = *requesting_thread.GetOwnerProcess();
auto& handle_table = owner_process.GetHandleTable();
for (auto& object : outgoing_copy_objects) {
Handle handle{};
if (object) {
R_TRY(handle_table.Add(&handle, object));
}
cmd_buf[current_offset++] = handle;
}
for (auto& object : outgoing_move_objects) {
Handle handle{};
if (object) {
R_TRY(handle_table.Add(&handle, object));
// Close our reference to the object, as it is being moved to the caller.
object->Close();
}
cmd_buf[current_offset++] = handle;
}
// Write the domain objects to the command buffer, these go after the raw untranslated data.
// TODO(Subv): This completely ignores C buffers.
if (GetManager()->IsDomain()) {
current_offset = domain_offset - static_cast<u32>(outgoing_domain_objects.size());
for (auto& object : outgoing_domain_objects) {
GetManager()->AppendDomainHandler(std::move(object));
cmd_buf[current_offset++] = static_cast<u32_le>(GetManager()->DomainHandlerCount());
}
}
// Copy the translated command buffer back into the thread's command buffer area.
memory.WriteBlock(owner_process, requesting_thread.GetTLSAddress(), cmd_buf.data(),
write_size * sizeof(u32));
return ResultSuccess;
}
std::vector<u8> HLERequestContext::ReadBufferCopy(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorA().size() > buffer_index, { return {}; },
"BufferDescriptorA invalid buffer_index {}", buffer_index);
std::vector<u8> buffer(BufferDescriptorA()[buffer_index].Size());
memory.ReadBlock(BufferDescriptorA()[buffer_index].Address(), buffer.data(), buffer.size());
return buffer;
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorX().size() > buffer_index, { return {}; },
"BufferDescriptorX invalid buffer_index {}", buffer_index);
std::vector<u8> buffer(BufferDescriptorX()[buffer_index].Size());
memory.ReadBlock(BufferDescriptorX()[buffer_index].Address(), buffer.data(), buffer.size());
return buffer;
}
}
std::span<const u8> HLERequestContext::ReadBuffer(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorA().size() > buffer_index, { return {}; },
"BufferDescriptorA invalid buffer_index {}", buffer_index);
const u8* const mem_ptr = memory.GetPointer(BufferDescriptorA()[buffer_index].Address());
return std::span<const u8>(mem_ptr, BufferDescriptorA()[buffer_index].Size());
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorX().size() > buffer_index, { return {}; },
"BufferDescriptorX invalid buffer_index {}", buffer_index);
const u8* const mem_ptr = memory.GetPointer(BufferDescriptorX()[buffer_index].Address());
return std::span<const u8>(mem_ptr, BufferDescriptorX()[buffer_index].Size());
}
}
std::size_t HLERequestContext::WriteBuffer(const void* buffer, std::size_t size,
std::size_t buffer_index) const {
if (size == 0) {
LOG_WARNING(Core, "skip empty buffer write");
return 0;
}
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
const std::size_t buffer_size{GetWriteBufferSize(buffer_index)};
if (size > buffer_size) {
LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
buffer_size);
size = buffer_size; // TODO(bunnei): This needs to be HW tested
}
if (is_buffer_b) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size() >= size,
{ return 0; }, "BufferDescriptorB is invalid, index={}, size={}", buffer_index, size);
WriteBufferB(buffer, size, buffer_index);
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorC().size() > buffer_index &&
BufferDescriptorC()[buffer_index].Size() >= size,
{ return 0; }, "BufferDescriptorC is invalid, index={}, size={}", buffer_index, size);
WriteBufferC(buffer, size, buffer_index);
}
return size;
}
std::size_t HLERequestContext::WriteBufferB(const void* buffer, std::size_t size,
std::size_t buffer_index) const {
if (buffer_index >= BufferDescriptorB().size() || size == 0) {
return 0;
}
const auto buffer_size{BufferDescriptorB()[buffer_index].Size()};
if (size > buffer_size) {
LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
buffer_size);
size = buffer_size; // TODO(bunnei): This needs to be HW tested
}
memory.WriteBlock(BufferDescriptorB()[buffer_index].Address(), buffer, size);
return size;
}
std::size_t HLERequestContext::WriteBufferC(const void* buffer, std::size_t size,
std::size_t buffer_index) const {
if (buffer_index >= BufferDescriptorC().size() || size == 0) {
return 0;
}
const auto buffer_size{BufferDescriptorC()[buffer_index].Size()};
if (size > buffer_size) {
LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
buffer_size);
size = buffer_size; // TODO(bunnei): This needs to be HW tested
}
memory.WriteBlock(BufferDescriptorC()[buffer_index].Address(), buffer, size);
return size;
}
std::size_t HLERequestContext::GetReadBufferSize(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorA().size() > buffer_index, { return 0; },
"BufferDescriptorA invalid buffer_index {}", buffer_index);
return BufferDescriptorA()[buffer_index].Size();
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorX().size() > buffer_index, { return 0; },
"BufferDescriptorX invalid buffer_index {}", buffer_index);
return BufferDescriptorX()[buffer_index].Size();
}
}
std::size_t HLERequestContext::GetWriteBufferSize(std::size_t buffer_index) const {
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
if (is_buffer_b) {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorB().size() > buffer_index, { return 0; },
"BufferDescriptorB invalid buffer_index {}", buffer_index);
return BufferDescriptorB()[buffer_index].Size();
} else {
ASSERT_OR_EXECUTE_MSG(
BufferDescriptorC().size() > buffer_index, { return 0; },
"BufferDescriptorC invalid buffer_index {}", buffer_index);
return BufferDescriptorC()[buffer_index].Size();
}
return 0;
}
bool HLERequestContext::CanReadBuffer(std::size_t buffer_index) const {
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
BufferDescriptorA()[buffer_index].Size()};
if (is_buffer_a) {
return BufferDescriptorA().size() > buffer_index;
} else {
return BufferDescriptorX().size() > buffer_index;
}
}
bool HLERequestContext::CanWriteBuffer(std::size_t buffer_index) const {
const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
BufferDescriptorB()[buffer_index].Size()};
if (is_buffer_b) {
return BufferDescriptorB().size() > buffer_index;
} else {
return BufferDescriptorC().size() > buffer_index;
}
}
std::string HLERequestContext::Description() const {
if (!command_header) {
return "No command header available";
}
std::ostringstream s;
s << "IPC::CommandHeader: Type:" << static_cast<u32>(command_header->type.Value());
s << ", X(Pointer):" << command_header->num_buf_x_descriptors;
if (command_header->num_buf_x_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_x_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorX()[i].Size();
if (i < command_header->num_buf_x_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", A(Send):" << command_header->num_buf_a_descriptors;
if (command_header->num_buf_a_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_a_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorA()[i].Size();
if (i < command_header->num_buf_a_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", B(Receive):" << command_header->num_buf_b_descriptors;
if (command_header->num_buf_b_descriptors) {
s << '[';
for (u64 i = 0; i < command_header->num_buf_b_descriptors; ++i) {
s << "0x" << std::hex << BufferDescriptorB()[i].Size();
if (i < command_header->num_buf_b_descriptors - 1)
s << ", ";
}
s << ']';
}
s << ", C(ReceiveList):" << BufferDescriptorC().size();
if (!BufferDescriptorC().empty()) {
s << '[';
for (u64 i = 0; i < BufferDescriptorC().size(); ++i) {
s << "0x" << std::hex << BufferDescriptorC()[i].Size();
if (i < BufferDescriptorC().size() - 1)
s << ", ";
}
s << ']';
}
s << ", data_size:" << command_header->data_size.Value();
return s.str();
}
} // namespace Kernel