summaryrefslogblamecommitdiffstats
path: root/src/common/x64/emitter.h
blob: 86f4a1fff0df2daacbc8c007db77643ec480d61a (plain) (tree)


















                                                                       


                                
 
                                                      

















































































































































































































































































































                                                                                                                            













                                                                                          

                                                                                

                                                                                      








                                                                                                                        



                                                                                                                                                      



                                                               















































                                                                                                                 

                                          








                                            
                                                       
                                  



                                    
                                 


                                                                      
                                                                               
 
                                                  










                                                                

                                                                               









                                                             



                                                         

                                





                                                                          

            






                                                              

               



                                                              

                             

                                                                                 


                                          

                         
                           

                          




                                               






                                                         

                     




                                                          

                                                  
                                                          








                                                                                                      
                                                                                 


                                                               
                                                        
                                              
                                                        

                                                                        

                                      

























                                                 


                                           



                                          














                                                 

                                             

                                                           
 






                                                                                     

                                                                               

















                                                           

                                                                            







                                                

                                                                                

                                                            

                                                             
                                                 
 
                                                                                                           
                                               

                                                                                                                                            
                                                     
 



                                                 

                          



                                                 

                                                                             




























                                                



                                               
                                                 
                                          
                                                


                                                                                                          

                                                 


                                                                                                              
                                              

                                       












                                                   

                                                                        



                                                      

                                        



                                                 





                                                   














































                                                          
                                       














                                                            



                                      
                                             










                                       











                                                 

                                                                 


                                                 



                                                                                 























                                                                                           

          

























                                                                             

           



























































                                                                        

                           












                                                                         





                                                                         
                                            

                                        
                                            

     

                                            
     

                                                                        



                                                                              












                                                                                                   

                                      

                                                                        


                                                        
                                                     






















                                                                                      
                                                
         
                                                 













                                                                                          
// Copyright (C) 2003 Dolphin Project.

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License 2.0 for more details.

// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/

// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/

#pragma once

#include "common/assert.h"
#include "common/common_types.h"
#include "common/code_block.h"

#if defined(ARCHITECTURE_x86_64) && !defined(_ARCH_64)
#define _ARCH_64
#endif

#ifdef _ARCH_64
#define PTRBITS 64
#else
#define PTRBITS 32
#endif

namespace Gen
{

enum X64Reg
{
    EAX = 0, EBX = 3, ECX = 1, EDX = 2,
    ESI = 6, EDI = 7, EBP = 5, ESP = 4,

    RAX = 0, RBX = 3, RCX = 1, RDX = 2,
    RSI = 6, RDI = 7, RBP = 5, RSP = 4,
    R8  = 8, R9  = 9, R10 = 10,R11 = 11,
    R12 = 12,R13 = 13,R14 = 14,R15 = 15,

    AL = 0, BL = 3, CL = 1, DL = 2,
    SIL = 6, DIL = 7, BPL = 5, SPL = 4,
    AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,

    AX = 0, BX = 3, CX = 1, DX = 2,
    SI = 6, DI = 7, BP = 5, SP = 4,

    XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
    XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,

    YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
    YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15,

    INVALID_REG = 0xFFFFFFFF
};

enum CCFlags
{
    CC_O   = 0,
    CC_NO  = 1,
    CC_B   = 2, CC_C   = 2, CC_NAE = 2,
    CC_NB  = 3, CC_NC  = 3, CC_AE  = 3,
    CC_Z   = 4, CC_E   = 4,
    CC_NZ  = 5, CC_NE  = 5,
    CC_BE  = 6, CC_NA  = 6,
    CC_NBE = 7, CC_A   = 7,
    CC_S   = 8,
    CC_NS  = 9,
    CC_P   = 0xA, CC_PE  = 0xA,
    CC_NP  = 0xB, CC_PO  = 0xB,
    CC_L   = 0xC, CC_NGE = 0xC,
    CC_NL  = 0xD, CC_GE  = 0xD,
    CC_LE  = 0xE, CC_NG  = 0xE,
    CC_NLE = 0xF, CC_G   = 0xF
};

enum
{
    NUMGPRs = 16,
    NUMXMMs = 16,
};

enum
{
    SCALE_NONE = 0,
    SCALE_1 = 1,
    SCALE_2 = 2,
    SCALE_4 = 4,
    SCALE_8 = 8,
    SCALE_ATREG = 16,
    //SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
    SCALE_NOBASE_2 = 34,
    SCALE_NOBASE_4 = 36,
    SCALE_NOBASE_8 = 40,
    SCALE_RIP = 0xFF,
    SCALE_IMM8  = 0xF0,
    SCALE_IMM16 = 0xF1,
    SCALE_IMM32 = 0xF2,
    SCALE_IMM64 = 0xF3,
};

enum NormalOp {
    nrmADD,
    nrmADC,
    nrmSUB,
    nrmSBB,
    nrmAND,
    nrmOR ,
    nrmXOR,
    nrmMOV,
    nrmTEST,
    nrmCMP,
    nrmXCHG,
};

enum {
    CMP_EQ = 0,
    CMP_LT = 1,
    CMP_LE = 2,
    CMP_UNORD = 3,
    CMP_NEQ = 4,
    CMP_NLT = 5,
    CMP_NLE = 6,
    CMP_ORD = 7,
};

enum FloatOp {
    floatLD = 0,
    floatST = 2,
    floatSTP = 3,
    floatLD80 = 5,
    floatSTP80 = 7,

    floatINVALID = -1,
};

enum FloatRound {
    FROUND_NEAREST = 0,
    FROUND_FLOOR = 1,
    FROUND_CEIL = 2,
    FROUND_ZERO = 3,
    FROUND_MXCSR = 4,

    FROUND_RAISE_PRECISION = 0,
    FROUND_IGNORE_PRECISION = 8,
};

class XEmitter;

// RIP addressing does not benefit from micro op fusion on Core arch
struct OpArg
{
    OpArg() {}  // dummy op arg, used for storage
    OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
    {
        operandReg = 0;
        scale = (u8)_scale;
        offsetOrBaseReg = (u16)rmReg;
        indexReg = (u16)scaledReg;
        //if scale == 0 never mind offsetting
        offset = _offset;
    }
    bool operator==(const OpArg &b) const
    {
        return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
               indexReg == b.indexReg && offset == b.offset;
    }
    void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
    void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const;
    void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
    void WriteFloatModRM(XEmitter *emit, FloatOp op);
    void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
    // This one is public - must be written to
    u64 offset;  // use RIP-relative as much as possible - 64-bit immediates are not available.
    u16 operandReg;

    void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
    bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
    bool IsSimpleReg() const {return scale == SCALE_NONE;}
    bool IsSimpleReg(X64Reg reg) const
    {
        if (!IsSimpleReg())
            return false;
        return GetSimpleReg() == reg;
    }

    bool CanDoOpWith(const OpArg &other) const
    {
        if (IsSimpleReg()) return true;
        if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
        return true;
    }

    int GetImmBits() const
    {
        switch (scale)
        {
        case SCALE_IMM8: return 8;
        case SCALE_IMM16: return 16;
        case SCALE_IMM32: return 32;
        case SCALE_IMM64: return 64;
        default: return -1;
        }
    }

    void SetImmBits(int bits) {
        switch (bits)
        {
            case 8: scale = SCALE_IMM8; break;
            case 16: scale = SCALE_IMM16; break;
            case 32: scale = SCALE_IMM32; break;
            case 64: scale = SCALE_IMM64; break;
        }
    }

    X64Reg GetSimpleReg() const
    {
        if (scale == SCALE_NONE)
            return (X64Reg)offsetOrBaseReg;
        else
            return INVALID_REG;
    }

    u32 GetImmValue() const {
        return (u32)offset;
    }

    // For loops.
    void IncreaseOffset(int sz) {
        offset += sz;
    }

private:
    u8 scale;
    u16 offsetOrBaseReg;
    u16 indexReg;
};

inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
template <typename T>
inline OpArg M(const T *ptr)    {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);}
inline OpArg R(X64Reg value)    {return OpArg(0, SCALE_NONE, value);}
inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}

inline OpArg MDisp(X64Reg value, int offset)
{
    return OpArg((u32)offset, SCALE_ATREG, value);
}

inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
{
    return OpArg(offset, scale, base, scaled);
}

inline OpArg MScaled(X64Reg scaled, int scale, int offset)
{
    if (scale == SCALE_1)
        return OpArg(offset, SCALE_ATREG, scaled);
    else
        return OpArg(offset, scale | 0x20, RAX, scaled);
}

inline OpArg MRegSum(X64Reg base, X64Reg offset)
{
    return MComplex(base, offset, 1, 0);
}

inline OpArg Imm8 (u8 imm)  {return OpArg(imm, SCALE_IMM8);}
inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
inline OpArg UImmAuto(u32 imm) {
    return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8);
}
inline OpArg SImmAuto(s32 imm) {
    return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8);
}

#ifdef _ARCH_64
inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);}
#else
inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);}
#endif

inline u32 PtrOffset(const void* ptr, const void* base)
{
#ifdef _ARCH_64
    s64 distance = (s64)ptr-(s64)base;
    if (distance >= 0x80000000LL ||
        distance < -0x80000000LL)
    {
        ASSERT_MSG(0, "pointer offset out of range");
        return 0;
    }

    return (u32)distance;
#else
    return (u32)ptr-(u32)base;
#endif
}

//usage: int a[]; ARRAY_OFFSET(a,10)
#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))

struct FixupBranch
{
    u8 *ptr;
    int type; //0 = 8bit 1 = 32bit
};

enum SSECompare
{
    EQ = 0,
    LT,
    LE,
    UNORD,
    NEQ,
    NLT,
    NLE,
    ORD,
};

class XEmitter
{
    friend struct OpArg;  // for Write8 etc
private:
    u8 *code;
    bool flags_locked;

    void CheckFlags();

    void Rex(int w, int r, int x, int b);
    void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
    void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
    void WriteMulDivType(int bits, OpArg src, int ext);
    void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
    void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext);
    void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext);
    void WriteMXCSR(OpArg arg, int ext);
    void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
    void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
    void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
    void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
    void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0);
    void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0);
    void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0);
    void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0);
    void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg);
    void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg& a1, const OpArg& a2);

    void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);

protected:
    void Write8(u8 value)   {*code++ = value;}
    void Write16(u16 value) {*(u16*)code = (value); code += 2;}
    void Write32(u32 value) {*(u32*)code = (value); code += 4;}
    void Write64(u64 value) {*(u64*)code = (value); code += 8;}

public:
    XEmitter() { code = nullptr; flags_locked = false; }
    XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; }
    virtual ~XEmitter() {}

    void WriteModRM(int mod, int rm, int reg);
    void WriteSIB(int scale, int index, int base);

    void SetCodePtr(u8 *ptr);
    void ReserveCodeSpace(int bytes);
    const u8 *AlignCode4();
    const u8 *AlignCode16();
    const u8 *AlignCodePage();
    const u8 *GetCodePtr() const;
    u8 *GetWritableCodePtr();

    void LockFlags() { flags_locked = true; }
    void UnlockFlags() { flags_locked = false; }

    // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
    // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
    // INC and DEC are slow on Intel Core, but not on AMD. They create a
    // false flag dependency because they only update a subset of the flags.
    // XCHG is SLOW and should be avoided.

    // Debug breakpoint
    void INT3();

    // Do nothing
    void NOP(size_t count = 1);

    // Save energy in wait-loops on P4 only. Probably not too useful.
    void PAUSE();

    // Flag control
    void STC();
    void CLC();
    void CMC();

    // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
    void LAHF(); // 3 cycle vector path
    void SAHF(); // direct path fast


    // Stack control
    void PUSH(X64Reg reg);
    void POP(X64Reg reg);
    void PUSH(int bits, const OpArg& reg);
    void POP(int bits, const OpArg& reg);
    void PUSHF();
    void POPF();

    // Flow control
    void RET();
    void RET_FAST();
    void UD2();
    FixupBranch J(bool force5bytes = false);

    void JMP(const u8* addr, bool force5Bytes = false);
    void JMPptr(const OpArg& arg);
    void JMPself(); //infinite loop!
#ifdef CALL
#undef CALL
#endif
    void CALL(const void* fnptr);
    void CALLptr(OpArg arg);

    FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
    void J_CC(CCFlags conditionCode, const u8* addr, bool force5Bytes = false);

    void SetJumpTarget(const FixupBranch& branch);

    void SETcc(CCFlags flag, OpArg dest);
    // Note: CMOV brings small if any benefit on current cpus.
    void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);

    // Fences
    void LFENCE();
    void MFENCE();
    void SFENCE();

    // Bit scan
    void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit
    void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit

    // Cache control
    enum PrefetchLevel
    {
        PF_NTA, //Non-temporal (data used once and only once)
        PF_T0,  //All cache levels
        PF_T1,  //Levels 2+ (aliased to T0 on AMD)
        PF_T2,  //Levels 3+ (aliased to T0 on AMD)
    };
    void PREFETCH(PrefetchLevel level, OpArg arg);
    void MOVNTI(int bits, const OpArg& dest, X64Reg src);
    void MOVNTDQ(const OpArg& arg, X64Reg regOp);
    void MOVNTPS(const OpArg& arg, X64Reg regOp);
    void MOVNTPD(const OpArg& arg, X64Reg regOp);

    // Multiplication / division
    void MUL(int bits, const OpArg& src); //UNSIGNED
    void IMUL(int bits, const OpArg& src); //SIGNED
    void IMUL(int bits, X64Reg regOp, const OpArg& src);
    void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm);
    void DIV(int bits, const OpArg& src);
    void IDIV(int bits, const OpArg& src);

    // Shift
    void ROL(int bits, const OpArg& dest, const OpArg& shift);
    void ROR(int bits, const OpArg& dest, const OpArg& shift);
    void RCL(int bits, const OpArg& dest, const OpArg& shift);
    void RCR(int bits, const OpArg& dest, const OpArg& shift);
    void SHL(int bits, const OpArg& dest, const OpArg& shift);
    void SHR(int bits, const OpArg& dest, const OpArg& shift);
    void SAR(int bits, const OpArg& dest, const OpArg& shift);

    // Bit Test
    void BT(int bits, const OpArg& dest, const OpArg& index);
    void BTS(int bits, const OpArg& dest, const OpArg& index);
    void BTR(int bits, const OpArg& dest, const OpArg& index);
    void BTC(int bits, const OpArg& dest, const OpArg& index);

    // Double-Precision Shift
    void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
    void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);

    // Extend EAX into EDX in various ways
    void CWD(int bits = 16);
    void CDQ() {CWD(32);}
    void CQO() {CWD(64);}
    void CBW(int bits = 8);
    void CWDE() {CBW(16);}
    void CDQE() {CBW(32);}

    // Load effective address
    void LEA(int bits, X64Reg dest, OpArg src);

    // Integer arithmetic
    void NEG(int bits, const OpArg& src);
    void ADD(int bits, const OpArg& a1, const OpArg& a2);
    void ADC(int bits, const OpArg& a1, const OpArg& a2);
    void SUB(int bits, const OpArg& a1, const OpArg& a2);
    void SBB(int bits, const OpArg& a1, const OpArg& a2);
    void AND(int bits, const OpArg& a1, const OpArg& a2);
    void CMP(int bits, const OpArg& a1, const OpArg& a2);

    // Bit operations
    void NOT (int bits, const OpArg& src);
    void OR(int bits, const OpArg& a1, const OpArg& a2);
    void XOR(int bits, const OpArg& a1, const OpArg& a2);
    void MOV(int bits, const OpArg& a1, const OpArg& a2);
    void TEST(int bits, const OpArg& a1, const OpArg& a2);

    // Are these useful at all? Consider removing.
    void XCHG(int bits, const OpArg& a1, const OpArg& a2);
    void XCHG_AHAL();

    // Byte swapping (32 and 64-bit only).
    void BSWAP(int bits, X64Reg reg);

    // Sign/zero extension
    void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
    void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);

    // Available only on Atom or >= Haswell so far. Test with GetCPUCaps().movbe.
    void MOVBE(int dbits, const OpArg& dest, const OpArg& src);

    // Available only on AMD >= Phenom or Intel >= Haswell
    void LZCNT(int bits, X64Reg dest, const OpArg& src);
    // Note: this one is actually part of BMI1
    void TZCNT(int bits, X64Reg dest, const OpArg& src);

    // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
    void STMXCSR(const OpArg& memloc);
    void LDMXCSR(const OpArg& memloc);

    // Prefixes
    void LOCK();
    void REP();
    void REPNE();
    void FSOverride();
    void GSOverride();

    // x87
    enum x87StatusWordBits {
        x87_InvalidOperation = 0x1,
        x87_DenormalizedOperand = 0x2,
        x87_DivisionByZero = 0x4,
        x87_Overflow = 0x8,
        x87_Underflow = 0x10,
        x87_Precision = 0x20,
        x87_StackFault = 0x40,
        x87_ErrorSummary = 0x80,
        x87_C0 = 0x100,
        x87_C1 = 0x200,
        x87_C2 = 0x400,
        x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
        x87_C3 = 0x4000,
        x87_FPUBusy = 0x8000,
    };

    void FLD(int bits, const OpArg& src);
    void FST(int bits, const OpArg& dest);
    void FSTP(int bits, const OpArg& dest);
    void FNSTSW_AX();
    void FWAIT();

    // SSE/SSE2: Floating point arithmetic
    void ADDSS(X64Reg regOp, const OpArg& arg);
    void ADDSD(X64Reg regOp, const OpArg& arg);
    void SUBSS(X64Reg regOp, const OpArg& arg);
    void SUBSD(X64Reg regOp, const OpArg& arg);
    void MULSS(X64Reg regOp, const OpArg& arg);
    void MULSD(X64Reg regOp, const OpArg& arg);
    void DIVSS(X64Reg regOp, const OpArg& arg);
    void DIVSD(X64Reg regOp, const OpArg& arg);
    void MINSS(X64Reg regOp, const OpArg& arg);
    void MINSD(X64Reg regOp, const OpArg& arg);
    void MAXSS(X64Reg regOp, const OpArg& arg);
    void MAXSD(X64Reg regOp, const OpArg& arg);
    void SQRTSS(X64Reg regOp, const OpArg& arg);
    void SQRTSD(X64Reg regOp, const OpArg& arg);
    void RSQRTSS(X64Reg regOp, const OpArg& arg);

    // SSE/SSE2: Floating point bitwise (yes)
    void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare);
    void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare);

    void CMPEQSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_EQ); }
    void CMPLTSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_LT); }
    void CMPLESS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_LE); }
    void CMPUNORDSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_UNORD); }
    void CMPNEQSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_NEQ); }
    void CMPNLTSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_NLT); }
    void CMPORDSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_ORD); }

    // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
    void ADDPS(X64Reg regOp, const OpArg& arg);
    void ADDPD(X64Reg regOp, const OpArg& arg);
    void SUBPS(X64Reg regOp, const OpArg& arg);
    void SUBPD(X64Reg regOp, const OpArg& arg);
    void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare);
    void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare);
    void MULPS(X64Reg regOp, const OpArg& arg);
    void MULPD(X64Reg regOp, const OpArg& arg);
    void DIVPS(X64Reg regOp, const OpArg& arg);
    void DIVPD(X64Reg regOp, const OpArg& arg);
    void MINPS(X64Reg regOp, const OpArg& arg);
    void MINPD(X64Reg regOp, const OpArg& arg);
    void MAXPS(X64Reg regOp, const OpArg& arg);
    void MAXPD(X64Reg regOp, const OpArg& arg);
    void SQRTPS(X64Reg regOp, const OpArg& arg);
    void SQRTPD(X64Reg regOp, const OpArg& arg);
    void RCPPS(X64Reg regOp, const OpArg& arg);
    void RSQRTPS(X64Reg regOp, const OpArg& arg);

    // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
    void ANDPS(X64Reg regOp, const OpArg& arg);
    void ANDPD(X64Reg regOp, const OpArg& arg);
    void ANDNPS(X64Reg regOp, const OpArg& arg);
    void ANDNPD(X64Reg regOp, const OpArg& arg);
    void ORPS(X64Reg regOp, const OpArg& arg);
    void ORPD(X64Reg regOp, const OpArg& arg);
    void XORPS(X64Reg regOp, const OpArg& arg);
    void XORPD(X64Reg regOp, const OpArg& arg);

    // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
    void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle);
    void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle);

    // SSE/SSE2: Useful alternative to shuffle in some cases.
    void MOVDDUP(X64Reg regOp, const OpArg& arg);

    // SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy.
    void HADDPS(X64Reg dest, const OpArg& src);

    // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
    void DPPS(X64Reg dest, const OpArg& src, u8 arg);

    void UNPCKLPS(X64Reg dest, const OpArg& src);
    void UNPCKHPS(X64Reg dest, const OpArg& src);
    void UNPCKLPD(X64Reg dest, const OpArg& src);
    void UNPCKHPD(X64Reg dest, const OpArg& src);

    // SSE/SSE2: Compares.
    void COMISS(X64Reg regOp, const OpArg& arg);
    void COMISD(X64Reg regOp, const OpArg& arg);
    void UCOMISS(X64Reg regOp, const OpArg& arg);
    void UCOMISD(X64Reg regOp, const OpArg& arg);

    // SSE/SSE2: Moves. Use the right data type for your data, in most cases.
    void MOVAPS(X64Reg regOp, const OpArg& arg);
    void MOVAPD(X64Reg regOp, const OpArg& arg);
    void MOVAPS(const OpArg& arg, X64Reg regOp);
    void MOVAPD(const OpArg& arg, X64Reg regOp);

    void MOVUPS(X64Reg regOp, const OpArg& arg);
    void MOVUPD(X64Reg regOp, const OpArg& arg);
    void MOVUPS(const OpArg& arg, X64Reg regOp);
    void MOVUPD(const OpArg& arg, X64Reg regOp);

    void MOVDQA(X64Reg regOp, const OpArg& arg);
    void MOVDQA(const OpArg& arg, X64Reg regOp);
    void MOVDQU(X64Reg regOp, const OpArg& arg);
    void MOVDQU(const OpArg& arg, X64Reg regOp);

    void MOVSS(X64Reg regOp, const OpArg& arg);
    void MOVSD(X64Reg regOp, const OpArg& arg);
    void MOVSS(const OpArg& arg, X64Reg regOp);
    void MOVSD(const OpArg& arg, X64Reg regOp);

    void MOVLPS(X64Reg regOp, const OpArg& arg);
    void MOVLPD(X64Reg regOp, const OpArg& arg);
    void MOVLPS(const OpArg& arg, X64Reg regOp);
    void MOVLPD(const OpArg& arg, X64Reg regOp);

    void MOVHPS(X64Reg regOp, const OpArg& arg);
    void MOVHPD(X64Reg regOp, const OpArg& arg);
    void MOVHPS(const OpArg& arg, X64Reg regOp);
    void MOVHPD(const OpArg& arg, X64Reg regOp);

    void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
    void MOVLHPS(X64Reg regOp1, X64Reg regOp2);

    void MOVD_xmm(X64Reg dest, const OpArg& arg);
    void MOVQ_xmm(X64Reg dest, OpArg arg);
    void MOVD_xmm(const OpArg& arg, X64Reg src);
    void MOVQ_xmm(OpArg arg, X64Reg src);

    // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
    void MOVMSKPS(X64Reg dest, const OpArg& arg);
    void MOVMSKPD(X64Reg dest, const OpArg& arg);

    // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
    void MASKMOVDQU(X64Reg dest, X64Reg src);
    void LDDQU(X64Reg dest, const OpArg& src);

    // SSE/SSE2: Data type conversions.
    void CVTPS2PD(X64Reg dest, const OpArg& src);
    void CVTPD2PS(X64Reg dest, const OpArg& src);
    void CVTSS2SD(X64Reg dest, const OpArg& src);
    void CVTSI2SS(X64Reg dest, const OpArg& src);
    void CVTSD2SS(X64Reg dest, const OpArg& src);
    void CVTSI2SD(X64Reg dest, const OpArg& src);
    void CVTDQ2PD(X64Reg regOp, const OpArg& arg);
    void CVTPD2DQ(X64Reg regOp, const OpArg& arg);
    void CVTDQ2PS(X64Reg regOp, const OpArg& arg);
    void CVTPS2DQ(X64Reg regOp, const OpArg& arg);

    void CVTTPS2DQ(X64Reg regOp, const OpArg& arg);
    void CVTTPD2DQ(X64Reg regOp, const OpArg& arg);

    // Destinations are X64 regs (rax, rbx, ...) for these instructions.
    void CVTSS2SI(X64Reg xregdest, const OpArg& src);
    void CVTSD2SI(X64Reg xregdest, const OpArg& src);
    void CVTTSS2SI(X64Reg xregdest, const OpArg& arg);
    void CVTTSD2SI(X64Reg xregdest, const OpArg& arg);

    // SSE2: Packed integer instructions
    void PACKSSDW(X64Reg dest, const OpArg& arg);
    void PACKSSWB(X64Reg dest, const OpArg& arg);
    void PACKUSDW(X64Reg dest, const OpArg& arg);
    void PACKUSWB(X64Reg dest, const OpArg& arg);

    void PUNPCKLBW(X64Reg dest, const OpArg &arg);
    void PUNPCKLWD(X64Reg dest, const OpArg &arg);
    void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
    void PUNPCKLQDQ(X64Reg dest, const OpArg &arg);

    void PTEST(X64Reg dest, const OpArg& arg);
    void PAND(X64Reg dest, const OpArg& arg);
    void PANDN(X64Reg dest, const OpArg& arg);
    void PXOR(X64Reg dest, const OpArg& arg);
    void POR(X64Reg dest, const OpArg& arg);

    void PADDB(X64Reg dest, const OpArg& arg);
    void PADDW(X64Reg dest, const OpArg& arg);
    void PADDD(X64Reg dest, const OpArg& arg);
    void PADDQ(X64Reg dest, const OpArg& arg);

    void PADDSB(X64Reg dest, const OpArg& arg);
    void PADDSW(X64Reg dest, const OpArg& arg);
    void PADDUSB(X64Reg dest, const OpArg& arg);
    void PADDUSW(X64Reg dest, const OpArg& arg);

    void PSUBB(X64Reg dest, const OpArg& arg);
    void PSUBW(X64Reg dest, const OpArg& arg);
    void PSUBD(X64Reg dest, const OpArg& arg);
    void PSUBQ(X64Reg dest, const OpArg& arg);

    void PSUBSB(X64Reg dest, const OpArg& arg);
    void PSUBSW(X64Reg dest, const OpArg& arg);
    void PSUBUSB(X64Reg dest, const OpArg& arg);
    void PSUBUSW(X64Reg dest, const OpArg& arg);

    void PAVGB(X64Reg dest, const OpArg& arg);
    void PAVGW(X64Reg dest, const OpArg& arg);

    void PCMPEQB(X64Reg dest, const OpArg& arg);
    void PCMPEQW(X64Reg dest, const OpArg& arg);
    void PCMPEQD(X64Reg dest, const OpArg& arg);

    void PCMPGTB(X64Reg dest, const OpArg& arg);
    void PCMPGTW(X64Reg dest, const OpArg& arg);
    void PCMPGTD(X64Reg dest, const OpArg& arg);

    void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg);
    void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg);

    void PMADDWD(X64Reg dest, const OpArg& arg);
    void PSADBW(X64Reg dest, const OpArg& arg);

    void PMAXSW(X64Reg dest, const OpArg& arg);
    void PMAXUB(X64Reg dest, const OpArg& arg);
    void PMINSW(X64Reg dest, const OpArg& arg);
    void PMINUB(X64Reg dest, const OpArg& arg);
    // SSE4: More MAX/MIN instructions.
    void PMINSB(X64Reg dest, const OpArg& arg);
    void PMINSD(X64Reg dest, const OpArg& arg);
    void PMINUW(X64Reg dest, const OpArg& arg);
    void PMINUD(X64Reg dest, const OpArg& arg);
    void PMAXSB(X64Reg dest, const OpArg& arg);
    void PMAXSD(X64Reg dest, const OpArg& arg);
    void PMAXUW(X64Reg dest, const OpArg& arg);
    void PMAXUD(X64Reg dest, const OpArg& arg);

    void PMOVMSKB(X64Reg dest, const OpArg& arg);
    void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle);
    void PSHUFB(X64Reg dest, const OpArg& arg);

    void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle);
    void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle);

    void PSRLW(X64Reg reg, int shift);
    void PSRLD(X64Reg reg, int shift);
    void PSRLQ(X64Reg reg, int shift);
    void PSRLQ(X64Reg reg, const OpArg& arg);
    void PSRLDQ(X64Reg reg, int shift);

    void PSLLW(X64Reg reg, int shift);
    void PSLLD(X64Reg reg, int shift);
    void PSLLQ(X64Reg reg, int shift);
    void PSLLDQ(X64Reg reg, int shift);

    void PSRAW(X64Reg reg, int shift);
    void PSRAD(X64Reg reg, int shift);

    // SSE4: data type conversions
    void PMOVSXBW(X64Reg dest, const OpArg& arg);
    void PMOVSXBD(X64Reg dest, const OpArg& arg);
    void PMOVSXBQ(X64Reg dest, const OpArg& arg);
    void PMOVSXWD(X64Reg dest, const OpArg& arg);
    void PMOVSXWQ(X64Reg dest, const OpArg& arg);
    void PMOVSXDQ(X64Reg dest, const OpArg& arg);
    void PMOVZXBW(X64Reg dest, const OpArg& arg);
    void PMOVZXBD(X64Reg dest, const OpArg& arg);
    void PMOVZXBQ(X64Reg dest, const OpArg& arg);
    void PMOVZXWD(X64Reg dest, const OpArg& arg);
    void PMOVZXWQ(X64Reg dest, const OpArg& arg);
    void PMOVZXDQ(X64Reg dest, const OpArg& arg);

    // SSE4: variable blend instructions (xmm0 implicit argument)
    void PBLENDVB(X64Reg dest, const OpArg& arg);
    void BLENDVPS(X64Reg dest, const OpArg& arg);
    void BLENDVPD(X64Reg dest, const OpArg& arg);
    void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
    void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);

    // SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
    void ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode);
    void ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode);
    void ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode);
    void ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode);

    void ROUNDNEARSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
    void ROUNDFLOORSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
    void ROUNDCEILSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
    void ROUNDZEROSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_ZERO); }

    void ROUNDNEARSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
    void ROUNDFLOORSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
    void ROUNDCEILSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
    void ROUNDZEROSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_ZERO); }

    void ROUNDNEARPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
    void ROUNDFLOORPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
    void ROUNDCEILPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
    void ROUNDZEROPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_ZERO); }

    void ROUNDNEARPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
    void ROUNDFLOORPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
    void ROUNDCEILPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
    void ROUNDZEROPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_ZERO); }

    // AVX
    void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
    void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);

    void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);

    void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);

    // FMA3
    void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);

    // VEX GPR instructions
    void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
    void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
    void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
    void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate);
    void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
    void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
    void BLSR(int bits, X64Reg regOp, const OpArg& arg);
    void BLSMSK(int bits, X64Reg regOp, const OpArg& arg);
    void BLSI(int bits, X64Reg regOp, const OpArg& arg);
    void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
    void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);

    void RDTSC();

    // Utility functions
    // The difference between this and CALL is that this aligns the stack
    // where appropriate.
    void ABI_CallFunction(const void* func);
    template <typename T>
    void ABI_CallFunction(T (*func)()) {
        ABI_CallFunction((const void*)func);
    }

    void ABI_CallFunction(const u8* func) {
        ABI_CallFunction((const void*)func);
    }
    void ABI_CallFunctionC16(const void* func, u16 param1);
    void ABI_CallFunctionCC16(const void* func, u32 param1, u16 param2);


    // These only support u32 parameters, but that's enough for a lot of uses.
    // These will destroy the 1 or 2 first "parameter regs".
    void ABI_CallFunctionC(const void* func, u32 param1);
    void ABI_CallFunctionCC(const void* func, u32 param1, u32 param2);
    void ABI_CallFunctionCCC(const void* func, u32 param1, u32 param2, u32 param3);
    void ABI_CallFunctionCCP(const void* func, u32 param1, u32 param2, void* param3);
    void ABI_CallFunctionCCCP(const void* func, u32 param1, u32 param2, u32 param3, void* param4);
    void ABI_CallFunctionP(const void* func, void* param1);
    void ABI_CallFunctionPA(const void* func, void* param1, const OpArg& arg2);
    void ABI_CallFunctionPAA(const void* func, void* param1, const OpArg& arg2, const OpArg& arg3);
    void ABI_CallFunctionPPC(const void* func, void* param1, void* param2, u32 param3);
    void ABI_CallFunctionAC(const void* func, const OpArg& arg1, u32 param2);
    void ABI_CallFunctionACC(const void* func, const OpArg& arg1, u32 param2, u32 param3);
    void ABI_CallFunctionA(const void* func, const OpArg& arg1);
    void ABI_CallFunctionAA(const void* func, const OpArg& arg1, const OpArg& arg2);

    // Pass a register as a parameter.
    void ABI_CallFunctionR(const void* func, X64Reg reg1);
    void ABI_CallFunctionRR(const void* func, X64Reg reg1, X64Reg reg2);

    template <typename Tr, typename T1>
    void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
        ABI_CallFunctionC((const void*)func, param1);
    }

    // A function that doesn't have any control over what it will do to regs,
    // such as the dispatcher, should be surrounded by these.
    void ABI_PushAllCalleeSavedRegsAndAdjustStack();
    void ABI_PopAllCalleeSavedRegsAndAdjustStack();

    // A function that doesn't know anything about it's surroundings, should
    // be surrounded by these to establish a safe environment, where it can roam free.
    // An example is a backpatch injected function.
    void ABI_PushAllCallerSavedRegsAndAdjustStack();
    void ABI_PopAllCallerSavedRegsAndAdjustStack();

    unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
    void ABI_AlignStack(unsigned int frameSize);
    void ABI_RestoreStack(unsigned int frameSize);

    // Sets up a __cdecl function.
    // Only x64 really needs the parameter count.
    void ABI_EmitPrologue(int maxCallParams);
    void ABI_EmitEpilogue(int maxCallParams);

    #ifdef _M_IX86
    static int ABI_GetNumXMMRegs() { return 8; }
    #else
    static int ABI_GetNumXMMRegs() { return 16; }
    #endif
};  // class XEmitter


// Everything that needs to generate X86 code should inherit from this.
// You get memory management for free, plus, you can use all the MOV etc functions without
// having to prefix them with gen-> or something similar.

class XCodeBlock : public CodeBlock<XEmitter> {
public:
    void PoisonMemory() override;
};

}  // namespace