summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/HuggingChat.py
blob: a3f0157ef9105f60fcb63995f964aa9b5865d9ad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import annotations

import json
import requests

from curl_cffi import requests as cf_reqs
from ..typing import CreateResult, Messages
from .base_provider import ProviderModelMixin, AbstractProvider
from .helper import format_prompt

class HuggingChat(AbstractProvider, ProviderModelMixin):
    url = "https://huggingface.co/chat"
    working = True
    supports_stream = True
    default_model = "meta-llama/Meta-Llama-3.1-70B-Instruct"
    
    models = [
        'meta-llama/Meta-Llama-3.1-70B-Instruct',
        'CohereForAI/c4ai-command-r-plus-08-2024',
        'Qwen/Qwen2.5-72B-Instruct',
        'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
        'meta-llama/Llama-3.2-11B-Vision-Instruct',
        'NousResearch/Hermes-3-Llama-3.1-8B',
        'mistralai/Mistral-Nemo-Instruct-2407',
        'microsoft/Phi-3.5-mini-instruct',
    ]
    
    model_aliases = {
        "llama-3.1-70b": "meta-llama/Meta-Llama-3.1-70B-Instruct",
        "command-r-plus": "CohereForAI/c4ai-command-r-plus-08-2024",
        "qwen-2-72b": "Qwen/Qwen2.5-72B-Instruct",
        "nemotron-70b": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
        "llama-3.2-11b": "meta-llama/Llama-3.2-11B-Vision-Instruct",
        "hermes-3": "NousResearch/Hermes-3-Llama-3.1-8B",
        "mistral-nemo": "mistralai/Mistral-Nemo-Instruct-2407",
        "phi-3.5-mini": "microsoft/Phi-3.5-mini-instruct",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model
            
    @classmethod
    def create_completion(
        cls,
        model: str,
        messages: Messages,
        stream: bool,
        **kwargs
    ) -> CreateResult:
        model = cls.get_model(model)
        
        if model in cls.models:
            session = cf_reqs.Session()
            session.headers = {
                'accept': '*/*',
                'accept-language': 'en',
                'cache-control': 'no-cache',
                'origin': 'https://huggingface.co',
                'pragma': 'no-cache',
                'priority': 'u=1, i',
                'referer': 'https://huggingface.co/chat/',
                'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
                'sec-ch-ua-mobile': '?0',
                'sec-ch-ua-platform': '"macOS"',
                'sec-fetch-dest': 'empty',
                'sec-fetch-mode': 'cors',
                'sec-fetch-site': 'same-origin',
                'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
            }

            json_data = {
                'model': model,
            }

            response = session.post('https://huggingface.co/chat/conversation', json=json_data)
            if response.status_code != 200:
                raise RuntimeError(f"Request failed with status code: {response.status_code}, response: {response.text}")

            conversationId = response.json().get('conversationId')
            response = session.get(f'https://huggingface.co/chat/conversation/{conversationId}/__data.json?x-sveltekit-invalidated=01')

            data: list = response.json()["nodes"][1]["data"]
            keys: list[int] = data[data[0]["messages"]]
            message_keys: dict = data[keys[0]]
            messageId: str = data[message_keys["id"]]

            settings = {
                "inputs": format_prompt(messages),
                "id": messageId,
                "is_retry": False,
                "is_continue": False,
                "web_search": False,
                "tools": []
            }

            headers = {
                'accept': '*/*',
                'accept-language': 'en',
                'cache-control': 'no-cache',
                'origin': 'https://huggingface.co',
                'pragma': 'no-cache',
                'priority': 'u=1, i',
                'referer': f'https://huggingface.co/chat/conversation/{conversationId}',
                'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
                'sec-ch-ua-mobile': '?0',
                'sec-ch-ua-platform': '"macOS"',
                'sec-fetch-dest': 'empty',
                'sec-fetch-mode': 'cors',
                'sec-fetch-site': 'same-origin',
                'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
            }

            files = {
                'data': (None, json.dumps(settings, separators=(',', ':'))),
            }

            response = requests.post(f'https://huggingface.co/chat/conversation/{conversationId}',
                cookies=session.cookies,
                headers=headers,
                files=files,
            )

            full_response = ""
            for line in response.iter_lines():
                if not line:
                    continue
                try:
                    line = json.loads(line)
                except json.JSONDecodeError as e:
                    print(f"Failed to decode JSON: {line}, error: {e}")
                    continue
                
                if "type" not in line:
                    raise RuntimeError(f"Response: {line}")
                
                elif line["type"] == "stream":
                    token = line["token"].replace('\u0000', '')
                    full_response += token
                
                elif line["type"] == "finalAnswer":
                    break
            
            full_response = full_response.replace('<|im_end|', '').replace('\u0000', '').strip()

            yield full_response