summaryrefslogtreecommitdiffstats
path: root/docs/async_client.md
blob: fe6f46ff16b7a14e575ddfa7fb234d24d0d0be70 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

# G4F - AsyncClient API Guide
The G4F AsyncClient API is a powerful asynchronous interface for interacting with various AI models. This guide provides comprehensive information on how to use the API effectively, including setup, usage examples, best practices, and important considerations for optimal performance.


## Compatibility Note
The G4F AsyncClient API is designed to be compatible with the OpenAI API, making it easy for developers familiar with OpenAI's interface to transition to G4F.

## Table of Contents
   - [Introduction](#introduction)
   - [Key Features](#key-features)
   - [Getting Started](#getting-started)
   - [Initializing the Client](#initializing-the-client)
   - [Creating Chat Completions](#creating-chat-completions)
   - [Configuration](#configuration)
   - [Usage Examples](#usage-examples)
   - [Text Completions](#text-completions)
   - [Streaming Completions](#streaming-completions)
   - [Using a Vision Model](#using-a-vision-model)
   - [Image Generation](#image-generation)
   - [Concurrent Tasks](#concurrent-tasks-with-asynciogather)
   - [Available Models and Providers](#available-models-and-providers)
   - [Error Handling and Best Practices](#error-handling-and-best-practices)
   - [Rate Limiting and API Usage](#rate-limiting-and-api-usage)
   - [Conclusion](#conclusion)

  

## Introduction
The G4F AsyncClient API is an asynchronous version of the standard G4F Client API. It offers the same functionality as the synchronous API but with improved performance due to its asynchronous nature. This guide will walk you through the key features and usage of the G4F AsyncClient API.
  

## Key Features
   - **Custom Providers**: Use custom providers for enhanced flexibility.
   - **ChatCompletion Interface**: Interact with chat models through the ChatCompletion class.
   - **Streaming Responses**: Get responses iteratively as they are received.
   - **Non-Streaming Responses**: Generate complete responses in a single call.
   - **Image Generation and Vision Models**: Support for image-related tasks.

  

## Getting Started
### Initializing the AsyncClient
**To use the G4F `AsyncClient`, create a new instance:**
```python
from g4f.client import AsyncClient
from g4f.Provider import OpenaiChat, Gemini

client = AsyncClient(
    provider=OpenaiChat,
    image_provider=Gemini,
    # Add other parameters as needed
)
```


## Creating Chat Completions
**Here’s an improved example of creating chat completions:**
```python
response = await client.chat.completions.create(
    model="gpt-4o-mini",
    messages=[
        {
            "role": "user",
            "content": "Say this is a test"
        }
    ]
     # Add other parameters as needed
)
```

**This example:**
   - Asks a specific question `Say this is a test`
   - Configures various parameters like temperature and max_tokens for more control over the output
   - Disables streaming for a complete response

You can adjust these parameters based on your specific needs.
  

### Configuration
**Configure the `AsyncClient` with additional settings:**
```python
client = AsyncClient(
    api_key="your_api_key_here",
    proxies="http://user:pass@host",
    # Add other parameters as needed
)
```

  

## Usage Examples
### Text Completions
**Generate text completions using the ChatCompletions endpoint:**
```python
import asyncio
from g4f.client import AsyncClient

async def main():
    client = AsyncClient()
    
    response = await client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "user",
                "content": "Say this is a test"
            }
        ]
    )
    
    print(response.choices[0].message.content)

asyncio.run(main())
```

  

### Streaming Completions
**Process responses incrementally as they are generated:**
```python
import asyncio
from g4f.client import AsyncClient

async def main():
    client = AsyncClient()

    stream = client.chat.completions.create(
        model="gpt-4",
        messages=[
            {
                "role": "user",
                "content": "Say this is a test"
            }
        ],
        stream=True,
    )
    
    async for chunk in stream:
        if chunk.choices and chunk.choices[0].delta.content:
            print(chunk.choices[0].delta.content, end="")

asyncio.run(main())
```

  

### Using a Vision Model
**Analyze an image and generate a description:**
```python
import g4f
import requests
import asyncio
from g4f.client import AsyncClient

async def main():
    client = AsyncClient()
    
    image = requests.get("https://raw.githubusercontent.com/xtekky/gpt4free/refs/heads/main/docs/cat.jpeg", stream=True).raw
    
    response = await client.chat.completions.create(
        model=g4f.models.default,
        provider=g4f.Provider.Bing,
        messages=[
            {
                "role": "user",
                "content": "What's in this image?"
            }
        ],
        image=image
    )
    
    print(response.choices[0].message.content)

asyncio.run(main())
```

  

### Image Generation
**Generate images using a specified prompt:**
```python
import asyncio
from g4f.client import AsyncClient

async def main():
    client = AsyncClient()
    
    response = await client.images.generate(
        prompt="a white siamese cat",
        model="flux"
    )
    
    image_url = response.data[0].url
    print(f"Generated image URL: {image_url}")

asyncio.run(main())
```

  

#### Base64 Response Format
```python
import asyncio
from g4f.client import AsyncClient

async def main():
    client = AsyncClient()
    
    response = await client.images.generate(
        prompt="a white siamese cat",
        model="flux",
        response_format="b64_json"
    )
    
    base64_text = response.data[0].b64_json
    print(base64_text)

asyncio.run(main())
```

  

### Concurrent Tasks with asyncio.gather
**Execute multiple tasks concurrently:**
```python
import asyncio
from g4f.client import AsyncClient

async def main():
    client = AsyncClient()
    
    task1 = client.chat.completions.create(
        model=None,
        messages=[
            {
                "role": "user",
                "content": "Say this is a test"
            }
        ]
    )
    
    task2 = client.images.generate(
        model="flux",
        prompt="a white siamese cat"
    )
    
    try:
        chat_response, image_response = await asyncio.gather(task1, task2)
        
        print("Chat Response:")
        print(chat_response.choices[0].message.content)
        
        print("\nImage Response:")
        print(image_response.data[0].url)
    except Exception as e:
        print(f"An error occurred: {e}")

asyncio.run(main())
```

  

## Available Models and Providers
The G4F AsyncClient supports a wide range of AI models and providers, allowing you to choose the best option for your specific use case. **Here's a brief overview of the available models and providers:**

### Models
   - GPT-3.5-Turbo
   - GPT-4o-Mini
   - GPT-4
   - DALL-E 3
   - Gemini
   - Claude (Anthropic)
   - And more...

  

### Providers
   - OpenAI
   - Google (for Gemini)
   - Anthropic
   - Bing
   - Custom providers

  

**To use a specific model or provider, specify it when creating the client or in the API call:**
```python
client = AsyncClient(provider=g4f.Provider.OpenaiChat)

# or

response = await client.chat.completions.create(
    model="gpt-4",
    provider=g4f.Provider.Bing,
    messages=[
        {
            "role": "user",
            "content": "Hello, world!"
        }
    ]
)
```

  

## Error Handling and Best Practices
Implementing proper error handling and following best practices is crucial when working with the G4F AsyncClient API. This ensures your application remains robust and can gracefully handle various scenarios. **Here are some key practices to follow:**

1. **Use try-except blocks to catch and handle exceptions:**
```python
try:
    response = await client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "user",
                "content": "Hello, world!"
            }
        ]
    )
except Exception as e:
    print(f"An error occurred: {e}")
```

2. **Check the response status and handle different scenarios:**
```python
if response.choices:
    print(response.choices[0].message.content)
else:
    print("No response generated")
```

3. **Implement retries for transient errors:**
```python
import asyncio
from tenacity import retry, stop_after_attempt, wait_exponential

@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
async def make_api_call():
    # Your API call here
    pass
```

  

## Rate Limiting and API Usage
When working with the G4F AsyncClient API, it's important to implement rate limiting and monitor your API usage. This helps ensure fair usage, prevents overloading the service, and optimizes your application's performance. Here are some key strategies to consider:
  

1. **Implement rate limiting in your application:**
```python
import asyncio
from aiolimiter import AsyncLimiter

rate_limit = AsyncLimiter(max_rate=10, time_period=1)  # 10 requests per second

async def make_api_call():
    async with rate_limit:
        # Your API call here
        pass
```

  

2. **Monitor your API usage and implement logging:**
```python
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

async def make_api_call():
    try:
        response = await client.chat.completions.create(...)
        logger.info(f"API call successful. Tokens used: {response.usage.total_tokens}")
    except Exception as e:
        logger.error(f"API call failed: {e}")
```

  

3. **Use caching to reduce API calls for repeated queries:**
```python
from functools import lru_cache

@lru_cache(maxsize=100)
def get_cached_response(query):
    # Your API call here
    pass
```

## Conclusion
The G4F AsyncClient API provides a powerful and flexible way to interact with various AI models asynchronously. By leveraging its features and following best practices, you can build efficient and responsive applications that harness the power of AI for text generation, image analysis, and image creation.

Remember to handle errors gracefully, implement rate limiting, and monitor your API usage to ensure optimal performance and reliability in your applications.

---

[Return to Home](/)