summaryrefslogblamecommitdiffstats
path: root/g4f/Provider/airforce/AirforceChat.py
blob: cec911a3cbb68fc2c54b12d9d9d224ec56bce2cb (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11

                                  
           
               
                                 
                       




                                                                      
                                       






                                                                                                                  
                                                                                
     

                                        




                                                 
 


                                                                        
               








                                                                                     

                 

                                                               
                                                          



                                   




                                                          
                           
 
                     


































                                                         















                                     


















                                                                                                                                 

















                                                                                              
 




















                                                                                                             
 

                                                       
from __future__ import annotations
import re
import json
import requests
from aiohttp import ClientSession
from typing import List

from ...typing import AsyncResult, Messages
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import format_prompt

# Helper function to clean the response
def clean_response(text: str) -> str:
    """Clean response from unwanted patterns."""
    patterns = [
        r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
        r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
        r"Rate limit \(\d+\/hour\) exceeded\. Join our discord for more: https:\/\/discord\.com\/invite\/\S+",
        r"</s>", # zephyr-7b-beta
        r"\[ERROR\] '\w{8}-\w{4}-\w{4}-\w{4}-\w{12}'",  # Matches [ERROR] 'UUID'
    ]
    for pattern in patterns:
        text = re.sub(pattern, '', text)
    
    # Remove the <|im_end|> token if present
    text = text.replace("<|im_end|>", "").strip()
    
    return text

def split_message(message: str, max_length: int = 1000) -> List[str]:
    """Splits the message into chunks of a given length (max_length)"""
    # Split the message into smaller chunks to avoid exceeding the limit
    chunks = []
    while len(message) > max_length:
        # Find the last space or punctuation before max_length to avoid cutting words
        split_point = message.rfind(' ', 0, max_length)
        if split_point == -1:  # No space found, split at max_length
            split_point = max_length
        chunks.append(message[:split_point])
        message = message[split_point:].strip()
    if message:
        chunks.append(message)  # Append the remaining part of the message
    return chunks

class AirforceChat(AsyncGeneratorProvider, ProviderModelMixin):
    label = "AirForce Chat"
    api_endpoint = "https://api.airforce/chat/completions"
    supports_stream = True
    supports_system_message = True
    supports_message_history = True

    default_model = 'llama-3.1-70b-chat'
    response = requests.get('https://api.airforce/models')
    data = response.json()

    text_models = [model['id'] for model in data['data']]
    models = [*text_models]

    model_aliases = {
        # openchat
        "openchat-3.5": "openchat-3.5-0106",
        
        # deepseek-ai
        "deepseek-coder": "deepseek-coder-6.7b-instruct",
        
        # NousResearch
        "hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
        "hermes-2-pro": "hermes-2-pro-mistral-7b",
        
        # teknium
        "openhermes-2.5": "openhermes-2.5-mistral-7b",
        
        # liquid
        "lfm-40b": "lfm-40b-moe",
        
        # DiscoResearch
        "german-7b": "discolm-german-7b-v1",
            
        # meta-llama
        "llama-2-7b": "llama-2-7b-chat-int8",
        "llama-2-7b": "llama-2-7b-chat-fp16",
        "llama-3.1-70b": "llama-3.1-70b-chat",
        "llama-3.1-8b": "llama-3.1-8b-chat",
        "llama-3.1-70b": "llama-3.1-70b-turbo",
        "llama-3.1-8b": "llama-3.1-8b-turbo",
        
        # inferless
        "neural-7b": "neural-chat-7b-v3-1",
        
        # HuggingFaceH4
        "zephyr-7b": "zephyr-7b-beta",
        
        # llmplayground.net
        #"any-uncensored": "any-uncensored",    
    }

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        stream: bool = False,
        proxy: str = None,
        max_tokens: str = 4096,
        temperature: str = 1,
        top_p: str = 1,
        **kwargs
    ) -> AsyncResult:
        model = cls.get_model(model)

        headers = {
            'accept': '*/*',
            'accept-language': 'en-US,en;q=0.9',
            'authorization': 'Bearer missing api key',
            'cache-control': 'no-cache',
            'content-type': 'application/json',
            'origin': 'https://llmplayground.net',
            'pragma': 'no-cache',
            'priority': 'u=1, i',
            'referer': 'https://llmplayground.net/',
            'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Linux"',
            'sec-fetch-dest': 'empty',
            'sec-fetch-mode': 'cors',
            'sec-fetch-site': 'cross-site',
            'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36'
        }

        # Format the messages for the API
        formatted_messages = format_prompt(messages)
        message_chunks = split_message(formatted_messages)

        full_response = ""
        for chunk in message_chunks:
            data = {
                "messages": [{"role": "user", "content": chunk}],
                "model": model,
                "max_tokens": max_tokens,
                "temperature": temperature,
                "top_p": top_p,
                "stream": stream
            }

            async with ClientSession(headers=headers) as session:
                async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                    response.raise_for_status()

                    text = ""
                    if stream:
                        async for line in response.content:
                            line = line.decode('utf-8').strip()
                            if line.startswith('data: '):
                                json_str = line[6:]
                                try:
                                    if json_str and json_str != "[DONE]":
                                        chunk = json.loads(json_str)
                                        if 'choices' in chunk and chunk['choices']:
                                            content = chunk['choices'][0].get('delta', {}).get('content', '')
                                            text += content
                                except json.JSONDecodeError as e:
                                    print(f"Error decoding JSON: {json_str}, Error: {e}")
                            elif line == "[DONE]":
                                break
                        full_response += clean_response(text)
                    else:
                        response_json = await response.json()
                        text = response_json["choices"][0]["message"]["content"]
                        full_response += clean_response(text)

        # Return the complete response after all chunks
        yield full_response