#include "Globals.h" // NOTE: MSVC stupidness requires this to be the same across all modules
#include "Noise.h"
#define FAST_FLOOR(x) (((x) < 0) ? ((static_cast<int>(x)) - 1) : (static_cast<int>(x)))
#if 0
/** cImprovedPerlin noise test suite:
- Generate a rather large 2D and 3D noise array and output it to a file
- Compare performance of cCubicNoise and cImprovedNoise, both in single-value and 3D-array usages */
static class cImprovedPerlinNoiseTest
{
public:
cImprovedPerlinNoiseTest(void)
{
printf("Performing Improved Perlin Noise tests...\n");
TestImage();
TestSpeed();
TestSpeedArr();
printf("Improved Perlin Noise tests complete.\n");
}
/** Tests the noise by generating 2D and 3D images and dumping them to files. */
void TestImage(void)
{
static const int SIZE_X = 256;
static const int SIZE_Y = 256;
static const int SIZE_Z = 16;
cImprovedNoise noise(1);
std::unique_ptr<NOISE_DATATYPE[]> arr(new NOISE_DATATYPE[SIZE_X * SIZE_Y * SIZE_Z]);
noise.Generate3D(arr.get(), SIZE_X, SIZE_Y, SIZE_Z, 0, 14, 0, 14, 0, 14);
Debug3DNoise(arr.get(), SIZE_X, SIZE_Y, SIZE_Z, "ImprovedPerlinNoiseTest3D", 128);
noise.Generate2D(arr.get(), SIZE_X, SIZE_Y, 0, 14, 15, 28);
Debug2DNoise(arr.get(), SIZE_X, SIZE_Y, "ImprovedPerlinNoiseTest2D", 128);
}
/** Tests the speeds of cImprovedPerlin and cCubicNoise when generating individual values. */
void TestSpeed(void)
{
cImprovedNoise improvedNoise(1);
cNoise noise(1);
cTimer timer;
// Measure the improvedNoise:
NOISE_DATATYPE sum = 0;
long long start = timer.GetNowTime();
for (int i = 0; i < 100000000; i++)
{
sum += improvedNoise.GetValueAt(i, 0, -i);
}
long long finish = timer.GetNowTime();
printf("cImprovedNoise took %.2f seconds; total is %f.\n", static_cast<float>(finish - start) / 1000.0f, sum);
// Measure the cubicNoise:
sum = 0;
start = timer.GetNowTime();
for (int i = 0; i < 100000000; i++)
{
sum += noise.IntNoise3D(i, 0, -i);
}
finish = timer.GetNowTime();
printf("cCubicNoise took %.2f seconds; total is %f.\n", static_cast<float>(finish - start) / 1000.0f, sum);
}
/** Tests the speeds of cImprovedPerlin and cCubicNoise when generating arrays. */
void TestSpeedArr(void)
{
static const int SIZE_X = 256;
static const int SIZE_Y = 256;
static const int SIZE_Z = 16;
std::unique_ptr<NOISE_DATATYPE[]> arr(new NOISE_DATATYPE[SIZE_X * SIZE_Y * SIZE_Z]);
cTimer timer;
cImprovedNoise improvedNoise(1);
cCubicNoise cubicNoise(1);
// Measure the improvedNoise:
long long start = timer.GetNowTime();
for (int i = 0; i < 40; i++)
{
improvedNoise.Generate3D(arr.get(), SIZE_X, SIZE_Y, SIZE_Z, 0, 14, 0, 14, 0, 14);
}
long long finish = timer.GetNowTime();
printf("cImprovedNoise(arr) took %.2f seconds.\n", static_cast<float>(finish - start) / 1000.0f);
// Measure the cubicNoise:
start = timer.GetNowTime();
for (int i = 0; i < 40; i++)
{
cubicNoise.Generate3D(arr.get(), SIZE_X, SIZE_Y, SIZE_Z, 0, 14, 0, 14, 0, 14);
}
finish = timer.GetNowTime();
printf("cCubicNoise(arr) took %.2f seconds.\n", static_cast<float>(finish - start) / 1000.0f);
}
} g_Test;
#endif
////////////////////////////////////////////////////////////////////////////////
// Globals:
void Debug3DNoise(const NOISE_DATATYPE * a_Noise, size_t a_SizeX, size_t a_SizeY, size_t a_SizeZ, const AString & a_FileNameBase, NOISE_DATATYPE a_Coeff)
{
const int BUF_SIZE = 512;
ASSERT(a_SizeX <= BUF_SIZE); // Just stretch it, if needed
// Save in XY cuts:
cFile f1;
if (f1.Open(Printf("%s_XY (" SIZE_T_FMT ").grab", a_FileNameBase.c_str(), a_SizeX), cFile::fmWrite))
{
for (size_t z = 0; z < a_SizeZ; z++)
{
for (size_t y = 0; y < a_SizeY; y++)
{
size_t idx = y * a_SizeX + z * a_SizeX * a_SizeY;
unsigned char buf[BUF_SIZE];
for (size_t x = 0; x < a_SizeX; x++)
{
buf[x] = static_cast<unsigned char>(Clamp(static_cast<int>(128 + a_Coeff * a_Noise[idx++]), 0, 255));
}
f1.Write(buf, a_SizeX);
} // for y
unsigned char buf[BUF_SIZE];
memset(buf, 0, a_SizeX);
f1.Write(buf, a_SizeX);
} // for z
} // if (XY file open)
cFile f2;
if (f2.Open(Printf("%s_XZ (" SIZE_T_FMT ").grab", a_FileNameBase.c_str(), a_SizeX), cFile::fmWrite))
{
for (size_t y = 0; y < a_SizeY; y++)
{
for (size_t z = 0; z < a_SizeZ; z++)
{
size_t idx = y * a_SizeX + z * a_SizeX * a_SizeY;
unsigned char buf[BUF_SIZE];
for (size_t x = 0; x < a_SizeX; x++)
{
buf[x] = static_cast<unsigned char>(Clamp(static_cast<int>(128 + a_Coeff * a_Noise[idx++]), 0, 255));
}
f2.Write(buf, a_SizeX);
} // for z
unsigned char buf[BUF_SIZE];
memset(buf, 0, a_SizeX);
f2.Write(buf, a_SizeX);
} // for y
} // if (XZ file open)
}
void Debug2DNoise(const NOISE_DATATYPE * a_Noise, size_t a_SizeX, size_t a_SizeY, const AString & a_FileNameBase, NOISE_DATATYPE a_Coeff)
{
const int BUF_SIZE = 512;
ASSERT(a_SizeX <= BUF_SIZE); // Just stretch it, if needed
cFile f1;
if (f1.Open(Printf("%s (" SIZE_T_FMT ").grab", a_FileNameBase.c_str(), a_SizeX), cFile::fmWrite))
{
for (size_t y = 0; y < a_SizeY; y++)
{
size_t idx = y * a_SizeX;
unsigned char buf[BUF_SIZE];
for (size_t x = 0; x < a_SizeX; x++)
{
buf[x] = static_cast<unsigned char>(Clamp(static_cast<int>(128 + a_Coeff * a_Noise[idx++]), 0, 255));
}
f1.Write(buf, a_SizeX);
} // for y
} // if (file open)
}
////////////////////////////////////////////////////////////////////////////////
// cCubicCell2D:
class cCubicCell2D
{
public:
cCubicCell2D(
const cNoise & a_Noise, ///< Noise to use for generating the random values
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, ///< Count of the array, in each direction
const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values
const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values
);
/** Uses current m_WorkRnds[] to generate part of the array */
void Generate(
int a_FromX, int a_ToX,
int a_FromY, int a_ToY
);
/** Initializes m_WorkRnds[] with the specified Floor values */
void InitWorkRnds(int a_FloorX, int a_FloorY);
/** Updates m_WorkRnds[] for the new Floor values. */
void Move(int a_NewFloorX, int a_NewFloorY);
protected:
typedef NOISE_DATATYPE Workspace[4][4];
const cNoise & m_Noise;
Workspace * m_WorkRnds; ///< The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering)
Workspace m_Workspace1; ///< Buffer 1 for workspace doublebuffering, used in Move()
Workspace m_Workspace2; ///< Buffer 2 for workspace doublebuffering, used in Move()
int m_CurFloorX;
int m_CurFloorY;
NOISE_DATATYPE * m_Array;
int m_SizeX, m_SizeY;
const NOISE_DATATYPE * m_FracX;
const NOISE_DATATYPE * m_FracY;
} ;
cCubicCell2D::cCubicCell2D(
const cNoise & a_Noise, ///< Noise to use for generating the random values
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, ///< Count of the array, in each direction
const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values
const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values
) :
m_Noise(a_Noise),
m_WorkRnds(&m_Workspace1),
m_CurFloorX(0),
m_CurFloorY(0),
m_Array(a_Array),
m_SizeX(a_SizeX),
m_SizeY(a_SizeY),
m_FracX(a_FracX),
m_FracY(a_FracY)
{
}
void cCubicCell2D::Generate(
int a_FromX, int a_ToX,
int a_FromY, int a_ToY
)
{
for (int y = a_FromY; y < a_ToY; y++)
{
NOISE_DATATYPE Interp[4];
NOISE_DATATYPE FracY = m_FracY[y];
Interp[0] = cNoise::CubicInterpolate((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], (*m_WorkRnds)[0][2], (*m_WorkRnds)[0][3], FracY);
Interp[1] = cNoise::CubicInterpolate((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], (*m_WorkRnds)[1][2], (*m_WorkRnds)[1][3], FracY);
Interp[2] = cNoise::CubicInterpolate((*m_WorkRnds)[2][0], (*m_WorkRnds)[2][1], (*m_WorkRnds)[2][2], (*m_WorkRnds)[2][3], FracY);
Interp[3] = cNoise::CubicInterpolate((*m_WorkRnds)[3][0], (*m_WorkRnds)[3][1], (*m_WorkRnds)[3][2], (*m_WorkRnds)[3][3], FracY);
int idx = y * m_SizeX + a_FromX;
for (int x = a_FromX; x < a_ToX; x++)
{
m_Array[idx++] = cNoise::CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]);
} // for x
} // for y
}
void cCubicCell2D::InitWorkRnds(int a_FloorX, int a_FloorY)
{
m_CurFloorX = a_FloorX;
m_CurFloorY = a_FloorY;
for (int x = 0; x < 4; x++)
{
int cx = a_FloorX + x - 1;
for (int y = 0; y < 4; y++)
{
int cy = a_FloorY + y - 1;
(*m_WorkRnds)[x][y] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise2D(cx, cy));
}
}
}
void cCubicCell2D::Move(int a_NewFloorX, int a_NewFloorY)
{
// Swap the doublebuffer:
int OldFloorX = m_CurFloorX;
int OldFloorY = m_CurFloorY;
Workspace * OldWorkRnds = m_WorkRnds;
m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1;
// Reuse as much of the old workspace as possible:
int DiffX = OldFloorX - a_NewFloorX;
int DiffY = OldFloorY - a_NewFloorY;
for (int x = 0; x < 4; x++)
{
int cx = a_NewFloorX + x - 1;
int OldX = x - DiffX; // Where would this X be in the old grid?
for (int y = 0; y < 4; y++)
{
int cy = a_NewFloorY + y - 1;
int OldY = y - DiffY; // Where would this Y be in the old grid?
if ((OldX >= 0) && (OldX < 4) && (OldY >= 0) && (OldY < 4))
{
(*m_WorkRnds)[x][y] = (*OldWorkRnds)[OldX][OldY];
}
else
{
(*m_WorkRnds)[x][y] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise2D(cx, cy));
}
}
}
m_CurFloorX = a_NewFloorX;
m_CurFloorY = a_NewFloorY;
}
////////////////////////////////////////////////////////////////////////////////
// cCubicCell3D:
class cCubicCell3D
{
public:
cCubicCell3D(
const cNoise & a_Noise, ///< Noise to use for generating the random values
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction
const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values
const NOISE_DATATYPE * a_FracY, ///< Pointer to the attay that stores the Y fractional values
const NOISE_DATATYPE * a_FracZ ///< Pointer to the array that stores the Z fractional values
);
/** Uses current m_WorkRnds[] to generate part of the array */
void Generate(
int a_FromX, int a_ToX,
int a_FromY, int a_ToY,
int a_FromZ, int a_ToZ
);
/** Initializes m_WorkRnds[] with the specified Floor values */
void InitWorkRnds(int a_FloorX, int a_FloorY, int a_FloorZ);
/** Updates m_WorkRnds[] for the new Floor values. */
void Move(int a_NewFloorX, int a_NewFloorY, int a_NewFloorZ);
protected:
typedef NOISE_DATATYPE Workspace[4][4][4];
const cNoise & m_Noise;
Workspace * m_WorkRnds; ///< The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering)
Workspace m_Workspace1; ///< Buffer 1 for workspace doublebuffering, used in Move()
Workspace m_Workspace2; ///< Buffer 2 for workspace doublebuffering, used in Move()
int m_CurFloorX;
int m_CurFloorY;
int m_CurFloorZ;
NOISE_DATATYPE * m_Array;
int m_SizeX, m_SizeY, m_SizeZ;
const NOISE_DATATYPE * m_FracX;
const NOISE_DATATYPE * m_FracY;
const NOISE_DATATYPE * m_FracZ;
} ;
cCubicCell3D::cCubicCell3D(
const cNoise & a_Noise, ///< Noise to use for generating the random values
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction
const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values
const NOISE_DATATYPE * a_FracY, ///< Pointer to the attay that stores the Y fractional values
const NOISE_DATATYPE * a_FracZ ///< Pointer to the array that stores the Z fractional values
) :
m_Noise(a_Noise),
m_WorkRnds(&m_Workspace1),
m_CurFloorX(0),
m_CurFloorY(0),
m_CurFloorZ(0),
m_Array(a_Array),
m_SizeX(a_SizeX),
m_SizeY(a_SizeY),
m_SizeZ(a_SizeZ),
m_FracX(a_FracX),
m_FracY(a_FracY),
m_FracZ(a_FracZ)
{
}
void cCubicCell3D::Generate(
int a_FromX, int a_ToX,
int a_FromY, int a_ToY,
int a_FromZ, int a_ToZ
)
{
for (int z = a_FromZ; z < a_ToZ; z++)
{
int idxZ = z * m_SizeX * m_SizeY;
NOISE_DATATYPE Interp2[4][4];
NOISE_DATATYPE FracZ = m_FracZ[z];
for (int x = 0; x < 4; x++)
{
for (int y = 0; y < 4; y++)
{
Interp2[x][y] = cNoise::CubicInterpolate((*m_WorkRnds)[x][y][0], (*m_WorkRnds)[x][y][1], (*m_WorkRnds)[x][y][2], (*m_WorkRnds)[x][y][3], FracZ);
}
}
for (int y = a_FromY; y < a_ToY; y++)
{
NOISE_DATATYPE Interp[4];
NOISE_DATATYPE FracY = m_FracY[y];
Interp[0] = cNoise::CubicInterpolate(Interp2[0][0], Interp2[0][1], Interp2[0][2], Interp2[0][3], FracY);
Interp[1] = cNoise::CubicInterpolate(Interp2[1][0], Interp2[1][1], Interp2[1][2], Interp2[1][3], FracY);
Interp[2] = cNoise::CubicInterpolate(Interp2[2][0], Interp2[2][1], Interp2[2][2], Interp2[2][3], FracY);
Interp[3] = cNoise::CubicInterpolate(Interp2[3][0], Interp2[3][1], Interp2[3][2], Interp2[3][3], FracY);
int idx = idxZ + y * m_SizeX + a_FromX;
for (int x = a_FromX; x < a_ToX; x++)
{
m_Array[idx++] = cNoise::CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]);
} // for x
} // for y
} // for z
}
void cCubicCell3D::InitWorkRnds(int a_FloorX, int a_FloorY, int a_FloorZ)
{
m_CurFloorX = a_FloorX;
m_CurFloorY = a_FloorY;
m_CurFloorZ = a_FloorZ;
for (int x = 0; x < 4; x++)
{
int cx = a_FloorX + x - 1;
for (int y = 0; y < 4; y++)
{
int cy = a_FloorY + y - 1;
for (int z = 0; z < 4; z++)
{
int cz = a_FloorZ + z - 1;
(*m_WorkRnds)[x][y][z] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(cx, cy, cz));
}
}
}
}
void cCubicCell3D::Move(int a_NewFloorX, int a_NewFloorY, int a_NewFloorZ)
{
// Swap the doublebuffer:
int OldFloorX = m_CurFloorX;
int OldFloorY = m_CurFloorY;
int OldFloorZ = m_CurFloorZ;
Workspace * OldWorkRnds = m_WorkRnds;
m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1;
// Reuse as much of the old workspace as possible:
int DiffX = OldFloorX - a_NewFloorX;
int DiffY = OldFloorY - a_NewFloorY;
int DiffZ = OldFloorZ - a_NewFloorZ;
for (int x = 0; x < 4; x++)
{
int cx = a_NewFloorX + x - 1;
int OldX = x - DiffX; // Where would this X be in the old grid?
for (int y = 0; y < 4; y++)
{
int cy = a_NewFloorY + y - 1;
int OldY = y - DiffY; // Where would this Y be in the old grid?
for (int z = 0; z < 4; z++)
{
int cz = a_NewFloorZ + z - 1;
int OldZ = z - DiffZ;
if ((OldX >= 0) && (OldX < 4) && (OldY >= 0) && (OldY < 4) && (OldZ >= 0) && (OldZ < 4))
{
(*m_WorkRnds)[x][y][z] = (*OldWorkRnds)[OldX][OldY][OldZ];
}
else
{
(*m_WorkRnds)[x][y][z] = static_cast<NOISE_DATATYPE>(m_Noise.IntNoise3D(cx, cy, cz));
}
} // for z
} // for y
} // for x
m_CurFloorX = a_NewFloorX;
m_CurFloorY = a_NewFloorY;
m_CurFloorZ = a_NewFloorZ;
}
////////////////////////////////////////////////////////////////////////////////
// cNoise:
cNoise::cNoise(int a_Seed) :
m_Seed(a_Seed)
{
}
cNoise::cNoise(const cNoise & a_Noise) :
m_Seed(a_Noise.m_Seed)
{
}
NOISE_DATATYPE cNoise::LinearNoise1D(NOISE_DATATYPE a_X) const
{
int BaseX = FAST_FLOOR(a_X);
NOISE_DATATYPE FracX = a_X - BaseX;
return LinearInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX);
}
NOISE_DATATYPE cNoise::CosineNoise1D(NOISE_DATATYPE a_X) const
{
int BaseX = FAST_FLOOR(a_X);
NOISE_DATATYPE FracX = a_X - BaseX;
return CosineInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX);
}
NOISE_DATATYPE cNoise::CubicNoise1D(NOISE_DATATYPE a_X) const
{
int BaseX = FAST_FLOOR(a_X);
NOISE_DATATYPE FracX = a_X - BaseX;
return CubicInterpolate(IntNoise1D(BaseX - 1), IntNoise1D(BaseX), IntNoise1D(BaseX + 1), IntNoise1D(BaseX + 2), FracX);
}
NOISE_DATATYPE cNoise::SmoothNoise1D(int a_X) const
{
return IntNoise1D(a_X) / 2 + IntNoise1D(a_X - 1) / 4 + IntNoise1D(a_X + 1) / 4;
}
NOISE_DATATYPE cNoise::CubicNoise2D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y) const
{
const int BaseX = FAST_FLOOR(a_X);
const int BaseY = FAST_FLOOR(a_Y);
const NOISE_DATATYPE points[4][4] =
{
{ IntNoise2D(BaseX - 1, BaseY - 1), IntNoise2D(BaseX, BaseY - 1), IntNoise2D(BaseX + 1, BaseY - 1), IntNoise2D(BaseX + 2, BaseY - 1), },
{ IntNoise2D(BaseX - 1, BaseY), IntNoise2D(BaseX, BaseY), IntNoise2D(BaseX + 1, BaseY), IntNoise2D(BaseX + 2, BaseY), },
{ IntNoise2D(BaseX - 1, BaseY + 1), IntNoise2D(BaseX, BaseY + 1), IntNoise2D(BaseX + 1, BaseY + 1), IntNoise2D(BaseX + 2, BaseY + 1), },
{ IntNoise2D(BaseX - 1, BaseY + 2), IntNoise2D(BaseX, BaseY + 2), IntNoise2D(BaseX + 1, BaseY + 2), IntNoise2D(BaseX + 2, BaseY + 2), },
};
const NOISE_DATATYPE FracX = a_X - BaseX;
const NOISE_DATATYPE interp1 = CubicInterpolate(points[0][0], points[0][1], points[0][2], points[0][3], FracX);
const NOISE_DATATYPE interp2 = CubicInterpolate(points[1][0], points[1][1], points[1][2], points[1][3], FracX);
const NOISE_DATATYPE interp3 = CubicInterpolate(points[2][0], points[2][1], points[2][2], points[2][3], FracX);
const NOISE_DATATYPE interp4 = CubicInterpolate(points[3][0], points[3][1], points[3][2], points[3][3], FracX);
const NOISE_DATATYPE FracY = a_Y - BaseY;
return CubicInterpolate(interp1, interp2, interp3, interp4, FracY);
}
NOISE_DATATYPE cNoise::CubicNoise3D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z) const
{
const int BaseX = FAST_FLOOR(a_X);
const int BaseY = FAST_FLOOR(a_Y);
const int BaseZ = FAST_FLOOR(a_Z);
const NOISE_DATATYPE points1[4][4] =
{
{ IntNoise3D(BaseX - 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ - 1), },
{ IntNoise3D(BaseX - 1, BaseY, BaseZ - 1), IntNoise3D(BaseX, BaseY, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY, BaseZ - 1), },
{ IntNoise3D(BaseX - 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ - 1), },
{ IntNoise3D(BaseX - 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ - 1), },
};
const NOISE_DATATYPE FracX = (a_X) - BaseX;
const NOISE_DATATYPE x1interp1 = CubicInterpolate(points1[0][0], points1[0][1], points1[0][2], points1[0][3], FracX);
const NOISE_DATATYPE x1interp2 = CubicInterpolate(points1[1][0], points1[1][1], points1[1][2], points1[1][3], FracX);
const NOISE_DATATYPE x1interp3 = CubicInterpolate(points1[2][0], points1[2][1], points1[2][2], points1[2][3], FracX);
const NOISE_DATATYPE x1interp4 = CubicInterpolate(points1[3][0], points1[3][1], points1[3][2], points1[3][3], FracX);
const NOISE_DATATYPE points2[4][4] =
{
{ IntNoise3D(BaseX - 1, BaseY - 1, BaseZ), IntNoise3D(BaseX, BaseY - 1, BaseZ), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ), },
{ IntNoise3D(BaseX - 1, BaseY, BaseZ), IntNoise3D(BaseX, BaseY, BaseZ), IntNoise3D(BaseX + 1, BaseY, BaseZ), IntNoise3D(BaseX + 2, BaseY, BaseZ), },
{ IntNoise3D(BaseX - 1, BaseY + 1, BaseZ), IntNoise3D(BaseX, BaseY + 1, BaseZ), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ), },
{ IntNoise3D(BaseX - 1, BaseY + 2, BaseZ), IntNoise3D(BaseX, BaseY + 2, BaseZ), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ), },
};
const NOISE_DATATYPE x2interp1 = CubicInterpolate(points2[0][0], points2[0][1], points2[0][2], points2[0][3], FracX);
const NOISE_DATATYPE x2interp2 = CubicInterpolate(points2[1][0], points2[1][1], points2[1][2], points2[1][3], FracX);
const NOISE_DATATYPE x2interp3 = CubicInterpolate(points2[2][0], points2[2][1], points2[2][2], points2[2][3], FracX);
const NOISE_DATATYPE x2interp4 = CubicInterpolate(points2[3][0], points2[3][1], points2[3][2], points2[3][3], FracX);
const NOISE_DATATYPE points3[4][4] =
{
{ IntNoise3D(BaseX - 1, BaseY - 1, BaseZ + 1), IntNoise3D(BaseX, BaseY - 1, BaseZ + 1), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ + 1), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ + 1), },
{ IntNoise3D(BaseX - 1, BaseY, BaseZ + 1), IntNoise3D(BaseX, BaseY, BaseZ + 1), IntNoise3D(BaseX + 1, BaseY, BaseZ + 1), IntNoise3D(BaseX + 2, BaseY, BaseZ + 1), },
{ IntNoise3D(BaseX - 1, BaseY + 1, BaseZ + 1), IntNoise3D(BaseX, BaseY + 1, BaseZ + 1), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ + 1), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ + 1), },
{ IntNoise3D(BaseX - 1, BaseY + 2, BaseZ + 1), IntNoise3D(BaseX, BaseY + 2, BaseZ + 1), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ + 1), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ + 1), },
};
const NOISE_DATATYPE x3interp1 = CubicInterpolate(points3[0][0], points3[0][1], points3[0][2], points3[0][3], FracX);
const NOISE_DATATYPE x3interp2 = CubicInterpolate(points3[1][0], points3[1][1], points3[1][2], points3[1][3], FracX);
const NOISE_DATATYPE x3interp3 = CubicInterpolate(points3[2][0], points3[2][1], points3[2][2], points3[2][3], FracX);
const NOISE_DATATYPE x3interp4 = CubicInterpolate(points3[3][0], points3[3][1], points3[3][2], points3[3][3], FracX);
const NOISE_DATATYPE points4[4][4] =
{
{ IntNoise3D(BaseX - 1, BaseY - 1, BaseZ + 2), IntNoise3D(BaseX, BaseY - 1, BaseZ + 2), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ + 2), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ + 2), },
{ IntNoise3D(BaseX - 1, BaseY, BaseZ + 2), IntNoise3D(BaseX, BaseY, BaseZ + 2), IntNoise3D(BaseX + 1, BaseY, BaseZ + 2), IntNoise3D(BaseX + 2, BaseY, BaseZ + 2), },
{ IntNoise3D(BaseX - 1, BaseY + 1, BaseZ + 2), IntNoise3D(BaseX, BaseY + 1, BaseZ + 2), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ + 2), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ + 2), },
{ IntNoise3D(BaseX - 1, BaseY + 2, BaseZ + 2), IntNoise3D(BaseX, BaseY + 2, BaseZ + 2), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ + 2), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ + 2), },
};
const NOISE_DATATYPE x4interp1 = CubicInterpolate(points4[0][0], points4[0][1], points4[0][2], points4[0][3], FracX);
const NOISE_DATATYPE x4interp2 = CubicInterpolate(points4[1][0], points4[1][1], points4[1][2], points4[1][3], FracX);
const NOISE_DATATYPE x4interp3 = CubicInterpolate(points4[2][0], points4[2][1], points4[2][2], points4[2][3], FracX);
const NOISE_DATATYPE x4interp4 = CubicInterpolate(points4[3][0], points4[3][1], points4[3][2], points4[3][3], FracX);
const NOISE_DATATYPE FracY = (a_Y) - BaseY;
const NOISE_DATATYPE yinterp1 = CubicInterpolate(x1interp1, x1interp2, x1interp3, x1interp4, FracY);
const NOISE_DATATYPE yinterp2 = CubicInterpolate(x2interp1, x2interp2, x2interp3, x2interp4, FracY);
const NOISE_DATATYPE yinterp3 = CubicInterpolate(x3interp1, x3interp2, x3interp3, x3interp4, FracY);
const NOISE_DATATYPE yinterp4 = CubicInterpolate(x4interp1, x4interp2, x4interp3, x4interp4, FracY);
const NOISE_DATATYPE FracZ = (a_Z) - BaseZ;
return CubicInterpolate(yinterp1, yinterp2, yinterp3, yinterp4, FracZ);
}
////////////////////////////////////////////////////////////////////////////////
// cCubicNoise:
cCubicNoise::cCubicNoise(int a_Seed) :
m_Noise(a_Seed)
{
}
void cCubicNoise::Generate2D(
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, ///< Size of the array (num doubles), in each direction
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY ///< Noise-space coords of the array in the Y direction
) const
{
ASSERT(a_SizeX > 0);
ASSERT(a_SizeY > 0);
ASSERT(a_SizeX < MAX_SIZE);
ASSERT(a_SizeY < MAX_SIZE);
ASSERT(a_StartX < a_EndX);
ASSERT(a_StartY < a_EndY);
// Calculate the integral and fractional parts of each coord:
int FloorX[MAX_SIZE];
int FloorY[MAX_SIZE];
NOISE_DATATYPE FracX[MAX_SIZE];
NOISE_DATATYPE FracY[MAX_SIZE];
int SameX[MAX_SIZE];
int SameY[MAX_SIZE];
int NumSameX, NumSameY;
CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX);
CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY);
cCubicCell2D Cell(m_Noise, a_Array, a_SizeX, a_SizeY, FracX, FracY);
Cell.InitWorkRnds(FloorX[0], FloorY[0]);
// Calculate query values using Cell:
int FromY = 0;
for (int y = 0; y < NumSameY; y++)
{
int ToY = FromY + SameY[y];
int FromX = 0;
int CurFloorY = FloorY[FromY];
for (int x = 0; x < NumSameX; x++)
{
int ToX = FromX + SameX[x];
Cell.Generate(FromX, ToX, FromY, ToY);
Cell.Move(FloorX[ToX], CurFloorY);
FromX = ToX;
}
Cell.Move(FloorX[0], FloorY[ToY]);
FromY = ToY;
}
}
void cCubicNoise::Generate3D(
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Size of the array (num doubles), in each direction
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction
NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ ///< Noise-space coords of the array in the Y direction
) const
{
ASSERT(a_SizeX < MAX_SIZE);
ASSERT(a_SizeY < MAX_SIZE);
ASSERT(a_SizeZ < MAX_SIZE);
ASSERT(a_StartX < a_EndX);
ASSERT(a_StartY < a_EndY);
ASSERT(a_StartZ < a_EndZ);
// Calculate the integral and fractional parts of each coord:
int FloorX[MAX_SIZE];
int FloorY[MAX_SIZE];
int FloorZ[MAX_SIZE];
NOISE_DATATYPE FracX[MAX_SIZE];
NOISE_DATATYPE FracY[MAX_SIZE];
NOISE_DATATYPE FracZ[MAX_SIZE];
int SameX[MAX_SIZE];
int SameY[MAX_SIZE];
int SameZ[MAX_SIZE];
int NumSameX, NumSameY, NumSameZ;
CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX);
CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY);
CalcFloorFrac(a_SizeZ, a_StartZ, a_EndZ, FloorZ, FracZ, SameZ, NumSameZ);
cCubicCell3D Cell(
m_Noise, a_Array,
a_SizeX, a_SizeY, a_SizeZ,
FracX, FracY, FracZ
);
Cell.InitWorkRnds(FloorX[0], FloorY[0], FloorZ[0]);
// Calculate query values using Cell:
int FromZ = 0;
for (int z = 0; z < NumSameZ; z++)
{
int ToZ = FromZ + SameZ[z];
int CurFloorZ = FloorZ[FromZ];
int FromY = 0;
for (int y = 0; y < NumSameY; y++)
{
int ToY = FromY + SameY[y];
int CurFloorY = FloorY[FromY];
int FromX = 0;
for (int x = 0; x < NumSameX; x++)
{
int ToX = FromX + SameX[x];
Cell.Generate(FromX, ToX, FromY, ToY, FromZ, ToZ);
Cell.Move(FloorX[ToX], CurFloorY, CurFloorZ);
FromX = ToX;
}
Cell.Move(FloorX[0], FloorY[ToY], CurFloorZ);
FromY = ToY;
} // for y
Cell.Move(FloorX[0], FloorY[0], FloorZ[ToZ]);
FromZ = ToZ;
} // for z
}
void cCubicNoise::CalcFloorFrac(
int a_Size,
NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End,
int * a_Floor, NOISE_DATATYPE * a_Frac,
int * a_Same, int & a_NumSame
) const
{
ASSERT(a_Size > 0);
NOISE_DATATYPE val = a_Start;
NOISE_DATATYPE dif = (a_End - a_Start) / (a_Size - 1);
for (int i = 0; i < a_Size; i++)
{
a_Floor[i] = FAST_FLOOR(val);
a_Frac[i] = val - a_Floor[i];
val += dif;
}
// Mark up the same floor values into a_Same / a_NumSame:
int CurFloor = a_Floor[0];
int LastSame = 0;
a_NumSame = 0;
for (int i = 1; i < a_Size; i++)
{
if (a_Floor[i] != CurFloor)
{
a_Same[a_NumSame] = i - LastSame;
LastSame = i;
a_NumSame += 1;
CurFloor = a_Floor[i];
}
} // for i - a_Floor[]
if (LastSame < a_Size)
{
a_Same[a_NumSame] = a_Size - LastSame;
a_NumSame += 1;
}
}
////////////////////////////////////////////////////////////////////////////////
// cImprovedNoise:
cImprovedNoise::cImprovedNoise(int a_Seed)
{
// Initialize the permutations with identity:
for (int i = 0; i < 256; i++)
{
m_Perm[i] = i;
}
// Randomize the permutation table - swap each element with a random other element:
cNoise noise(a_Seed);
for (int i = 0; i < 256; i++)
{
int rnd = (noise.IntNoise1DInt(i) / 7) % 256;
std::swap(m_Perm[i], m_Perm[rnd]);
}
// Copy the lower 256 entries into upper 256 entries:
for (int i = 0; i < 256; i++)
{
m_Perm[i + 256] = m_Perm[i];
}
}
void cImprovedNoise::Generate2D(
NOISE_DATATYPE * a_Array,
int a_SizeX, int a_SizeY,
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX,
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY
) const
{
size_t idx = 0;
for (int y = 0; y < a_SizeY; y++)
{
NOISE_DATATYPE ratioY = static_cast<NOISE_DATATYPE>(y) / (a_SizeY - 1);
NOISE_DATATYPE noiseY = Lerp(a_StartY, a_EndY, ratioY);
int noiseYInt = FAST_FLOOR(noiseY);
int yCoord = noiseYInt & 255;
NOISE_DATATYPE noiseYFrac = noiseY - noiseYInt;
NOISE_DATATYPE fadeY = Fade(noiseYFrac);
for (int x = 0; x < a_SizeX; x++)
{
NOISE_DATATYPE ratioX = static_cast<NOISE_DATATYPE>(x) / (a_SizeX - 1);
NOISE_DATATYPE noiseX = Lerp(a_StartX, a_EndX, ratioX);
int noiseXInt = FAST_FLOOR(noiseX);
int xCoord = noiseXInt & 255;
NOISE_DATATYPE noiseXFrac = noiseX - noiseXInt;
NOISE_DATATYPE fadeX = Fade(noiseXFrac);
// Hash the coordinates:
int A = m_Perm[xCoord] + yCoord;
int AA = m_Perm[A];
int AB = m_Perm[A + 1];
int B = m_Perm[xCoord + 1] + yCoord;
int BA = m_Perm[B];
int BB = m_Perm[B + 1];
// Lerp the gradients:
a_Array[idx++] = Lerp(
Lerp(Grad(m_Perm[AA], noiseXFrac, noiseYFrac, 0), Grad(m_Perm[BA], noiseXFrac - 1, noiseYFrac, 0), fadeX),
Lerp(Grad(m_Perm[AB], noiseXFrac, noiseYFrac - 1, 0), Grad(m_Perm[BB], noiseXFrac - 1, noiseYFrac - 1, 0), fadeX),
fadeY
);
} // for x
} // for y
}
void cImprovedNoise::Generate3D(
NOISE_DATATYPE * a_Array,
int a_SizeX, int a_SizeY, int a_SizeZ,
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX,
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY,
NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ
) const
{
size_t idx = 0;
for (int z = 0; z < a_SizeZ; z++)
{
NOISE_DATATYPE ratioZ = static_cast<NOISE_DATATYPE>(z) / (a_SizeZ - 1);
NOISE_DATATYPE noiseZ = Lerp(a_StartZ, a_EndZ, ratioZ);
int noiseZInt = FAST_FLOOR(noiseZ);
int zCoord = noiseZInt & 255;
NOISE_DATATYPE noiseZFrac = noiseZ - noiseZInt;
NOISE_DATATYPE fadeZ = Fade(noiseZFrac);
for (int y = 0; y < a_SizeY; y++)
{
NOISE_DATATYPE ratioY = static_cast<NOISE_DATATYPE>(y) / (a_SizeY - 1);
NOISE_DATATYPE noiseY = Lerp(a_StartY, a_EndY, ratioY);
int noiseYInt = FAST_FLOOR(noiseY);
int yCoord = noiseYInt & 255;
NOISE_DATATYPE noiseYFrac = noiseY - noiseYInt;
NOISE_DATATYPE fadeY = Fade(noiseYFrac);
for (int x = 0; x < a_SizeX; x++)
{
NOISE_DATATYPE ratioX = static_cast<NOISE_DATATYPE>(x) / (a_SizeX - 1);
NOISE_DATATYPE noiseX = Lerp(a_StartX, a_EndX, ratioX);
int noiseXInt = FAST_FLOOR(noiseX);
int xCoord = noiseXInt & 255;
NOISE_DATATYPE noiseXFrac = noiseX - noiseXInt;
NOISE_DATATYPE fadeX = Fade(noiseXFrac);
// Hash the coordinates:
int A = m_Perm[xCoord] + yCoord;
int AA = m_Perm[A] + zCoord;
int AB = m_Perm[A + 1] + zCoord;
int B = m_Perm[xCoord + 1] + yCoord;
int BA = m_Perm[B] + zCoord;
int BB = m_Perm[B + 1] + zCoord;
// Lerp the gradients:
// TODO: This may be optimized by swapping the coords and recalculating most lerps only "once every x"
a_Array[idx++] = Lerp(
Lerp(
Lerp(Grad(m_Perm[AA], noiseXFrac, noiseYFrac, noiseZFrac), Grad(m_Perm[BA], noiseXFrac - 1, noiseYFrac, noiseZFrac), fadeX),
Lerp(Grad(m_Perm[AB], noiseXFrac, noiseYFrac - 1, noiseZFrac), Grad(m_Perm[BB], noiseXFrac - 1, noiseYFrac - 1, noiseZFrac), fadeX),
fadeY
),
Lerp(
Lerp(Grad(m_Perm[AA + 1], noiseXFrac, noiseYFrac, noiseZFrac - 1), Grad(m_Perm[BA + 1], noiseXFrac - 1, noiseYFrac, noiseZFrac - 1), fadeX),
Lerp(Grad(m_Perm[AB + 1], noiseXFrac, noiseYFrac - 1, noiseZFrac - 1), Grad(m_Perm[BB + 1], noiseXFrac - 1, noiseYFrac - 1, noiseZFrac - 1), fadeX),
fadeY
),
fadeZ
);
} // for x
} // for y
} // for z
}
NOISE_DATATYPE cImprovedNoise::GetValueAt(int a_X, int a_Y, int a_Z)
{
// Hash the coordinates:
a_X = a_X & 255;
a_Y = a_Y & 255;
a_Z = a_Z & 255;
int A = m_Perm[a_X] + a_Y;
int AA = m_Perm[A] + a_Z;
return Grad(m_Perm[AA], 1, 1, 1);
}