summaryrefslogtreecommitdiffstats
path: root/private/os2/client/vdmredir.h
blob: 66088ea28be8f8122db8b798f24a55936ab41907 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*++

Copyright (c) 1991  Microsoft Corporation

Module Name:

    vdmredir.h

Abstract:

    Contains common defines, structures, macros, etc. for VdmRedir. This file
    contains macros to read and write the 3 basic data structures from/to VDM
    memory. We *must* use these macros because the MIPS processor does not like
    unaligned data: a DWORD must be read/written on a DWORD boundary (low two
    bits in address = 00), a WORD must be read/written on a WORD boundary (low
    two bits in address = X0) and a BYTE can be read/written to any address (low
    two bits in address = XX). It is illegal to access a WORD at an address
    whose LSB is not 0, and a DWORD at an address whose 2 least significant bits
    are not both 0. Dos programs don't care much about alignment (smart ones do
    because there is a performance penalty for unaligned data on x86, but it
    still works). So we have to assume the worst case for MIPS and break down
    the read/writes of WORDs and DWORDs in VDM memory into BYTE read/writes

    In order to improve efficiency of load/store to potentially unaligned
    addresses, the following data pointer types are made available from this
    include file:

        ULPBYTE     - unaligned byte pointer (same as LPBYTE)
        ULPWORD     - unaligned word pointer
        ULPDWORD    - unaligned dword pointer

    NB. Dependent upon mvdm.h

Author:

    Richard L Firth (rfirth) 16-Sep-1991

Revision History:

    16-Sep-1991 rfirth
        Created

--*/

#ifndef _VDMREDIR_
#define _VDMREDIR_

#include <os2tile.h>  // nirm

//#include <softpc.h>

//
// PRIVATE - make a routine/data type inaccessible outside current module, but
// only if not DEBUG version
//

#if DBG
#define PRIVATE
#else
#define PRIVATE static
#endif

//
// unaligned data pointer types. These produce exactly the same code as memory
// accesses through 'aligned' pointers on x86, but generate code specific to
// unaligned read/writes on MIPS (& other RISCs)
//

#ifdef UNALIGNED_VDM_POINTERS
typedef BYTE UNALIGNED * ULPBYTE;
typedef WORD UNALIGNED * ULPWORD;
typedef DWORD UNALIGNED * ULPDWORD;
#else
typedef LPBYTE ULPBYTE;
typedef LPWORD ULPWORD;
typedef LPDWORD ULPDWORD;
#endif

//
// misc. defines
//

#define BITS_IN_A_BYTE      8
#define LOCAL_DEVICE_PREFIX "\\\\."

//
//  Define network interrupt to be on Irql 14.
//  If NETWORK_ICA changes to ICA_MASTER then vrnetb.c should only execute 1 eoi
//  If either change then NETWORK_INTERRUPT in int5c.inc must also change.
//

#define NETWORK_ICA     ICA_SLAVE
#define NETWORK_LINE    6

//
// helper macros
//

//
// MAKE_DWORD - converts 2 16-bit words into a 32-bit double word
//
#define MAKE_DWORD(h, l)                ((DWORD)(((DWORD)((WORD)(h)) << 16) | (DWORD)((WORD)(l))))

//
// DWORD_FROM_WORDS - converts two 16-bit words into a 32-bit dword
//
#define DWORD_FROM_WORDS(h, l)          MAKE_DWORD((h), (l))

//
// HANDLE_FROM_WORDS - converts a pair of 16-bit words into a 32-bit handle
//
#define HANDLE_FROM_WORDS(h, l)         ((HANDLE)(MAKE_DWORD((h), (l))))

//
// POINTER_FROM_WORDS - returns a flat 32-bit VOID pointer (in the VDM) OR the
// NULL macro, given the 16-bit real-mode segment & offset. On x86 this will
// return 0 if we pass in 0:0 because all GetVDMAddr does is seg << 4 + off.
// The MIPS version adds this to the start of the virtual DOS memory. The
// problem arises when we have a NULL pointer, and want to keep it NULL - we
// convert it to non-NULL on not x86
//
//#define POINTER_FROM_WORDS(seg, off)    ((LPVOID)GetVDMAddr((seg), (off)))
//#define POINTER_FROM_WORDS(seg, off)    (((((DWORD)(seg)) << 16) | (off)) ? ((LPVOID)GetVDMAddr((seg), (off))) : ((LPVOID)0))

#define POINTER_FROM_WORDS(seg, off)    _inlinePointerFromWords((WORD)(seg), (WORD)(off))

//
// LPSTR_FROM_WORDS - returns a 32-bit pointer to an ASCIZ string given the
// 16-bit real-mode segment & offset
//
#define LPSTR_FROM_WORDS(seg, off)      ((LPSTR)POINTER_FROM_WORDS((seg), (off)))

//
// LPBYTE_FROM_WORDS - returns a 32-bit byte pointer given the 16-bit
// real-mode segment & offset
//
#define LPBYTE_FROM_WORDS(seg, off)     ((LPBYTE)POINTER_FROM_WORDS((seg), (off)))

//
// READ_FAR_POINTER - read the pair of words in VDM memory, currently pointed at
// by a 32-bit flat pointer and convert them to a 32-bit flat pointer
//
#define READ_FAR_POINTER(addr)          ((LPVOID)(POINTER_FROM_WORDS(GET_SELECTOR(addr), GET_OFFSET(addr))))

//
// READ_BYTE - retrieve a single byte from VDM memory. Both x86 and MIPS can
// handle reading a single byte without pain
//
#define READ_BYTE(addr)                 (*((LPBYTE)(addr)))

//
// READ_WORD - read a single 16-bit little-endian word from VDM memory. x86 can
// handle unaligned data, MIPS (&other RISCs) must be broken down into individual
// BYTE reads & the WORD pieced together by shifting & oring. If we are using
// UNALIGNED pointers then the RISC processor can handle non-aligned data
//
#ifdef i386
#define READ_WORD(addr)                 (*((LPWORD)(addr)))
#else
#ifdef UNALIGNED_VDM_POINTERS
#define READ_WORD(addr)                 (*((ULPWORD)(addr)))
#else
#define READ_WORD(addr)                 (((WORD)READ_BYTE(addr)) | (((WORD)READ_BYTE((LPBYTE)(addr)+1)) << 8))
#endif  // UNALIGNED_VDM_POINTERS
#endif  // i386

//
// READ_DWORD - read a 4-byte little-endian double word from VDM memory. x86 can
// handle unaligned data, MIPS (&other RISCs) must be broken down into individual
// BYTE reads & the DWORD pieced together by shifting & oring. If we are using
// UNALIGNED pointers then the RISC processor can handle non-aligned data
//
#ifdef i386
#define READ_DWORD(addr)                (*((LPDWORD)(addr)))
#else
#ifdef UNALIGNED_VDM_POINTERS
#define READ_DWORD(addr)                (*((ULPDWORD)(addr)))
#else
#define READ_DWORD(addr)                (((DWORD)READ_WORD(addr)) | (((DWORD)READ_WORD((LPWORD)(addr)+1)) << 16))
#endif  // UNALIGNED_VDM_POINTERS
#endif  // i386

//
// WRITE_BYTE - write a single byte in VDM memory. Both x86 and MIPS (RISC) can
// write a single byte to a non-aligned address
//
#define WRITE_BYTE(addr, value) (*(LPBYTE)(addr) = (BYTE)(value))

//
// WRITE_WORD - write a 16-bit little-endian value into VDM memory. x86 can write
// WORD data to non-word-aligned address; MIPS (& other RISCs) cannot, so we
// break down the write into 2 byte writes. If we are using UNALIGNED pointers
// then the MIPS (&other RISCs) can generate code to handle this situation
//
#ifdef i386
#define WRITE_WORD(addr, value)         (*((LPWORD)(addr)) = (WORD)(value))
#else
#ifdef UNALIGNED_VDM_POINTERS
#define WRITE_WORD(addr, value)         (*((ULPWORD)(addr)) = (WORD)(value))
#else
#define WRITE_WORD(addr, value) \
            {\
                ((LPBYTE)(addr))[0] = LOBYTE(value); \
                ((LPBYTE)(addr))[1] = HIBYTE(value); \
            }
#endif  // UNALIGNED_VDM_POINTERS
#endif  // i386

//
// WRITE_DWORD - write a 32-bit DWORD value into VDM memory. x86 can write
// DWORD data to non-dword-aligned address; MIPS (& other RISCs) cannot, so we
// break down the write into 4 byte writes. If we are using UNALIGNED pointers
// then the MIPS (&other RISCs) can generate code to handle this situation
//
#ifdef i386
#define WRITE_DWORD(addr, value)        (*((LPDWORD)(addr)) = (DWORD)(value))
#else
#ifdef UNALIGNED_VDM_POINTERS
#define WRITE_DWORD(addr, value)        (*((ULPDWORD)(addr)) = (DWORD)(value))
#else
#define WRITE_DWORD(addr, value) \
            { \
                ((LPBYTE)(addr))[0] = LOBYTE(LOWORD((DWORD)(value))); \
                ((LPBYTE)(addr))[1] = HIBYTE(LOWORD((DWORD)(value))); \
                ((LPBYTE)(addr))[2] = LOBYTE(HIWORD((DWORD)(value))); \
                ((LPBYTE)(addr))[3] = HIBYTE(HIWORD((DWORD)(value))); \
            }
#endif  // UNALIGNED_VDM_POINTERS
#endif  // i386

//
// WRITE_FAR_POINTER - write a 16:16 pointer into VDM memory. This is the same
// as writing a DWORD
//
#define WRITE_FAR_POINTER(addr, ptr)    WRITE_DWORD((addr), (DWORD)(ptr))

//
// GET_SELECTOR - retrieves the selector word from the intel 32-bit far pointer
// (DWORD) pointed at by <pointer> (remember: stored as offset, segment)
//
#define GET_SELECTOR(pointer)           READ_WORD((LPWORD)(pointer)+1)

//
// GET_SEGMENT - same as GET_SELECTOR
//
#define GET_SEGMENT(pointer)            GET_SELECTOR(pointer)

//
// GET_OFFSET - retrieves the offset word from an intel 32-bit far pointer
// (DWORD) pointed at by <pointer> (remember: stored as offset, segment)
//
#define GET_OFFSET(pointer)             READ_WORD((LPWORD)(pointer))

//
// SET_SELECTOR - writes a word into the segment word of a real-mode far pointer
// (DWORD) pointed at by <pointer> (remember: stored as offset, segment)
//
#define SET_SELECTOR(pointer, word)     WRITE_WORD(((LPWORD)(pointer)+1), (word))

//
// SET_SEGMENT - same as SET_SELECTOR
//
#define SET_SEGMENT(pointer, word)      SET_SELECTOR(pointer, word)

//
// SET_OFFSET - writes a word into the offset word of a real-mode far pointer
// (DWORD) pointed at by <pointer> (remember: stored as offset, segment)
//
#define SET_OFFSET(pointer, word)       WRITE_WORD((LPWORD)(pointer), (word))

//
// POINTER_FROM_POINTER - read a segmented pointer in the VDM from an address
// pointed at by a flat 32-bit pointer. Convert the segmented pointer to a
// flat pointer. SAME AS READ_FAR_POINTER
//
#define POINTER_FROM_POINTER(pointer)   POINTER_FROM_WORDS(GET_SELECTOR(pointer), GET_OFFSET(pointer))

//
// LPSTR_FROM_POINTER - perform a POINTER_FROM_POINTER, casting the result to
// a string pointer. SAME AS READ_FAR_POINTER
//
#define LPSTR_FROM_POINTER(pointer)     ((LPSTR)POINTER_FROM_POINTER(pointer))

//
// LPBYTE_FROM_POINTER - perform a POINTER_FROM_POINTER, casting the result to
// a byte pointer. SAME AS READ_FAR_POINTER
//
#define LPBYTE_FROM_POINTER(pointer)    ((LPBYTE)POINTER_FROM_POINTER(pointer))

//
// SET_ERROR - sets the caller's AX register in the VDM context descriptor to
// the value given and sets the caller's VDM carry flag
//
#define SET_ERROR(err)                  {setAX(err); setCF(1);}

//
// SET_SUCCESS - sets the VDM caller's AX register to NERR_Success and clears
// the carry flag
//
#define SET_SUCCESS()                   {setAX(NERR_Success); setCF(0);}

//
// SET_OK - an explicit version of SET_SUCCESS wherein NERR_Success would be
// an inappropriate error, although the right value
//
#define SET_OK(value)                   {setAX(value); setCF(0);}



//
// Miscellaneous macros for working out sizes of things
//

//
// ARRAY_ELEMENTS - gives the number of elements of a particular type in an
// array
//

#define ARRAY_ELEMENTS(a)   (sizeof(a)/sizeof((a)[0]))

//
// LAST_ELEMENT - returns the index of the last element in array
//

#define LAST_ELEMENT(a)     (ARRAY_ELEMENTS(a)-1)

//
// BITSIN - returns the number of bits in a data type or structure. This is
// predicated upon the number of bits in a byte being 8 and all data types
// being composed of a collection of bytes (safe assumption?)
//
#define BITSIN(thing)                   (sizeof(thing) * BITS_IN_A_BYTE)

//
// Miscellaneous other macros
//

//
// IS_ASCII_PATH_SEPARATOR - returns TRUE if ch is / or \. ch is a single
// byte (ASCII) character
//
#define IS_ASCII_PATH_SEPARATOR(ch)     (((ch) == '/') || ((ch) == '\\'))

//
// macros for setting CF and ZF flags for return from hardware interrupt
// callback
//

#define SET_CALLBACK_NOTHING()  {setZF(0); setCF(0);}
#define SET_CALLBACK_NAMEPIPE() {setZF(0); setCF(1);}
#define SET_CALLBACK_DLC()      {setZF(1); setCF(0);}
#define SET_CALLBACK_NETBIOS()  {setZF(1); setCF(1);}

//
// DLC-specific macros etc.
//

//extern LPVDM_REDIR_DOS_WINDOW   lpVdmWindow;

//
// setPostRoutine - if dw is not 0 then we write the (DOS segmented) address of
// the post routine into the dwPostRoutine field of the VDM_REDIR_DOS_WINDOW
// structure passed to us at redir DLC initialization. We also set the flags
// to indicate to the redir's hardware interrupt routine there is a DLC post
// routine to run. If dw is 0 then we set the flags to indicate that there is
// no post routine processing
//
/*
#define setPostRoutine( dw )    if (dw) {\
                                    (lpVdmWindow->dwPostRoutine = (DWORD)(dw));\
                                    SET_CALLBACK_DLC();\
                                } else {\
                                    SET_CALLBACK_NOTHING();\
                                }
*/

//
// VR_ASYNC_DISPOSITION - we maintain a serialized list of these structures.
// Used to dispose of VDM redir asynchronous completions in the order in which
// they occurred
//

typedef struct _VR_ASYNC_DISPOSITION {

    //
    // Next - maintains a singly-linked list of dispositions
    //

    struct _VR_ASYNC_DISPOSITION* Next;

    //
    // AsyncDispositionRoutine - pointer to VOID function taking no args which
    // will dispose of the next asynchronous completion - Netbios, named pipe
    // or DLC
    //

    VOID (*AsyncDispositionRoutine)(VOID);
} VR_ASYNC_DISPOSITION, *PVR_ASYNC_DISPOSITION;

//
// _inlinePointerFromWords - the POINTER_FROM_WORDS macro is inefficient if the
// arguments are calls to eg. getES(), getBX() - the calls are made twice if
// the pointer turns out to be non-zero. Use an inline function to achieve the
// same results, but only call function arguments once
//

#ifdef i386

__inline LPVOID _inlinePointerFromWords(WORD seg, WORD off) {

    WORD _seg = seg;
    WORD _off = off;

    return ((_seg + _off) ? (LPVOID)((ULONG)(SELTOFLAT(_seg))+(ULONG)_off) : 0L); // OS2SS
}

#else
LPVOID _inlinePointerFromWords(WORD seg, WORD off);
#endif

//
// CONVERT_ADDRESS - convert a segmented (real or protect-mode) address to a
// flat 32-bit address
//

//#define CONVERT_ADDRESS(seg, off, size, mode) !((WORD)(seg) | (WORD)(off)) ? 0 : Sim32GetVDMPointer((((DWORD)seg) << 16) + (DWORD)(off), (size), (mode))
//#define CONVERT_ADDRESS(seg, off, size, mode) _inlineConvertAddress((WORD)(seg), (WORD)(off), (WORD)(size), (BOOLEAN)(mode))
//
//#ifdef i386
//
//__inline LPVOID _inlineConvertAddress(WORD Seg, WORD Off, WORD Size, BOOLEAN Pm) {
//
//    WORD _seg = Seg;
//    WORD _off = Off;
//
//    return (_seg | _off) ? Sim32GetVDMPointer(((DWORD)_seg << 16) + _off, Size, Pm) : 0;
//}
//
//#else
//extern LPVOID _inlineConvertAddress(WORD Seg, WORD Off, WORD Size, BOOLEAN Pm);
//#endif

#endif  // _VDMREDIR_