blob: 64677b77478162f70d7391426d71cda187475ca0 (
plain) (
tree)
|
|
#ifndef __POLLEDTIMING_H__
#define __POLLEDTIMING_H__
/*
PolledTimeout.h - Encapsulation of a polled Timeout
Copyright (c) 2018 Daniel Salazar. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <limits>
#include <Arduino.h>
namespace esp32
{
namespace polledTimeout
{
namespace YieldPolicy
{
struct DoNothing
{
static void execute() {}
};
struct YieldOrSkip
{
static void execute() {delay(0);}
};
template <unsigned long delayMs>
struct YieldAndDelayMs
{
static void execute() {delay(delayMs);}
};
} //YieldPolicy
namespace TimePolicy
{
struct TimeSourceMillis
{
// time policy in milli-seconds based on millis()
using timeType = decltype(millis());
static timeType time() {return millis();}
static constexpr timeType ticksPerSecond = 1000;
static constexpr timeType ticksPerSecondMax = 1000;
};
template <typename TimeSourceType, unsigned long long second_th>
// "second_th" units of timeType for one second
struct TimeUnit
{
using timeType = typename TimeSourceType::timeType;
#if __GNUC__ < 5
// gcc-4.8 cannot compile the constexpr-only version of this function
// using #defines instead luckily works
static constexpr timeType computeRangeCompensation ()
{
#define number_of_secondTh_in_one_tick ((1.0 * second_th) / ticksPerSecond)
#define fractional (number_of_secondTh_in_one_tick - (long)number_of_secondTh_in_one_tick)
return ({
fractional == 0?
1: // no need for compensation
(number_of_secondTh_in_one_tick / fractional) + 0.5; // scalar multiplier allowing exact division
});
#undef number_of_secondTh_in_one_tick
#undef fractional
}
#else
static constexpr timeType computeRangeCompensation ()
{
return ({
constexpr double number_of_secondTh_in_one_tick = (1.0 * second_th) / ticksPerSecond;
constexpr double fractional = number_of_secondTh_in_one_tick - (long)number_of_secondTh_in_one_tick;
fractional == 0?
1: // no need for compensation
(number_of_secondTh_in_one_tick / fractional) + 0.5; // scalar multiplier allowing exact division
});
}
#endif
static constexpr timeType ticksPerSecond = TimeSourceType::ticksPerSecond;
static constexpr timeType ticksPerSecondMax = TimeSourceType::ticksPerSecondMax;
static constexpr timeType rangeCompensate = computeRangeCompensation();
static constexpr timeType user2UnitMultiplierMax = (ticksPerSecondMax * rangeCompensate) / second_th;
static constexpr timeType user2UnitMultiplier = (ticksPerSecond * rangeCompensate) / second_th;
static constexpr timeType user2UnitDivider = rangeCompensate;
// std::numeric_limits<timeType>::max() is reserved
static constexpr timeType timeMax = (std::numeric_limits<timeType>::max() - 1) / user2UnitMultiplierMax;
static timeType toTimeTypeUnit (const timeType userUnit) {return (userUnit * user2UnitMultiplier) / user2UnitDivider;}
static timeType toUserUnit (const timeType internalUnit) {return (internalUnit * user2UnitDivider) / user2UnitMultiplier;}
static timeType time () {return TimeSourceType::time();}
};
using TimeMillis = TimeUnit< TimeSourceMillis, 1000 >;
} //TimePolicy
template <bool PeriodicT, typename YieldPolicyT = YieldPolicy::DoNothing, typename TimePolicyT = TimePolicy::TimeMillis>
class timeoutTemplate
{
public:
using timeType = typename TimePolicyT::timeType;
static_assert(std::is_unsigned<timeType>::value == true, "timeType must be unsigned");
static constexpr timeType alwaysExpired = 0;
static constexpr timeType neverExpires = std::numeric_limits<timeType>::max();
static constexpr timeType rangeCompensate = TimePolicyT::rangeCompensate; //debug
timeoutTemplate(const timeType userTimeout)
{
reset(userTimeout);
}
IRAM_ATTR // fast
bool expired()
{
YieldPolicyT::execute(); //in case of DoNothing: gets optimized away
if(PeriodicT) //in case of false: gets optimized away
return expiredRetrigger();
return expiredOneShot();
}
IRAM_ATTR // fast
operator bool()
{
return expired();
}
bool canExpire () const
{
return !_neverExpires;
}
bool canWait () const
{
return _timeout != alwaysExpired;
}
IRAM_ATTR // called from ISR
void reset(const timeType newUserTimeout)
{
reset();
_timeout = TimePolicyT::toTimeTypeUnit(newUserTimeout);
_neverExpires = (newUserTimeout < 0) || (newUserTimeout > timeMax());
}
IRAM_ATTR // called from ISR
void reset()
{
_start = TimePolicyT::time();
}
void resetToNeverExpires ()
{
_timeout = alwaysExpired + 1; // because canWait() has precedence
_neverExpires = true;
}
timeType getTimeout() const
{
return TimePolicyT::toUserUnit(_timeout);
}
static constexpr timeType timeMax()
{
return TimePolicyT::timeMax;
}
private:
IRAM_ATTR // fast
bool checkExpired(const timeType internalUnit) const
{
// canWait() is not checked here
// returns "can expire" and "time expired"
return (!_neverExpires) && ((internalUnit - _start) >= _timeout);
}
protected:
IRAM_ATTR // fast
bool expiredRetrigger()
{
if (!canWait())
return true;
timeType current = TimePolicyT::time();
if(checkExpired(current))
{
unsigned long n = (current - _start) / _timeout; //how many _timeouts periods have elapsed, will usually be 1 (current - _start >= _timeout)
_start += n * _timeout;
return true;
}
return false;
}
IRAM_ATTR // fast
bool expiredOneShot() const
{
// returns "always expired" or "has expired"
return !canWait() || checkExpired(TimePolicyT::time());
}
timeType _timeout;
timeType _start;
bool _neverExpires;
};
// standard versions (based on millis())
// timeMax() is 49.7 days ((2^32)-2 ms)
using oneShotMs = polledTimeout::timeoutTemplate<false>;
using periodicMs = polledTimeout::timeoutTemplate<true>;
} //polledTimeout
/* A 1-shot timeout that auto-yields when in CONT can be built as follows:
* using oneShotYieldMs = esp32::polledTimeout::timeoutTemplate<false, esp32::polledTimeout::YieldPolicy::YieldOrSkip>;
*
* Other policies can be implemented by the user, e.g.: simple yield that panics in SYS, and the polledTimeout types built as needed as shown above, without modifying this file.
*/
}//esp32
#endif
|