#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \begin_preamble \usepackage{hyperref} \usepackage{siunitx} \usepackage{pgfplots} \usepackage{listings} \usepackage{multicol} \sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} \usepackage{amsmath} \usepackage{tikz} \newcommand{\udensdash}[1]{% \tikz[baseline=(todotted.base)]{ \node[inner sep=1pt,outer sep=0pt] (todotted) {#1}; \draw[densely dashed] (todotted.south west) -- (todotted.south east); }% }% \DeclareMathOperator{\Lin}{\mathcal Lin} \DeclareMathOperator{\rang}{rang} \DeclareMathOperator{\sled}{sled} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\red}{red} \DeclareMathOperator{\karakteristika}{char} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\Slika}{Ker} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\n}{n} \DeclareMathOperator{\Col}{Col} \usepackage{algorithm,algpseudocode} \providecommand{\corollaryname}{Posledica} \usepackage[slovenian=quotes]{csquotes} \end_preamble \use_default_options true \begin_modules enumitem theorems-ams theorems-ams-extended \end_modules \maintain_unincluded_children no \language slovene \language_package default \inputencoding auto-legacy \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement H \float_alignment class \paperfontsize default \spacing single \use_hyperref true \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder false \pdf_colorlinks false \pdf_backref false \pdf_pdfusetitle true \papersize default \use_geometry true \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification false \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \leftmargin 2cm \topmargin 2cm \rightmargin 2cm \bottommargin 2cm \headheight 2cm \headsep 2cm \footskip 1cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style german \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Title Teorija Kombinatorike — IŠRM 2024/25 \end_layout \begin_layout Author \noun on Anton Luka Šijanec \end_layout \begin_layout Date \begin_inset ERT status open \begin_layout Plain Layout \backslash today \end_layout \end_inset \end_layout \begin_layout Abstract Povzeto po zapiskih s predavanj profesorja Konvalinke. \end_layout \begin_layout Standard \begin_inset CommandInset toc LatexCommand tableofcontents \end_inset \end_layout \begin_layout Section Osnovni principi kombinatorike \end_layout \begin_layout Standard Pri tem predmetu velja \begin_inset Formula $\mathbb{N}\coloneqq\mathbb{N}_{0}$ \end_inset ZDB \begin_inset Formula $0\in\mathbb{N}$ \end_inset . \end_layout \begin_layout Subsection Funkcija/preslikava \end_layout \begin_layout Definition* \begin_inset Formula $f:X\to Y$ \end_inset je formalno množica parov \begin_inset Formula $f\subseteq X\times Y$ \end_inset s pogojem \begin_inset Formula $\forall x\in X\exists!y\in Y\ni:\left(x,y\right)\in f$ \end_inset ZDB za vsak \begin_inset Formula $x\in X$ \end_inset je \begin_inset Formula $f\left(x\right)$ \end_inset enolično definiran. \end_layout \begin_layout Standard Funkcijo podamo tako, da: \end_layout \begin_layout Enumerate naštejemo vse elemente \begin_inset Formula $f$ \end_inset — vse pare (puščični diagram med množicama) \end_layout \begin_layout Enumerate povemo predpis za preslikanje elementa — \begin_inset Formula $f:\mathbb{N}\to\mathbb{N};x\mapsto x^{2}$ \end_inset \end_layout \begin_layout Enumerate z rekurzijo — \begin_inset Formula $f:\mathbb{N}\to\mathbb{N},f\left(0\right)=1,f\left(1\right)=1,f\left(n\right)=f\left(n-1\right)+f\left(n-2\right)$ \end_inset za \begin_inset Formula $n\geq2$ \end_inset (fibbonaccijevo zaporedje) \end_layout \begin_layout Definition* Zaporedje je preslikava iz naravnih števil v katerokoli neprazno množico. \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Definition* Lastnosti preslikav. Naj bo \begin_inset Formula $f:A\to B$ \end_inset preslikava. \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $f$ \end_inset injektivna \begin_inset Formula $\Leftrightarrow\forall a\in A,b\in B:f\left(a\right)=f\left(b\right)\Rightarrow a=b$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $f$ \end_inset surjektivna \begin_inset Formula $\Leftrightarrow\forall a\in A\exists b\in B\ni:f\left(b\right)=a$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $f$ \end_inset bijektivna \begin_inset Formula $\Leftrightarrow\forall a\in A\exists!b\in B\ni:f\left(b\right)=a$ \end_inset ZDB \begin_inset Formula $f$ \end_inset injektivna in \begin_inset Formula $f$ \end_inset surjektivna hkrati \end_layout \end_deeper \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Definition* Kombinatorika je odkrivanje moči množic. Tu često želimo dokazati enakost moči dveh množic, najlepše to storimo s konstrukcijo bijekcije, saj velja: \end_layout \begin_layout Theorem* Naj bo \begin_inset Formula $f:X\to Y$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $f$ \end_inset injektivna \begin_inset Formula $\Rightarrow\left|X\right|\leq\left|Y\right|$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $f$ \end_inset surjektivna \begin_inset Formula $\Rightarrow\left|Y\right|\leq\left|X\right|$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $f$ \end_inset bijektivna \begin_inset Formula $\Rightarrow\left|X\right|=\left|Y\right|$ \end_inset \end_layout \begin_layout Standard Imejmo \begin_inset Formula $n$ \end_inset kroglic in \begin_inset Formula $k$ \end_inset škatel. Vsako kroglico damo v eno od teh škatel. Postavitev kroglic v škatle je preslikava iz množice kroglic v množico škatel ( \begin_inset Formula $\left\{ 1..5\right\} \to\left\{ a,b,c\right\} $ \end_inset ). Injektivnost te preslikave pomeni, da ni praznih škatel, surjektivnost pa da je v vsaki škatli vsaj ena kroglica. \end_layout \begin_layout Definition* Nekaj oznak v kombinatoriki: \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $\mathbb{N}\coloneqq\left\{ 0,1,2,\dots\right\} \sim$ \end_inset možne moči končnih množic \end_layout \begin_layout Itemize \begin_inset Formula $\left[n\right]\coloneqq\left\{ 1..n\right\} $ \end_inset , \begin_inset Formula $\left[0\right]\coloneqq\emptyset$ \end_inset , \begin_inset Formula $\left|\left[n\right]\right|=n$ \end_inset \end_layout \begin_layout Itemize množica podmnožic \begin_inset Formula $A$ \end_inset (potenčna množica \begin_inset Formula $A$ \end_inset ) \begin_inset Formula $\eqqcolon2^{A}$ \end_inset , velja \begin_inset Formula $\left|2^{A}\right|=2^{\left|A\right|}$ \end_inset , odtod tudi ta oznaka \end_layout \begin_layout Itemize množica preslikav \begin_inset Formula $X\to Y\eqqcolon Y^{X}$ \end_inset , saj \begin_inset Formula $\left|Y^{X}\right|=\left|Y\right|^{\left|X\right|}$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\sum_{k}\sim$ \end_inset vsota po vseh \begin_inset Formula $k\in\mathbb{N}$ \end_inset , \begin_inset Formula $\sum_{k\geq a}\sim$ \end_inset vsota po vseh \begin_inset Formula $k\in\mathbb{N},k\geq a$ \end_inset \end_layout \end_deeper \begin_layout Theorem* Binomski izrek. \begin_inset Formula \[ \left(1+x\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}x^{k} \] \end_inset \end_layout \begin_layout Subsection Dirichletovo načelo (angl. Pigeonhole principle) \end_layout \begin_layout Standard Če obstaja injekcija \begin_inset Formula $X\to Y$ \end_inset , je \begin_inset Formula $\left|X\right|\leq\left|Y\right|$ \end_inset . Če torej \begin_inset Formula $\left|X\right|\geq\left|Y\right|$ \end_inset , ne obstaja injekcija \begin_inset Formula $X\to Y$ \end_inset . Če imamo \begin_inset Formula $n$ \end_inset kroglic v \begin_inset Formula $k$ \end_inset škatlah in \begin_inset Formula $n>k$ \end_inset , bosta gotovo vsaj v eni škatli vsaj dve kroglici. \end_layout \begin_layout Paragraph Uporaba načela \end_layout \begin_layout Itemize ob trinajstih ljudeh imata vsaj dva rojstni dan v istem mesecu. Kroglice so ljudje, škatle so meseci, preslikava je iz človeka v mesec rojstva. \end_layout \begin_layout Itemize \begin_inset Formula $X\subseteq\mathbb{N}$ \end_inset ; \begin_inset Formula $\left|X\right|=n+1$ \end_inset . \begin_inset Formula $\exists x,y\in X\ni:n\vert\left(x-y\right)\wedge x\not=y$ \end_inset . Trditev je ekvivalentna temu, da sta v \begin_inset Formula $X$ \end_inset dve števili z istim ostankom pri deljenju z \begin_inset Formula $n$ \end_inset . Kroglice so števila, škatle so možni ostanki pri deljenju z \begin_inset Formula $n$ \end_inset . Preslikava \begin_inset Formula $x\mapsto x\mod n$ \end_inset . Kroglic je \begin_inset Formula $n+1$ \end_inset , škatel je \begin_inset Formula $n\Rightarrow$ \end_inset po dirichletu trditev velja. \end_layout \begin_layout Itemize \begin_inset Formula $n$ \end_inset ljudi. Trdimo, da \begin_inset Formula $\exists2$ \end_inset človeka, ki poznata enako število ljudi. Imamo torej \begin_inset Formula $n$ \end_inset kroglic — ljudi in \begin_inset Formula $n$ \end_inset škatel — št. poznanstev ( \begin_inset Formula $\in\left\{ 0..\left(n-1\right)\right\} $ \end_inset ). Preslikava preslika človeka v število njegovih znancev. Sicer velja \begin_inset Formula $n=n$ \end_inset , toda ne moremo imeti hkrati nekoga, ki pozna 0 oseb in hkrati nekoga, ki pozna \begin_inset Formula $n-1$ \end_inset oseb, torej je število različnih poznanstev največ \begin_inset Formula $n-1$ \end_inset . Dirichlet pove, da obstaja dve osebi, ki poznata enako število ljudi. \end_layout \begin_layout Itemize \begin_inset Formula $X\subseteq\left\{ 1..100\right\} $ \end_inset ; \begin_inset Formula $\left|X\right|=10$ \end_inset . Trdimo, da obstajata dve disjunktni podmnožici \begin_inset Formula $X$ \end_inset , ki imata enako vsoto. Kroglice so podmnožice \begin_inset Formula $X$ \end_inset — \begin_inset Formula $2^{10}=1024$ \end_inset jih je. Škatle so možne vsote elementov, torej \begin_inset Formula $\in\left\{ 55..955\right\} $ \end_inset . Injekcije iz podmnožic \begin_inset Formula $X$ \end_inset dolžine 10 v možne vsote po dirichletu ni, zato obstajata vsaj dve podmnožici, ki imata isto vsoto. Če sta nedisjunktni, jima odstranimo presek, pa dobimo disjunktni, ne da bi spremenili vsoto elementov. \end_layout \begin_layout Itemize \begin_inset Formula $X\subseteq\left\{ 1..2n\right\} $ \end_inset ; \begin_inset Formula $\left|X\right|=n+1$ \end_inset . Trdimo, da \begin_inset Formula $\exists x,x'\in X\ni:x|x'\wedge x\not=x'$ \end_inset . Kroglice so \begin_inset Formula $X$ \end_inset . Za katerokoli število velja \begin_inset Formula $x=2^{a}\cdot b$ \end_inset , kjer je \begin_inset Formula $b$ \end_inset liho. Škatle so liha števila v \begin_inset Formula $\left[2n\right]$ \end_inset . Preslikava slika \begin_inset Formula $x\to b$ \end_inset za \begin_inset Formula $b$ \end_inset od prej. Ker je kroglic več kot škatel, velja \begin_inset Formula $\exists x,x'\in X\ni:x=2^{a}b\wedge x'=2^{a'}b$ \end_inset . Če je \begin_inset Formula $aj\ni:\pi^{i}\left(k\right)=\pi^{j}\left(k\right)\Rightarrow\pi^{j-i}\left(k\right)=k$ \end_inset in imamo ciklično zaporedje \begin_inset Formula $k,\pi k,\pi^{2}k,\dots,k$ \end_inset . Cikel označimo z \begin_inset Formula $\left(k,\pi k,\dots,k\right)$ \end_inset . \end_layout \begin_layout Corollary* Vsaka permutacija je produkt disjunktnih ciklov. \begin_inset Formula \[ \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\ 4 & 2 & 7 & 6 & 3 & 8 & 1 & 5 \end{array}\right)=\left(1,4,6,8,5,3,7\right)\left(2\right)=\left(1,4,6,8,5,3,7\right) \] \end_inset Disjunktni cikli medsebojno komutirajo. Cikel je invarianten za ciklično shiftanje/zamikanje/vrtenje. Do vrstnega reda ciklov in znotrajciklične ureditve je zapis permutacije kot produkt disjunktnih ciklov enoličen. \end_layout \begin_layout Claim* Naj bosta \begin_inset Formula $N,K$ \end_inset množici, \begin_inset Formula $\left|N\right|=n,\left|K\right|=k$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate Preslikav iz \begin_inset Formula $N$ \end_inset v \begin_inset Formula $K$ \end_inset je \begin_inset Formula $\left|K^{N}\right|=\left|K\right|^{\left|N\right|}$ \end_inset . \end_layout \begin_layout Enumerate Injektivnih preslikav iz \begin_inset Formula $N$ \end_inset v \begin_inset Formula $K$ \end_inset je \begin_inset Formula $k\left(k-1\right)\left(k-2\right)\cdots\left(k-n+1\right)\eqqcolon k^{\underline{n}}$ \end_inset (pravimo \begin_inset Formula $k$ \end_inset na \begin_inset Formula $n$ \end_inset padajoče) \end_layout \end_deeper \begin_layout Proof Intuitiven dokaz. Naj bo \begin_inset Formula $N=\left\{ x_{1},\dots,x_{n}\right\} $ \end_inset \end_layout \begin_deeper \begin_layout Enumerate Za vsak \begin_inset Formula $x_{i}$ \end_inset imamo \begin_inset Formula $k$ \end_inset izbir, kam se bo preslikal in izbire so neodvisne: \begin_inset Formula $k\cdot\cdots\cdot k=k^{n}$ \end_inset . \end_layout \begin_layout Enumerate Za \begin_inset Formula $x_{1}$ \end_inset je \begin_inset Formula $k$ \end_inset izbir, za \begin_inset Formula $x_{2}$ \end_inset je \begin_inset Formula $k-1$ \end_inset izbir itd. Če je \begin_inset Formula $\left|K\right|>\left|N\right|$ \end_inset , bomo na neki točki vse skupaj množili z 0 in dobili 0, s čimer ustrezamo dirichletu. \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout Formalnejši dokaz. \end_layout \begin_layout Enumerate Iščemo bijekcijo med \begin_inset Formula $K^{N}$ \end_inset in \begin_inset Formula $\left[k\right]^{n}$ \end_inset TODO XXX FIXME \end_layout \end_inset \end_layout \end_deeper \begin_layout Section Podmnožice in načrti \end_layout \begin_layout Subsection Binomski koeficienti \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $k,n\in\mathbb{N}$ \end_inset , \begin_inset Formula $A$ \end_inset množica. \begin_inset Formula ${A \choose k}\coloneqq\left\{ B\subseteq A;\left|B\right|=k\right\} $ \end_inset ZDB vse \begin_inset Formula $k-$ \end_inset elementne podmnožice \begin_inset Formula $A$ \end_inset . \end_layout \begin_layout Example* \begin_inset Formula ${\left[4\right] \choose 2}=\left\{ \left\{ 1,2\right\} ,\left\{ 1,3\right\} ,\left\{ 1,4\right\} ,\left\{ 2,3\right\} ,\left\{ 2,4\right\} ,\left\{ 3,4\right\} \right\} $ \end_inset , \begin_inset Formula ${\left[4\right] \choose 4}=\left\{ \left\{ 1,2,3,4\right\} \right\} $ \end_inset , \begin_inset Formula ${\left[4\right] \choose 1}=\left\{ \left\{ 1\right\} ,\left\{ 2\right\} ,\left\{ 3\right\} ,\left\{ 4\right\} \right\} $ \end_inset , \begin_inset Formula ${\left[4\right] \choose 0}=\left\{ \left\{ \right\} \right\} =\left\{ \emptyset\right\} $ \end_inset , \begin_inset Formula ${\left[4\right] \choose -1}=\left\{ \right\} =\emptyset$ \end_inset , \begin_inset Formula $\bigcup_{k=0}^{\left|A\right|}{A \choose k}=2^{A}$ \end_inset . \end_layout \begin_layout Definition* Binomski koeficient/simbol. Naj bo \begin_inset Formula $n,k\in\mathbb{N}$ \end_inset . \begin_inset Formula ${n \choose k}\coloneqq\left|{\left[n\right] \choose k}\right|$ \end_inset . Rečemo \begin_inset Formula $n$ \end_inset nad \begin_inset Formula $k$ \end_inset (angl. \begin_inset Formula $n$ \end_inset choose \begin_inset Formula $k$ \end_inset ). \end_layout \begin_layout Example* \begin_inset Formula ${n \choose 0}=1$ \end_inset , \begin_inset Formula ${n \choose 1}=n$ \end_inset , \begin_inset Formula ${n \choose 2}=\frac{n\left(n-1\right)}{2}$ \end_inset (neurejeni pari) \end_layout \begin_layout Claim* \begin_inset Formula \[ {n \choose n-k}={n \choose k} \] \end_inset \end_layout \begin_layout Proof Bijekcija \begin_inset Formula $\Phi:{\left[n\right] \choose k}\to\binom{\left[n\right]}{n-k}$ \end_inset s predpisom \begin_inset Formula $\Phi\left(B\right)=B^{\mathcal{C}}$ \end_inset in \begin_inset Formula $\Phi^{-1}\left(B\right)=B^{\mathcal{C}}$ \end_inset . \end_layout \begin_layout Claim* \begin_inset Formula \[ {n \choose k}=\frac{n^{\underline{k}}}{k!}=\begin{cases} \frac{n!}{k!\left(n-k\right)!} & ;0\leq k\leq n\\ 0 & ;\text{ sicer} \end{cases} \] \end_inset \end_layout \begin_layout Proof Dva načina. \end_layout \begin_deeper \begin_layout Enumerate Izberemo \begin_inset Formula $1-$ \end_inset elementne podmnožice na \begin_inset Formula $n$ \end_inset načinov, \begin_inset Formula $2-$ \end_inset elementne na \begin_inset Formula $n-1$ \end_inset načinov, ..., \begin_inset Formula $k-$ \end_inset elementne na \begin_inset Formula $n-k+1$ \end_inset načinov. Delimo s številom permutacij \begin_inset Formula $\left[k\right]$ \end_inset , ker vrstni red izbire teh podmnožic ni pomemben. Podmnožic je torej \begin_inset Formula $\frac{n^{\underline{k}}}{k!}$ \end_inset . \end_layout \begin_layout Enumerate Preštejemo urejene izbire brez ponavljanja na dva načina: \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $n^{\underline{k}}$ \end_inset : Izberemo \begin_inset Formula $k$ \end_inset elementov, za prvega imamo \begin_inset Formula $n$ \end_inset možnosti, za drugega \begin_inset Formula $n-1$ \end_inset , ... \end_layout \begin_layout Enumerate \begin_inset Formula $k!\cdot\binom{n}{k}$ \end_inset : Izberemo \begin_inset Formula $k-$ \end_inset elementno podmnožico in ji določimo vrstni red. \end_layout \begin_layout Standard \begin_inset Formula \[ \Rightarrow n^{\underline{k}}=k!\cdot\binom{n}{k} \] \end_inset Če \begin_inset Formula $k<0$ \end_inset ali \begin_inset Formula $k>0$ \end_inset je \begin_inset Formula $\binom{n}{k}=0$ \end_inset , sicer \begin_inset Formula $\frac{n^{\underline{k}}}{k!}\cdot\frac{\left(n-k\right)!}{\left(n-k\right)!}=\frac{n!}{k!\left(n-k\right)!}$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Example* \begin_inset Formula \[ \binom{10}{7}=?=\binom{10}{3}=\frac{10\cdot9\cdot8}{6}=120 \] \end_inset \end_layout \begin_layout Claim* Rekurzivna zveza za binomske koeficiente: \begin_inset Formula \[ \forall n,k\in\mathbb{N}:\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}. \] \end_inset \end_layout \begin_layout Proof Dva načina: \end_layout \begin_deeper \begin_layout Enumerate Računsko. \begin_inset Formula \[ \binom{n-1}{k-1}+\binom{n-1}{k}=\frac{\left(n-1\right)^{\underline{k-1}}}{\left(k-1\right)!}+\frac{\left(n-1\right)^{\underline{k}}}{k!}=\frac{k\left(n-1\right)^{\underline{k-1}}+\left(n-1\right)^{\underline{k}}}{k!}=\frac{\left(n-1\right)^{\underline{k-1}}\left(\cancel{k}+n\cancel{-1}\cancel{-k}\cancel{+1}\right)}{k!}=\frac{\left(n-1\right)^{\underline{k-1}}n}{k!}=\frac{n^{\underline{k-1}}}{k!}={n \choose k} \] \end_inset \end_layout \begin_layout Enumerate Bijektivno z načelom vsote. Vzemimo \begin_inset Formula $k-$ \end_inset podmnožico \begin_inset Foot status open \begin_layout Plain Layout \begin_inset Formula $k-$ \end_inset elementno podmnožico \end_layout \end_inset \begin_inset Formula $\left[n\right]$ \end_inset . Klasificirajmo jo glede na vsebnost \begin_inset Formula $n$ \end_inset na dve očitno disjunktni podmnožici: \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $n$ \end_inset je element te podmnožice. Takih je \begin_inset Formula $\binom{n-1}{k-1}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $n$ \end_inset ni element te podmnožice. Takih je \begin_inset Formula $\binom{n-1}{k}$ \end_inset . \end_layout \begin_layout Standard Formalno iščemo bijekcijo \begin_inset Formula $\Phi:{\left[n\right] \choose k}\to\binom{\left[n-1\right]}{k-1}\cup\binom{\left[n-1\right]}{k}$ \end_inset . Predpis \begin_inset Formula $\Phi\left(B\right)=B\setminus\left\{ n\right\} $ \end_inset , \begin_inset Formula $\Phi^{-1}$ \end_inset \begin_inset Formula $\left(B\right)=\begin{cases} B\cup\left\{ n\right\} & ;\left|B\right|=k-1\\ B & ;\left|B\right|=k \end{cases}$ \end_inset \end_layout \end_deeper \end_deeper \begin_layout Standard Skica pascalovega trikotnika prepuščena bralcu. TODO XXX FIXME. \end_layout \begin_layout Remark* \begin_inset Formula \[ \sum_{k=0}^{n}{n \choose k}=2^{n}\sim\bigcup_{k=0}^{n}{\left[n\right] \choose k}=2^{\left[n\right]}\overset{\text{disjunktne}}{\Longrightarrow}\left|\bigcup_{k=0}^{n}\binom{\left[n\right]}{k}\right|=\left|2^{\left[n\right]}\right| \] \end_inset \end_layout \begin_layout Theorem* Binomski izrek. Za \begin_inset Formula $a,b$ \end_inset elementa komutativnega kolobarja (polja) in za \begin_inset Formula $n\in\mathbb{N}$ \end_inset velja \begin_inset Formula \[ \left(a+b\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}. \] \end_inset \end_layout \begin_layout Proof Več načinov. \end_layout \begin_deeper \begin_layout Enumerate Induktivno. Baza \begin_inset Formula $n=0$ \end_inset : \begin_inset Formula $1={0 \choose 0}a^{0}b^{0}=1$ \end_inset . Korak \begin_inset Formula $n-1\to n$ \end_inset : \begin_inset Formula \[ \left(a+b\right)^{n}\left(a+b\right)^{n-1}\left(a+b\right)\overset{\text{I.P.}}{=}\left(\sum_{k=0}^{n-1}{n-1 \choose k}a^{n-1-k}b^{k}\right)\left(a+b\right)=\sum_{k=0}^{n-1}\binom{n-1}{k}a^{n-k}b^{k}+\sum_{k=0}^{n-1}{n-1 \choose k}a^{n-1-k}b^{k+1}= \] \end_inset ... v desni vsoti naj bo \begin_inset Formula $k'\coloneqq k+1$ \end_inset ... \begin_inset Formula \[ =\sum_{k=0}^{n-1}\binom{n-1}{k}a^{n-k}b^{k}+\sum_{k'=1}^{n}\binom{n-1}{k'-1}a^{n-k'}b^{k'}= \] \end_inset ... levo zgornjo mejo povečamo za 1, prav tako desno spodnjo, s čimer dodamo le dva ničelna člena. vezano spremenljivko \begin_inset Formula $k'$ \end_inset preimenujemo v \begin_inset Formula $k$ \end_inset ... \begin_inset Formula \[ =\sum_{k=0}^{n}\binom{n-1}{k}a^{n-k}b^{k}+\sum_{k=0}^{n}\binom{n-1}{k-1}a^{n-k}b^{k}=\sum_{k=0}^{n}\left[\binom{n-1}{k}+\binom{n-1}{k-1}\right]a^{n-1}b^{k}=\sum_{k=0}^{n}\binom{n}{k}a^{n-1}b^{k} \] \end_inset \end_layout \begin_layout Enumerate Enako kot prej, le da se ne utrujamo z mejami. Vse meje razširimo na vsa cela števila in s tem le dodamo neskončno ničelnih členov. Baza \begin_inset Formula $n=0$ \end_inset velja kot prej. Korak \begin_inset Formula $n-1\to n$ \end_inset : \begin_inset Formula \[ \left(a+b\right)^{n}=\left(a+b\right)^{n-1}\left(a+b\right)=\left(\sum_{k}\binom{n-1}{k}a^{n-1-k}b^{k}\right)\left(a+b\right)=\sum_{k}\binom{n-1}{k}a^{n-k}b^{k}+\sum_{k}\binom{n-1}{k}a^{n-1-k}b^{k+1}= \] \end_inset ... zamaknemo \begin_inset Formula $k\coloneqq k+1$ \end_inset v desni vsoti ... \begin_inset Formula \[ =\sum_{k}\binom{n-1}{k}a^{n-k}b^{k}+\sum_{k}\binom{n-1}{k-1}a^{n-k}b^{k}=\sum_{k}\left[\binom{n-1}{k}+\binom{n-1}{k-1}\right]a^{n-k}b^{k}=\sum_{k}\binom{n}{k}a^{n-k}b^{k} \] \end_inset \end_layout \begin_layout Enumerate Kombinatorično. \begin_inset Formula $\left(a+b\right)^{n}=\left(a+b\right)\cdot\cdots\cdot\left(a+b\right)$ \end_inset . Po distributivnosti je to vsota členov, ki so produkt enega člena iz prvega oklepaja, enega iz drugega, enega iz tretjega, itd. Če smo \begin_inset Formula $k-$ \end_inset krat izbrali \begin_inset Formula $b$ \end_inset , smo \begin_inset Formula $n-k-$ \end_inset krat izbrali \begin_inset Formula $a$ \end_inset (skupno imamo \begin_inset Formula $n$ \end_inset izbir). Torej je vsak člen oblike \begin_inset Formula $a^{n-k}b^{k}$ \end_inset , \begin_inset Formula $0\leq k\leq n$ \end_inset . Člen \begin_inset Formula $a^{n-k}b^{k}$ \end_inset dobimo na \begin_inset Formula $\binom{n}{k}$ \end_inset načinov, ker moramo izmed \begin_inset Formula $n$ \end_inset oklepajev (faktorjev) izbrati tistih \begin_inset Formula $k$ \end_inset , pri katerih vzamemo \begin_inset Formula $b$ \end_inset . \end_layout \end_deeper \begin_layout Corollary* \begin_inset Formula $\left(1+x\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}x^{k}$ \end_inset . Za \begin_inset Formula $x=1$ \end_inset : \begin_inset Formula $2^{n}=\sum_{k=0}^{n}\binom{n}{k}$ \end_inset . Za \begin_inset Formula $x=-1$ \end_inset : \begin_inset Formula $0^{n}=\sum_{k=0}^{n}\left(-1\right)^{k}\binom{n}{k}=\delta_{n,0}$ \end_inset . \end_layout \begin_layout Definition* Kronekerjeva delta. \begin_inset Formula $\delta_{i,j}\coloneqq\begin{cases} 1 & ;i=j\\ 0 & ;i\not=j \end{cases}$ \end_inset \end_layout \begin_layout Claim* \begin_inset Formula $\forall n>0:\sum_{k\text{ sod}}\binom{n}{k}=\sum_{k\text{ lih}}\binom{n}{k}$ \end_inset ZDB \begin_inset ERT status open \begin_layout Plain Layout \backslash hypertarget{l=s}{število lihih podmnožic} \end_layout \end_inset neprazne končne množice \begin_inset Formula $A$ \end_inset je enako številu sodih podmnožic \begin_inset Formula $A$ \end_inset . \end_layout \begin_layout Proof Izberemo in fiksiramo element \begin_inset Formula $u\in A$ \end_inset . Bijekcija \begin_inset Formula $\Phi\left(B\right)=\begin{cases} B\cup\left\{ u\right\} & ;u\not\in B\\ B\setminus\left\{ u\right\} & ;u\in B \end{cases}$ \end_inset . \end_layout \begin_layout Subsection Izbori \end_layout \begin_layout Standard Imamo \begin_inset Formula $n$ \end_inset kroglic, \begin_inset Formula $k$ \end_inset jih izberemo. Vprašamo se, ali je vrstni red pomemben in ali kroglice med izbirami vračamo v boben (nabor možnih kroglic za novo izbiro). \end_layout \begin_layout Standard \begin_inset Float table placement document alignment document wide false sideways false status open \begin_layout Plain Layout \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout s ponavljanjem \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout brez ponavljanja \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout vrstni red je pomemben — variacije \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $n^{k}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $n^{\underline{k}}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout vrstni red ni pomemben — kombinacije \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\binom{n+k-1}{k}$ \end_inset — \begin_inset Formula $1\leq i_{1}\leq i_{2}\leq\cdots\leq i_{k}\leq n$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\binom{n}{k}$ \end_inset — \begin_inset Formula $1\leq i_{1} \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Izbori \end_layout \end_inset \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Proof Kombinacij s ponavljanjem je \begin_inset Formula $\binom{n+k-1}{k}$ \end_inset . Iščemo število rešitev sistema \begin_inset Formula $1\leq i_{1}\leq i_{2}\leq\cdots\leq i_{k}\leq n$ \end_inset . Naj bo \begin_inset Formula $j_{1}\coloneqq i_{1}$ \end_inset , \begin_inset Formula $j_{2}\coloneqq i_{2}+1$ \end_inset , \begin_inset Formula $j_{3}\coloneqq i_{3}+2$ \end_inset , \begin_inset Formula $j_{4}\coloneqq i_{4}+3$ \end_inset , ... \begin_inset Formula $j_{k}\coloneqq i_{k}+k-1$ \end_inset . Dobimo sistem \begin_inset Formula $1\leq j_{1} \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $n$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 3 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 5 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 6 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 7 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 8 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 9 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 10 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 11 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 12 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\phi\left(n\right)$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 6 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 6 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 10 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Eulerjeva funkcija \begin_inset Formula $\phi$ \end_inset \end_layout \end_inset \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Remark* Za praštevilo \begin_inset Formula $p$ \end_inset velja \begin_inset Formula $\phi\left(p\right)=p-1$ \end_inset , \begin_inset Formula $\phi\left(p^{2}\right)=p^{2}-p$ \end_inset , \begin_inset Formula $\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}\left(1-\frac{1}{p}\right)$ \end_inset . \end_layout \begin_layout Claim* \begin_inset Formula $\sum_{d\vert n}\phi\left(d\right)=n$ \end_inset (vsota slik s \begin_inset Formula $\phi$ \end_inset deliteljev \begin_inset Formula $n$ \end_inset je \begin_inset Formula $n$ \end_inset ). \end_layout \begin_layout Proof Oglejmo si \begin_inset Formula $\frac{1}{n},\frac{2}{n},\frac{3}{n},\dots,\frac{n}{n}$ \end_inset in okrajšajmo, kolikor se le da. Primer: \begin_inset Formula $\frac{1}{12},\frac{2}{12},\frac{3}{12},\frac{4}{12},\frac{5}{12},\frac{6}{12},\frac{7}{12},\frac{8}{12},\frac{9}{12},\frac{10}{12},\frac{11}{12},\frac{12}{12}\to\frac{1}{12},\frac{1}{6},\frac{1}{4},\frac{1}{3},\frac{5}{12},\frac{1}{2},\frac{7}{12},\frac{2}{3},\frac{3}{4},\frac{5}{6},\frac{11}{12},\frac{1}{1}$ \end_inset . Možni imenovalci so delitelji \begin_inset Formula $n$ \end_inset , možnih števcev z imenovalcem \begin_inset Formula $d$ \end_inset pa je \begin_inset Formula $\phi\left(d\right)$ \end_inset . Če torej grupiramo te ulomke (skupaj jih je \begin_inset Formula $n$ \end_inset — desna stren enačbe) po imenovalcih (deliteljih), bo pri vsakem delitelju \begin_inset Formula $\phi\left(d\right)$ \end_inset ulomkov (leva stran enačbe). \end_layout \begin_layout Standard Izrazimo \begin_inset Formula $\phi\left(n\right)$ \end_inset . Naj bo \begin_inset Formula $n=p_{1}^{\alpha_{1}}\cdot\cdots\cdot p_{k}^{\alpha_{k}}$ \end_inset in \begin_inset Formula $\forall i\in\left[k\right]:\alpha_{i}\geq1$ \end_inset . \begin_inset Formula $A=\left[n\right]$ \end_inset ; \begin_inset Formula $\forall i\in\left\{ 1..k\right\} :A_{i}\coloneqq\left\{ \text{večkratniki }p_{i}\text{ v }\left[n\right]\right\} $ \end_inset . Presek komplementov so števila, tuja \begin_inset Formula $n$ \end_inset . \begin_inset Formula $\left|A_{i}\right|=\left\lfloor \frac{n}{p_{i}}\right\rfloor =\frac{n}{p_{i}}$ \end_inset (kajti \begin_inset Formula $p_{i}\vert n$ \end_inset ), \begin_inset Formula $\left|A_{i}\cap A_{j}\right|=\frac{n}{p_{i}\cdot p_{j}}$ \end_inset , \begin_inset Formula $\left|A_{I}\right|=\frac{n}{\prod_{i\in I}p_{i}}$ \end_inset . \begin_inset Formula \[ \phi\left(n\right)=\sum_{I\subseteq\left[k\right]}\left(-1\right)^{\left|I\right|}\frac{n}{\prod_{i\in I}p_{i}}=n\sum_{I\subseteq\left[k\right]}\left(-1\right)^{\left|I\right|}\frac{1}{\prod_{i\in I}p_{i}}=n\sum_{I\subseteq\left[k\right]}\left(-1\right)^{\left|I\right|}\prod_{i\in I}p_{i}^{-1} \] \end_inset \end_layout \begin_layout Standard Primer za \begin_inset Formula $k=2$ \end_inset (število \begin_inset Formula $n$ \end_inset je produkt dveh praštevil): \begin_inset Formula \[ \phi\left(n\right)=n\sum_{I\subseteq\left\{ 1,2\right\} }\left(-1\right)^{\left|I\right|}\prod_{i\in I}p_{i}^{-1}=n\left(1-p_{1}^{-1}-p_{2}^{-1}+p_{1}^{-1}p_{2}^{-1}\right)=n\left(1-p_{1}^{-1}\right)\left(1-p_{2}^{-1}\right) \] \end_inset \end_layout \begin_layout Standard Primer za splošen \begin_inset Formula $k$ \end_inset (po distributivnosti): \begin_inset Formula \[ \phi\left(n\right)=n\left(1-p_{1}^{-1}\right)\left(1-p_{2}^{-1}\right)\cdots\left(1-p_{k}^{-1}\right)=n\prod_{p\vert n\text{\text{ praštevilski delitelji }}}\left(1-p^{-1}\right) \] \end_inset \end_layout \begin_layout Subsection Multinomski koeficient in multinomski izrek \end_layout \begin_layout Question* Denimo, da imamo multimnožico (množico, v kateri dovolimo ponavljanje elementov) \begin_inset Formula $M\coloneqq\left\{ 1^{a_{1}},2^{a_{2}},\dots,n^{a_{n}}\right\} $ \end_inset ( \begin_inset Formula $i-$ \end_inset ti element se ponovi \begin_inset Formula $a_{i}-$ \end_inset krat). Primer: \begin_inset Formula $M=\left\{ 1,1,1,2,3,3\right\} =\left\{ 1^{3},2^{1},3^{2}\right\} $ \end_inset . Koliko je permutacij multimnožice? \end_layout \begin_layout Standard Naj bo \begin_inset Formula $N=\sum_{i=1}^{n}a_{i}$ \end_inset . Enice razporedimo na \begin_inset Formula $\binom{N}{a_{1}}$ \end_inset načinov, dvojke na \begin_inset Formula $\binom{N-a_{1}}{a_{2}}$ \end_inset , trojke na \begin_inset Formula $\binom{N-a_{1}-a_{2}}{a_{3}}$ \end_inset , itd. Skupaj je permutacij torej \begin_inset Formula \[ \binom{N}{a_{1}}\binom{N-a_{1}}{a_{2}}\binom{N-a_{1}-a_{2}}{a_{3}}\cdots=\frac{\left(a_{1}+\cdots+a_{n}\right)!}{a_{1}!\cancel{\left(a_{2}+\cdots+a_{n}\right)!}}\cdot\frac{\cancel{\left(a_{2}+\cdots+a_{n}\right)!}}{a_{2}!\left(a_{3}+\cdots+a_{n}\right)}\cdot\cdots=\frac{N!}{a_{1}}\cdot\frac{1}{a_{2}}\cdot\frac{1}{a_{3}}\cdot\cdots=\frac{\left(a_{1}+\cdots+a_{n}\right)!}{a_{1}!\cdot a_{2}!\cdot\cdots\cdot a_{n}!}\eqqcolon\binom{N}{a_{1},\dots,a_{n}} \] \end_inset \end_layout \begin_layout Standard Drug način razmišljanja (intuitiven): Ponavljajoče elemente sprva tretiramo kot različne ( \begin_inset Formula $N!$ \end_inset načinov), nato pa delimo s fakultetami frekvenc posameznih unikatnih elementov, saj teh elementov nočemo razlikovati. \end_layout \begin_layout Remark* \begin_inset Formula \[ \binom{a+b}{a,b}=\frac{\left(a+b\right)!}{a!b!}=\binom{a+b}{a}=\binom{a+b}{b} \] \end_inset \end_layout \begin_layout Theorem* Multinomski izrek. Kako razpisati multinom na \begin_inset Formula $n-$ \end_inset to potenco: \begin_inset Formula \[ \left(x_{1}+\cdots+x_{k}\right)^{n}=\sum_{i_{1}+\cdots+i_{k}=n;i_{1},\dots,i_{k}\geq0\text{ (šibke kompozicije \ensuremath{n} dolžine \ensuremath{k})}}\binom{n}{i_{1},\dots,i_{k}}x_{1}^{i_{1}}\cdots x_{k}^{i_{k}} \] \end_inset \end_layout \begin_layout Subsection Načrti in \begin_inset Formula $t-$ \end_inset načrti \end_layout \begin_layout Definition* \begin_inset Formula $S\subseteq X\times Y$ \end_inset je relacija. Za \begin_inset Formula $x\in X$ \end_inset in \begin_inset Formula $y\in Y$ \end_inset velja \begin_inset Formula $xSy\Leftrightarrow\left(x,y\right)\in S$ \end_inset . Za \begin_inset Formula $x\in X$ \end_inset označimo \begin_inset Formula $v_{x}\left(S\right)\coloneqq\left|\left\{ y\in Y;xSy\right\} \right|$ \end_inset (število kljukic v vrstici \begin_inset Formula $x$ \end_inset ). Za \begin_inset Formula $y\in Y$ \end_inset označimo \begin_inset Formula $s_{y}\left(S\right)\coloneqq\left|\left\{ x\in X;xSy\right\} \right|$ \end_inset (število kljukic v stolpcu \begin_inset Formula $y$ \end_inset ). \end_layout \begin_layout Definition* Velja \begin_inset Formula $\left|S\right|=\sum_{x\in X}v_{x}\left(S\right)=\sum_{y\in Y}s_{y}\left(S\right)$ \end_inset . Kdaj se zgodi, da je \begin_inset Formula $\forall x,x'\in X:v_{x}\left(S\right)=v_{x'}\left(S\right)$ \end_inset , tedaj označimo kar \begin_inset Formula $v\left(S\right)$ \end_inset in analogno za \begin_inset Formula $s\left(x\right)$ \end_inset in tedaj velja \begin_inset Formula $\sum_{x\in X}v_{x}\left(S\right)=v\left(s\right)\left|X\right|$ \end_inset . Če to velja za stolpce in vrstice, velja \begin_inset Formula $v\left(S\right)\cdot\left|X\right|=s\left(S\right)\cdot\left|Y\right|$ \end_inset . \end_layout \begin_layout Example* Dva primera. \end_layout \begin_deeper \begin_layout Enumerate Trianguilacija ravninskega grafa je ravninski graf in zanjo velja, da so vsa lica \begin_inset Formula $3-$ \end_inset cikli. Za vsak ravninski graf je moč najti triangulacijo ravninskega grafa. Naj bo \begin_inset Formula $G$ \end_inset triangulacija ravninskega grafa. Za relacijo \begin_inset Formula $S=EG\times FG$ \end_inset s predpisom \begin_inset Formula $eSf\Leftrightarrow e\in f$ \end_inset velja \begin_inset Formula $\forall e,e'\in EG:v_{e}\left(S\right)=v_{e'}\left(S\right)=2$ \end_inset in \begin_inset Formula $\forall f,f'\in FG:s_{f}\left(S\right)=s_{f'}\left(S\right)=3$ \end_inset . Torej \begin_inset Formula $v\left(S\right)=2$ \end_inset in \begin_inset Formula $s\left(S\right)=3$ \end_inset , sledi \begin_inset Formula $3\left|F\right|=2\left|E\right|$ \end_inset . \end_layout \begin_layout Enumerate Koliko deliteljev ima v povprečju število \begin_inset Formula $n$ \end_inset ? Naj bo \begin_inset Formula $S=\left[n\right]\times\left[n\right]$ \end_inset s predpisom \begin_inset Formula $xSy\Leftrightarrow x\vert y$ \end_inset . Velja \begin_inset Formula $s_{y}\left(S\right)=$ \end_inset število deliteljev \begin_inset Formula $y$ \end_inset in \begin_inset Formula $v_{x}\left(S\right)=\left\lfloor \frac{n}{x}\right\rfloor $ \end_inset . \begin_inset Formula $\sum_{i=1}^{n}\left\lfloor \frac{n}{i}\right\rfloor =\sum_{j=1}^{n}$ \end_inset št. del. \begin_inset Formula $j$ \end_inset . Koliko je povprečje? \begin_inset Formula \[ \frac{1}{n}\sum_{j=1}^{n}\text{\#del.}j\overset{\text{asimptotsko enako}}{\sim}\frac{1}{\cancel{n}}\sum_{j=1}\frac{\cancel{n}}{i}=\sum_{j=1}^{1}\frac{1}{i}=H_{n}=n-\text{to harmonično število} \] \end_inset \begin_inset Formula \[ \lim_{n\to\infty}H_{n}=\ln\left(n\right) \] \end_inset \end_layout \end_deeper \begin_layout Paragraph* Motivacija za načrte \end_layout \begin_layout Standard Podjetje ima izdelek v več različicah in ga testira na več potrošnikih. Zahteve: \end_layout \begin_layout Enumerate hočemo, da vsak potrošnik testira enako različic. \end_layout \begin_layout Enumerate hočemo, da je vsaka različica enakokrat testirana. \end_layout \begin_layout Standard Temu pravimo načrt. Sledi formalnejša definicija, kjer je število potrošnikov \begin_inset Formula $b$ \end_inset , število različic \begin_inset Formula $v$ \end_inset , \begin_inset Formula $k$ \end_inset število različic na potrošnika, \begin_inset Formula $\lambda$ \end_inset pa število potrošnikov na različico. \end_layout \begin_layout Definition* \begin_inset Formula $B=\left\{ B_{1},\dots,B_{b}\right\} $ \end_inset je načrt s parametri \begin_inset Formula $\left(v,k,\lambda\right)$ \end_inset , če velja \begin_inset Formula $B_{1},\dots,B_{b}\subseteq\left[v\right]$ \end_inset , \begin_inset Formula $\forall i\in\left[b\right]:\left|B_{i}\right|=k$ \end_inset , \begin_inset Formula $\forall i\in\left[v\right]\exists$ \end_inset natanko \begin_inset Formula $\lambda$ \end_inset množic, v katerih je \begin_inset Formula $i$ \end_inset vsebovan. \end_layout \begin_layout Definition* Če si predstavljamo relacijo \begin_inset Formula $S\subseteq\left[v\right]\times B$ \end_inset s predpisom \begin_inset Formula $iSB_{j}\Leftrightarrow i\in B_{j}$ \end_inset , zanjo velja \begin_inset Formula $v\left(S\right)=\lambda$ \end_inset in \begin_inset Formula $s\left(S\right)=k$ \end_inset , torej \begin_inset Formula $v\cdot\lambda=k\cdot b$ \end_inset . \end_layout \begin_layout Remark* Potreben pogoj za načrt je, da je \begin_inset Formula $v\cdot\lambda=k\cdot b$ \end_inset , da \begin_inset Formula $k\vert v\cdot\lambda$ \end_inset in da \begin_inset Formula $b\leq{v \choose k}\Longrightarrow\frac{v\lambda}{k}\leq{v \choose k}\Rightarrow\lambda\leq\frac{\cancel{k}\cancelto{\left(v-1\right)!}{v!}}{\cancelto{\left(k-1\right)!}{k!}\cancel{v}\left(v-k\right)!}={v-1 \choose k-1}$ \end_inset (število \begin_inset Formula $k-$ \end_inset elementnih podmnožic \begin_inset Formula $\left[v\right]$ \end_inset , ki vsebujejo \begin_inset Formula $i$ \end_inset ) \end_layout \begin_layout Theorem* Načrt s parametri \begin_inset Formula $\left(v,k,\lambda\right)\exists\Leftrightarrow\lambda\leq{v-1 \choose k-1}\wedge k\vert v\lambda$ \end_inset . \end_layout \begin_layout Proof Dokazujemo ekvivalenco. \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Rightarrow\right)$ \end_inset Že dokazano v zgornji opombi (potreben pogoj). \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Leftarrow\right)$ \end_inset Po predpostavki \begin_inset Formula $\lambda\leq{v-1 \choose k-1}\wedge k\vert v\lambda$ \end_inset . Npr. \begin_inset Formula $v=8,k=4,\lambda=3$ \end_inset ustreza \begin_inset Formula $4\vert8\cdot3$ \end_inset in \begin_inset Formula $3\leq{7 \choose 3}=35$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Izberimo poljubnih \begin_inset Formula $b$ \end_inset različnih \begin_inset Formula $k-$ \end_inset podmnožic \begin_inset Formula $\left[v\right]$ \end_inset . To lahko storimo, ker je \begin_inset Formula $b=\frac{v\lambda}{k}\leq\frac{v}{k}{v-1 \choose k-1}={v \choose k}$ \end_inset . \end_layout \begin_layout Standard Vzamemo npr. 1234, 1356, 1567, 1568, 2356, 3457. Z \begin_inset Formula $\lambda_{i}$ \end_inset označimo, v koliko blokih je \begin_inset Formula $i$ \end_inset . Tedaj \begin_inset Formula $\lambda_{1}=4$ \end_inset , \begin_inset Formula $\lambda_{2}=2$ \end_inset , \begin_inset Formula $\lambda_{3}=4$ \end_inset , \begin_inset Formula $\lambda_{4}=2$ \end_inset , \begin_inset Formula $\lambda_{5}=5$ \end_inset , \begin_inset Formula $\lambda_{6}=4$ \end_inset , \begin_inset Formula $\lambda_{7}=2$ \end_inset , \begin_inset Formula $\lambda_{8}=1$ \end_inset . To ni načrt. \end_layout \begin_layout Standard \begin_inset Formula $k$ \end_inset kljukic že je v vsakem stolpcu, a v vsaki vrstici ni enako kljukic (v \begin_inset Formula $i-$ \end_inset ti jih je \begin_inset Formula $\lambda_{i}$ \end_inset ). Velja \begin_inset Formula $\sum_{i=1}^{v}\lambda_{i}=k\cdot b=\lambda v\Longrightarrow\frac{\sum_{i=1}^{v}\lambda_{i}}{v}=\overline{\lambda_{i}}=\lambda$ \end_inset . Če \begin_inset Formula $\forall i\in\left[v\right]:\lambda_{i}=\lambda$ \end_inset , imamo načrt in smo končali, sicer vzamemo \begin_inset Formula $i$ \end_inset in \begin_inset Formula $j$ \end_inset , da \begin_inset Formula $\lambda_{i}<\lambda<\lambda_{j}$ \end_inset (gotovo \begin_inset Formula $\exists$ \end_inset zaradi prejšnjega razmisleka o povprečju). \end_layout \begin_layout Standard Bloki so štirih disjunktnih tipov: \begin_inset Formula $I:i,j\in B$ \end_inset , \begin_inset Formula $II:i\not\in B,j\in B$ \end_inset , \begin_inset Formula $III:i\in B,j\not\in B$ \end_inset , \begin_inset Formula $IV:i\not\in B,j\not\in B$ \end_inset . Velja \begin_inset Formula $\lambda_{i}=\left|I\right|+\left|III\right|$ \end_inset , \begin_inset Formula $\lambda_{j}=\left|I\right|+\left|II\right|$ \end_inset . Vemo \begin_inset Formula $\lambda_{i}<\lambda_{j}\Rightarrow\left|III\right|<\left|II\right|\Rightarrow$ \end_inset gotovo \begin_inset Formula $\exists$ \end_inset vsak en blok tipa \begin_inset Formula $II$ \end_inset . \end_layout \begin_layout Standard Treba je še dokazati, da obstaja blok tipa \begin_inset Formula $II$ \end_inset , kjer pri menjavi elementa \begin_inset Formula $j$ \end_inset z elementom \begin_inset Formula $i$ \end_inset dobimo blok, ki še ne obstaja. Vemo, da je blokov tipa \begin_inset Formula $II$ \end_inset gotovo več od blokov tipa \begin_inset Formula $III$ \end_inset . Po naši menjavi dobimo iz bloka \begin_inset Formula $II$ \end_inset blok \begin_inset Formula $III$ \end_inset . Ker je blokov tipa \begin_inset Formula $II$ \end_inset več od blokov tipa \begin_inset Formula $III$ \end_inset , \begin_inset Formula $\exists$ \end_inset blok tipa \begin_inset Formula $II$ \end_inset , da ob menjavi dobimo nov blok tipa \begin_inset Formula $III$ \end_inset , ki še ni med poprejšnjimi bloki — je nov. \end_layout \begin_layout Standard Zakaj se algoritem ustavi? \begin_inset Formula $\sum_{i=1}^{v}\left|\lambda_{i}-\lambda\right|$ \end_inset je na vsakem koraku za 2 manjša. Ko je vsota enaka 1 (nedosegljivo stanje, kajti tedaj \begin_inset Formula $\overline{\lambda_{i}}\not=\lambda$ \end_inset ) ali 0, se ustavimo in imamo načrt. \end_layout \end_deeper \end_deeper \begin_layout Definition* \begin_inset Formula $t-$ \end_inset načrt. \begin_inset Formula $B=\left\{ B_{1},\dots,B_{b}\right\} $ \end_inset je \begin_inset Formula $t-$ \end_inset načrt s parametri \begin_inset Formula $\left(v,k,\lambda_{t}\right),$ \end_inset če se ne le vsak element pojavi \begin_inset Formula $t-$ \end_inset krat, temveč se celo vsaka \begin_inset Formula $t-$ \end_inset elementna podmnožica \begin_inset Formula $\left[v\right]$ \end_inset pojavi natanko \begin_inset Formula $t-$ \end_inset krat ZDB \begin_inset Formula $B$ \end_inset je načrt in \begin_inset Formula $\forall A\subseteq\left[v\right]:A\subseteq B_{j}$ \end_inset za natanko \begin_inset Formula $\lambda_{t}$ \end_inset indeksov \begin_inset Formula $j$ \end_inset . \end_layout \begin_layout Remark* Načrt je isto kot \begin_inset Formula $1-$ \end_inset načrt. \begin_inset Formula $t-$ \end_inset načrt je posplošitev načrta. \end_layout \begin_layout Example* Primeri. \end_layout \begin_deeper \begin_layout Enumerate Fanova ravnina. \end_layout \begin_deeper \begin_layout Standard \begin_inset Float figure placement document alignment document wide false sideways false status open \begin_layout Plain Layout \begin_inset Graphics filename fanova_ravnina.png \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Fanova ravnina z \begin_inset Formula $v=7$ \end_inset \end_layout \end_inset \end_layout \begin_layout Plain Layout \end_layout \end_inset Zapiši vse točke, ki ležijo na isti premici, kjer je rumen krog tudi premica. 123, 156, 147, 257, 345, 362, 264. To je načrt in hkrati \begin_inset Formula $2-$ \end_inset načrt s parametri \begin_inset Formula $v=7$ \end_inset , \begin_inset Formula $k=3$ \end_inset , \begin_inset Formula $\lambda_{1}=3$ \end_inset , \begin_inset Formula $\lambda_{2}=1$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $3-$ \end_inset načrt s parametri \begin_inset Formula $\left(8,4,1\right)$ \end_inset : 1235, 1248, 1267, 1346, 1378, 1457, 1568, 2347, 2368, 2456, 2578, 3458, 3567, 4678. \end_layout \end_deeper \begin_layout Theorem* Če je \begin_inset Formula $B$ \end_inset \begin_inset Formula $t-$ \end_inset načrt s parametri \begin_inset Formula $\left(v,k,\lambda_{t}\right)$ \end_inset , je tudi \begin_inset Formula $\left(t-1\right)-$ \end_inset načrt s paramatri \begin_inset Formula $\left(v,k,\lambda_{t-1}\right)$ \end_inset , kjer je \begin_inset Formula $\lambda_{t-1}=\frac{v-\left(t-1\right)}{k-\left(t-1\right)}$ \end_inset . \end_layout \begin_layout Proof Naj bo \begin_inset Formula $S\subseteq\left[v\right],\left|S\right|=t-1$ \end_inset , \begin_inset Formula $\lambda_{S}\coloneqq$ \end_inset v koliko blokih je \begin_inset Formula $S$ \end_inset vsebovana. Naj bo \begin_inset Formula $R\subseteq\left[v\right]\times B$ \end_inset relacija s predpisom \begin_inset Formula $iRB_{j}\Leftrightarrow i\not\in S\wedge S\cup\left\{ i\right\} \subseteq B_{j}$ \end_inset . V vrstici je za dani \begin_inset Formula $i$ \end_inset 0 kljukic, če \begin_inset Formula $i\in S$ \end_inset , sicer (če \begin_inset Formula $i\not\in S$ \end_inset ) pa \begin_inset Formula $\lambda_{t}$ \end_inset kljukic. V stolpcu je za dani \begin_inset Formula $B_{j}$ \end_inset 0 kljukic, če \begin_inset Formula $S\not\subseteq B_{j}$ \end_inset , sicer (če \begin_inset Formula $S\subseteq B$ \end_inset ), pa \begin_inset Formula $k-\left(t-1\right)$ \end_inset kljukic. Pomaga skica tabele \begin_inset Formula $R$ \end_inset . V \begin_inset Formula $v-\left(t-1\right)$ \end_inset vrsticah se zgodi, da \begin_inset Formula $i\not\in S$ \end_inset . Preštejmo po vrsticah in nato po stolpcih: \begin_inset Formula \[ \left(v-\left(t-1\right)\right)\lambda_{t}=\lambda_{s}\left(k-\left(t-1\right)\right) \] \end_inset \begin_inset Formula \[ \lambda_{s}=\frac{\left(v-\left(t-1\right)\right)\lambda_{t}}{k-\left(t-1\right)} \] \end_inset \begin_inset Formula \[ \lambda_{t-1}\coloneqq\lambda_{s} \] \end_inset \end_layout \begin_layout Section Permutacije, razdelitve, razčlenitve \end_layout \begin_layout Subsection Stirlingova števila 1. vrste \end_layout \begin_layout Definition* \begin_inset Formula $c\left(n,k\right)=$ \end_inset število permutacij \begin_inset Formula $n$ \end_inset elementov, ki imajo \begin_inset Formula $k$ \end_inset ciklov. \end_layout \begin_layout Example* \begin_inset Formula $c\left(3,1\right)=2$ \end_inset , \begin_inset Formula $c\left(3,2\right)=3$ \end_inset , \begin_inset Formula $c\left(3,3\right)=1$ \end_inset , \begin_inset Formula $c\left(4,2\right)=4\cdot2+3=11$ \end_inset , \begin_inset Formula $c\left(n,n\right)=1$ \end_inset , \begin_inset Formula $c\left(n,n-1\right)={n \choose 2}$ \end_inset , \begin_inset Formula $c\left(n,1\right)=\left(n-1\right)!$ \end_inset , \begin_inset Formula $c\left(n,n\right)=\delta_{0,n}$ \end_inset , \begin_inset Formula $\sum_{k}c\left(n,k\right)=n!$ \end_inset (vse permutacije \begin_inset Formula $n$ \end_inset elementov). \end_layout \begin_layout Claim* \begin_inset Formula $c\left(n,k\right)=c\left(n-1,k-1\right)+c\left(n-1,k\right)\cdot\left(n-1\right)$ \end_inset \end_layout \begin_layout Proof Permutacije v \begin_inset Formula $S_{n}$ \end_inset s \begin_inset Formula $k$ \end_inset cikli ločimo na: \end_layout \begin_deeper \begin_layout Itemize take, ki vsebujejo cikel \begin_inset Formula $\left(n\right)$ \end_inset ( \begin_inset Formula $n$ \end_inset je negibna točka): teh je \begin_inset Formula $c\left(n-1,k-1\right)$ \end_inset \end_layout \begin_layout Itemize take, ki ne vsebujejo cikla \begin_inset Formula $\left(n\right)$ \end_inset : teh je \begin_inset Formula $c\left(n-1,k\right)\cdot\left(n-1\right)$ \end_inset . Če \begin_inset Formula $n$ \end_inset odstranimo, se število ciklov ne spremeni, vendar ga ne moremo vstaviti nazaj enolično, temveč na \begin_inset Formula $n-1$ \end_inset načinov. \end_layout \end_deeper \begin_layout Proof \begin_inset Float table placement document alignment document wide false sideways false status open \begin_layout Plain Layout \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout n \backslash k \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 3 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 5 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 3 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 3 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 6 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 11 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 6 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 5 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 24 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 50 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 35 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 10 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Tabela stirlingovih števil. \end_layout \end_inset \end_layout \end_inset \end_layout \begin_layout Theorem* \begin_inset Formula $\sum_{k=0}^{n}c\left(n,k\right)x^{k}=x^{\overline{n}}$ \end_inset \end_layout \begin_layout Example* \begin_inset Formula $n=3$ \end_inset : \begin_inset Formula $2x^{1}+3x^{2}+1x^{2}=x\left(x^{2}+3x+2\right)=x\left(x+1\right)\left(x+2\right)$ \end_inset \end_layout \begin_layout Proof Indukcija po \begin_inset Formula $n\in\mathbb{N}_{0}$ \end_inset . Baza \begin_inset Formula $n=0$ \end_inset : \begin_inset Formula $1=1$ \end_inset . Korak \begin_inset Formula $n-1\to n$ \end_inset : \begin_inset Formula \[ x^{\overline{n}}=x^{\overline{n-1}}\left(x+n-1\right)\overset{\text{I. P.}}{=}\sum_{k=0}^{n-1}c\left(n-1,k\right)x^{k}\left(x+n-1\right)=\sum_{k}c\left(n-1,k\right)x^{k+1}+\sum_{k}\left(n-1\right)c\left(n-1,k\right)x^{k}= \] \end_inset \begin_inset Formula \[ =\sum_{k}c\left(n-1,k-1\right)x^{k}+\sum_{k}\left(n-1\right)c\left(n-1,k\right)x^{k}=\sum_{k}\left(c\left(n-1,k-1\right)+\left(n-1\right)c\left(n-1,k\right)\right)x^{k}=\sum_{k}c\left(n,k\right)x^{k} \] \end_inset \end_layout \begin_layout Example* \begin_inset Formula $x=1$ \end_inset : število permutacij z vsemi števili ciklov \begin_inset Formula $=\sum_{k}c\left(n,k\right)=x^{\overline{n}}=1^{\overline{n}}=n!=$ \end_inset vse permutacije. \end_layout \begin_layout Subsection Stirlingova števila 2. vrste in Bellova števila \end_layout \begin_layout Definition* Razdelitev ali razbitje (ali particija) (angl. set partition) množice \begin_inset Formula $A$ \end_inset je množica množic (pravimo jim bloki) \begin_inset Formula $\left\{ B_{1},\dots,B_{k}\right\} $ \end_inset , da velja: \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $\forall i\in\left[k\right]:B_{i}\not=\emptyset$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $\forall i,k\in\left[k\right]:i\not=j\Rightarrow B_{i}\cap B_{j}=\emptyset$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $\bigcup_{i=1}^{k}B_{i}=A$ \end_inset \end_layout \end_deeper \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Definition* Stirlingovo število druge vrste \begin_inset Formula $S\left(n,k\right)$ \end_inset je število razdelitev množice \begin_inset Formula $\left[n\right]$ \end_inset s \begin_inset Formula $k$ \end_inset bloki. Bellovo število \begin_inset Formula $B\left(n\right)$ \end_inset je število vseh razdelive \begin_inset Formula $\left[n\right]$ \end_inset . \end_layout \begin_layout Example* \begin_inset Formula $S\left(4,2\right)=7$ \end_inset ; \begin_inset Formula $\left\{ 1,2,3,4\right\} $ \end_inset razdelimo na \begin_inset Formula $\left\{ \left\{ \_\right\} ,\left\{ \_,\_,\_\right\} \right\} $ \end_inset \begin_inset Formula $\times4$ \end_inset , \begin_inset Formula $\left\{ \left\{ \_,\_\right\} ,\left\{ \_,\_\right\} \right\} $ \end_inset \begin_inset Formula $\times3$ \end_inset (fiksiramo enko v prvi blok, imamo še tri izbire za njeno sosedo, v drugem bloku so nato enolično določeni elementi) \end_layout \begin_layout Standard \begin_inset Float table placement document alignment document wide false sideways false status open \begin_layout Plain Layout \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $n$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $B\left(n\right)$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 3 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 5 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $S\left(4,1\right)+S\left(4,2\right)+S\left(4,3\right)+S\left(4,4\right)=1+7+6+1=15$ \end_inset \end_layout \end_inset \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Bellova števila \end_layout \end_inset \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Remark* \begin_inset Formula $S\left(n,0\right)=\delta_{0,n}$ \end_inset , \begin_inset Formula $S\left(n,n\right)=1$ \end_inset , \begin_inset Formula $B\left(n\right)=\sum_{k}S\left(n,k\right)$ \end_inset , \begin_inset Formula $S\left(n,n-1\right)={n \choose 2}$ \end_inset \end_layout \begin_layout Claim* Rekurzivna zveza. \begin_inset Formula $S\left(n,k\right)=S\left(n-1,k-1\right)+k\cdot S\left(n-1,k\right)$ \end_inset , \begin_inset Formula $B\left(n+1\right)=\sum_{k=0}^{n}{n \choose k}B\left(k\right)$ \end_inset \end_layout \begin_layout Example* \begin_inset Formula $B\left(4\right)={3 \choose 0}B\left(0\right)+{3 \choose 1}B\left(1\right)+{3 \choose 2}B\left(2\right)+{3 \choose 3}B\left(3\right)=1\cdot1+3\cdot1+3\cdot2+1\cdot5=15$ \end_inset \end_layout \begin_layout Proof Ločimo vse razdelitve \begin_inset Formula $\left[n\right]$ \end_inset s \begin_inset Formula $k$ \end_inset bloki na dve disjunktni podmnožici: \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $\left\{ n\right\} $ \end_inset je blok: takih je \begin_inset Formula $S\left(n-1,k-1\right)$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $\left\{ n\right\} $ \end_inset ni blok: takih je \begin_inset Formula $S\left(n-1,k\right)\cdot k$ \end_inset — \begin_inset Formula $\cdot k$ \end_inset ker lahko v razdelitev \begin_inset Formula $\left[n-1\right]$ \end_inset na \begin_inset Formula $k$ \end_inset blokov \begin_inset Formula $n$ \end_inset vstavimo na \begin_inset Formula $k$ \end_inset načinov (v enega izmed \begin_inset Formula $k$ \end_inset blokov) \end_layout \begin_layout Standard Vse razdelitve \begin_inset Formula $\left[n+1\right]$ \end_inset — Bellova števila: Naj bo \begin_inset Formula $n+1$ \end_inset v bloku s še \begin_inset Formula $k$ \end_inset elementi, \begin_inset Formula $0\leq k\leq n$ \end_inset . Tedaj \begin_inset Formula \[ B\left(n+1\right)=\sum_{k=0}^{n}{n \choose k}B\left(n+1-k-1\right)= \] \end_inset ... za rekurzijo si oglejmo razdelitve brez bloka z \begin_inset Formula $n+1$ \end_inset . \begin_inset Formula ${n \choose k}$ \end_inset predstavlja izbiro elementov, ki so še skupaj z \begin_inset Formula $n$ \end_inset ... \begin_inset Formula \[ =\sum_{k=0}^{n}{n \choose k}B\left(n-k\right)\overset{\text{štejmo v drugo smer}}{=}\sum_{k=0}^{n}{n \choose n-k}B\left(k\right)=\sum_{k=0}^{n}{n \choose k}B\left(k\right) \] \end_inset \end_layout \end_deeper \begin_layout Proof \begin_inset Float table placement document alignment document wide false sideways false status open \begin_layout Plain Layout \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $n\backslash k$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 3 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 5 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $B\left(n\right)$ \end_inset (vsota po vrstici) \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 3 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 3 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 5 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 4 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 7 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 6 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 15 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 5 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 15 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 25 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 10 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 52 \end_layout \end_inset \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Stirlingova števila druge vrste \end_layout \end_inset \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Standard To nas spomni na ekvivalenčne razrede. \end_layout \begin_layout Definition* Ekvivalenčna relacija je refleksivna ( \begin_inset Formula $x\sim x$ \end_inset ), simetrična ( \begin_inset Formula $x\sim y\Rightarrow y\sim x$ \end_inset ) in tranzitivna ( \begin_inset Formula $x\sim y\wedge y\sim z\Rightarrow x\sim z$ \end_inset ). \end_layout \begin_layout Remark* Množica razpade na ekvivalenčne razrede, ki tvorijo razdelitev. \begin_inset Formula $S\left(n,k\right)$ \end_inset je število ekvivalenčnih relacij na \begin_inset Formula $\left[n\right]$ \end_inset s \begin_inset Formula $k$ \end_inset ekvivalenčnimi razredi. \begin_inset Formula $B\left(n\right)$ \end_inset je število ekvivalenčnih relacij na \begin_inset Formula $\left[n\right]$ \end_inset . \end_layout \begin_layout Remark* Za surjekcijo \begin_inset Formula $f:\left[n\right]\to\left[k\right]$ \end_inset velja \begin_inset Formula $\forall i\in\left[k\right]:f^{-1}\left(i\right)\not=\emptyset$ \end_inset (praslika je neprazna množica). Ker je \begin_inset Formula $f$ \end_inset funkcija, velja \begin_inset Formula $\forall i,j\in\left[k\right]:i\not=j\Rightarrow f^{-1}\left(i\right)\cap f^{-1}\left(i\right)=\emptyset$ \end_inset in \begin_inset Formula $\bigcup_{i=1}^{k}f^{-1}\left(i\right)=\left[n\right]$ \end_inset . Surjekcija pa vseeno ni isto kot razdelitev — pomemben je vrstni red blokov. \end_layout \begin_layout Question* Koliko surjekcij je iz \begin_inset Formula $\left[n\right]$ \end_inset v \begin_inset Formula $\left[k\right]$ \end_inset ? Odgovor: \begin_inset Formula $S\left(n,k\right)\cdot k!$ \end_inset — Surjekcija je razdelitev z vrstnim redom blokov. Koliko je \begin_inset Formula $\left[4\right]\to\left[2\right]$ \end_inset surjekcij? Odgovor: \begin_inset Formula $S\left(4,2\right)\cdot2!=7\cdot2=14$ \end_inset \end_layout \begin_layout Definition* Premestitve so permutacije brez negibne točke. \end_layout \begin_layout Corollary* Od prej se spomnimo, da je število surjekcij iz \begin_inset Formula $\left[n\right]$ \end_inset v \begin_inset Formula $\left[k\right]$ \end_inset enako \begin_inset Formula $\sum_{j=0}^{k}\left(-1\right)^{k-j}\binom{k}{j}j^{n}$ \end_inset . Posledično je \begin_inset Formula $S\left(n,k\right)=\sum_{j=0}^{k}\frac{\left(-1\right)^{k-j}j^{n}}{j!\left(k-j\right)!}$ \end_inset . \end_layout \begin_layout Example* \begin_inset Formula \[ S\left(n,2\right)=\frac{2^{n}}{2}-\frac{1}{1}+\frac{\delta_{0,n}}{2!\cdot0!}=2^{n-1}-1+\frac{\delta_{n,0}}{2} \] \end_inset Razdelimo \begin_inset Formula $n$ \end_inset elementov v 2 bloka. Fiksirajmo \begin_inset Formula $1$ \end_inset v prvi blok, za vsak preostali ( \begin_inset Formula $n-1$ \end_inset jih ostane) element pa imamo dvojiški enum, ki pove, v katerem bloku je. \begin_inset Formula $-1$ \end_inset zato, ker mora biti drugi blok neprazen in izločimo opcijo, kjer so vsi dvojiški enumi enaki 0, \begin_inset Formula $\delta_{n,0}$ \end_inset zato, da popravimo primer, ko je \begin_inset Formula $n=0$ \end_inset . \end_layout \begin_layout Theorem* \begin_inset Formula $\sum_{k}S\left(n,k\right)x^{k}=?$ \end_inset TODO XXX FIXME NE RAZUMEM \end_layout \begin_layout Example* \begin_inset Formula $n=3$ \end_inset : \begin_inset Formula $\sum_{k}S\left(3,k\right)x^{k}=x+3x^{2}+x^{3}=?$ \end_inset \end_layout \begin_layout Theorem* \begin_inset Formula $\sum_{k}S\left(n,k\right)x^{\underline{k}}=x^{n}$ \end_inset \end_layout \begin_layout Example* \begin_inset Formula $n=3$ \end_inset : \begin_inset Formula $\sum_{k}S\left(3,k\right)x^{\underline{k}}=x+3x\left(x-1\right)+x\left(x-1\right)\left(x-2\right)=x\left(1\cancel{+3x}-3+x^{2}\cancel{-3x}+2\right)=x\left(\cancel{1-3}+x^{2}\cancel{+2}\right)=x^{3}$ \end_inset \end_layout \begin_layout Proof Več načinov. \end_layout \begin_deeper \begin_layout Itemize Indukcija. (na vajah) \end_layout \begin_layout Itemize Kombinatorično: \begin_inset Formula $x^{n}$ \end_inset : štetje \end_layout \begin_deeper \begin_layout Itemize nizov dolžine \begin_inset Formula $n$ \end_inset z elementi iz \begin_inset Formula $\left[x\right]$ \end_inset \end_layout \begin_layout Itemize preslikav iz \begin_inset Formula $\left[n\right]$ \end_inset v \begin_inset Formula $\left[x\right]=\left|\left[x\right]^{\left[n\right]}\right|$ \end_inset . Vsaka preslikava je surjekcija na svojo sliko. Oglejmo si vse slike \begin_inset Formula $T\subseteq\left[x\right]$ \end_inset : \begin_inset Formula \[ x^{n}=\left|\left[x\right]^{\left[n\right]}\right|=\sum_{T\subseteq\left[x\right]}\left|T\right|!\cdot S\left(n,\left|T\right|\right)\overset{\text{po močeh \left|T\right|}}{=}\sum_{k}k!\cdot S\left(n,k\right){x \choose k}\overset{{x \choose k}=\frac{x^{\underline{k}}}{k!}}{=}\sum_{k}S\left(n,k\right)x^{\underline{k}} \] \end_inset \end_layout \begin_deeper \begin_layout Standard Dokaz je veljaven za \begin_inset Formula $x\in\mathbb{N}_{0}$ \end_inset . Da dokažemo, da sta dva polinoma stopnje \begin_inset Formula $\leq n$ \end_inset enaka, je dovolj preveriti ujemanje v \begin_inset Formula $n+1$ \end_inset različnih točkah, kajti razlika je polinom stopnje \begin_inset Formula $\leq n$ \end_inset , če ni ničeln ima \begin_inset Formula $\leq n$ \end_inset ničel, kar je v neskladju s tem, da se polinoma ujemata v \begin_inset Formula $n+1$ \end_inset točkah (v ničlah se ne). Nmamo polinoma stopnje \begin_inset Formula $n$ \end_inset , ki se ujemata v \begin_inset Formula $\infty$ \end_inset točkah, torej sta enaka. Torej je dokaz veljaven tudi za realna števila. \end_layout \end_deeper \end_deeper \end_deeper \begin_layout Subsection Lahova števila \end_layout \begin_layout Standard Imenujejo se po slovenskem aktuarju Ivu Lahu. \end_layout \begin_layout Definition* \begin_inset Formula $L\left(n,k\right)$ \end_inset je število razdelitev \begin_inset Formula $\left[n\right]$ \end_inset na \begin_inset Formula $k$ \end_inset linearno urejenih blokov. \begin_inset Formula $\left\{ 142,3674\right\} =\left\{ 3674,152\right\} $ \end_inset , toda \begin_inset Formula $\left\{ 152,3674\right\} \not=\left\{ 125,3764\right\} $ \end_inset . Vrstni red znotraj bloka je pomemben, ni pa pomemben vrstni red blokov. \end_layout \begin_layout Example* \begin_inset Formula $L\left(4,2\right)$ \end_inset : \begin_inset Formula $\left\{ \left(\_\right),\left(\_,\_,\_\right)\right\} $ \end_inset \begin_inset Formula $\times4\cdot3!$ \end_inset , \begin_inset Formula $\left\{ \left(\_,\_\right),\left(\_,\_\right)\right\} $ \end_inset \begin_inset Formula $\times3\cdot2!\cdot2!$ \end_inset (enka v prvem bloku, vrstni red v 1. bloku, vrstni red v 2. bloku) \begin_inset Formula $\Longrightarrow24+12=36=L\left(4,2\right)$ \end_inset . \end_layout \begin_layout Claim* Rekurzivna zveza za Lahova števila: \begin_inset Formula $L\left(n,k\right)=L\left(n-1,k-1\right)+L\left(n-1,k\right)\cdot\left(n-1+k\right)$ \end_inset \end_layout \begin_layout Proof Ločimo razdelitve \begin_inset Formula $\left[n\right]$ \end_inset na \begin_inset Formula $k$ \end_inset linearno urejenih blokov v dve disjunktni podmnožici: \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $\left(n\right)$ \end_inset je blok: takih je \begin_inset Formula $L\left(n-1,k-1\right)$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $\left(n\right)$ \end_inset ni blok: takih je \begin_inset Formula $L\left(n-1,k\right)\cdot\left(n-1+k\right)$ \end_inset — \begin_inset Formula $n$ \end_inset lahko vstavimo nazaj bodisi za nek element ( \begin_inset Formula $n-1$ \end_inset opcij) ali na začetek enega izmed blokov ( \begin_inset Formula $k$ \end_inset opcij) \end_layout \end_deeper \begin_layout Claim* \begin_inset Formula $L\left(n,k\right)=\frac{n!}{k!}{k-1 \choose n-1}$ \end_inset za \begin_inset Formula $n,k\geq1$ \end_inset \end_layout \begin_layout Example* \begin_inset Formula $L\left(4,2\right)=\frac{4!}{2!}{3 \choose 1}=36$ \end_inset , \begin_inset Formula $L\left(n,n\right)=1$ \end_inset , \begin_inset Formula $L\left(n,1\right)=n!$ \end_inset , \begin_inset Formula $L\left(n,n-1\right)=n\left(n-1\right)$ \end_inset \end_layout \begin_layout Proof Preštejmo urejene razdelitve na linearno urejene bloke na dva načina: \end_layout \begin_deeper \begin_layout Standard uredimo bloke in množimo z razdelitvami \begin_inset Formula $=k!\cdot L\left(n,k\right)=n!{n-1 \choose k-1}=$ \end_inset permutacije množimo s kompozicijami (pregrade) \end_layout \end_deeper \begin_layout Theorem* \begin_inset Formula \[ \sum_{k}L\left(n,k\right)x^{\underline{k}}=x^{\overline{n}} \] \end_inset \end_layout \begin_layout Proof Induktivni. Baza \begin_inset Formula $n=0$ \end_inset . Korak \begin_inset Formula $n-1\to n$ \end_inset : \begin_inset Formula \[ x^{\overline{n}}=x^{\overline{n-1}}\left(x+n-1\right)=\left(\sum_{k}L\left(n-1,k\right)x^{\underline{k}}\right)\cdot\left(x+n-1=\left(x-k\right)+\left(n+k-1\right)\right)= \] \end_inset \begin_inset Formula \[ =\sum_{k}L\left(n-1,k\right)x^{\underline{k+1}}\left(+\sum_{k}L\left(n-1,k\right)x^{\underline{k}}\right)\cdot\left(n+k-1\right)=\sum_{k}L\left(n-1,k-1\right)x^{\underline{k}}+\left(\sum_{k}L\left(n-1,k\right)x^{\underline{k}}\right)\cdot\left(n+k-1\right)=\sum_{k}L\left(n,k\right)x^{\underline{k}} \] \end_inset \end_layout \begin_layout Remark* Nekaj opomb. \begin_inset Formula \[ S\left(n,k\right)\leq c\left(n,k\right)\leq L\left(n,k\right) \] \end_inset \begin_inset Formula \[ \sum_{k}c\left(n,k\right)x^{\underline{k}}=x^{n} \] \end_inset \begin_inset Formula \[ \sum_{k}L\left(n,k\right)x^{\underline{k}}=x^{\overline{n}} \] \end_inset \begin_inset Formula \[ \sum_{k}c\left(n,k\right)\left(-1\right)^{k}x^{k}=\left(-1\right)^{n}x^{\underline{n}} \] \end_inset \begin_inset Formula \[ \sum_{k}\left(-1\right)^{n-k}c\left(n,k\right)x^{k}=x^{\underline{n}} \] \end_inset \begin_inset Formula \[ \sum_{k}\left(-1\right)^{n-k}S\left(n,k\right)x^{\overline{k}}=x^{n} \] \end_inset \begin_inset Formula \[ \sum_{k}\left(-1\right)^{n-k}L\left(n,k\right)x^{\overline{k}}=x^{\underline{n}} \] \end_inset \end_layout \begin_layout Paragraph* Operacije v algebri \end_layout \begin_layout Standard seštevanje, množenje, množenje s skalarjem. \end_layout \begin_layout Standard seštevanje+množenje nam data kolobar, seštevanje in množenje s skalarjem vektorski prostor, vse troje pa (komutativno) algebro. \end_layout \begin_layout Example* \begin_inset Formula $m\times m$ \end_inset matrike so nekomutativne algebre. \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Example* \begin_inset Formula $\mathbb{R}\left[x\right]$ \end_inset je neskončnorazsežen vektorski prostor. Ena baza je \begin_inset Formula $\left\{ 1,x,x^{2},\dots\right\} $ \end_inset , spet druga je \begin_inset Formula $\left\{ 1,x,x^{\underline{2}},x^{\underline{3}},\dots\right\} $ \end_inset , še ena je \begin_inset Formula $\left\{ 1,x,x^{\overline{2}},x^{\overline{3}},\dots\right\} $ \end_inset . \end_layout \begin_layout Remark* Naših šest polinomskih zvez nam daje prehodne matrike med bazami. \begin_inset Formula $\left(-1\right)^{n-k}c\left(n,k\right)\eqqcolon s\left(n,k\right)$ \end_inset (predznačeno stirlingovo število prve vrste). \end_layout \begin_layout Subsection Razčlenitve in eulerjev petkotniški izrek \end_layout \begin_layout Definition* Razčlenitev (angl. integer partition) \begin_inset Formula $n\in\mathbb{N}_{0}$ \end_inset je zaporedje \begin_inset Formula $\lambda_{1},\dots,\lambda_{l}$ \end_inset ; \begin_inset Formula $\forall i\in\left[l\right]:\lambda_{l}>0$ \end_inset , \begin_inset Formula $\lambda_{1}\geq\lambda_{2}\geq\cdots\geq\lambda_{l}$ \end_inset , \begin_inset Formula $\lambda_{1}+\cdots+\lambda_{l}=n$ \end_inset . Dodaten pogoj za razliko od kompozicij je linearna urejenost zaporedja (vrstni red ni pomemben). \begin_inset Formula $\lambda_{i}$ \end_inset so členi razčlenitve, \begin_inset Formula $l$ \end_inset je njena dolžina in \begin_inset Formula $n$ \end_inset njena velikost. S \begin_inset Formula $p_{k}\left(n\right)$ \end_inset označimo število razčlenitev \begin_inset Formula $n$ \end_inset dolžine \begin_inset Formula $k$ \end_inset , s \begin_inset Formula $\overline{p_{k}}\left(n\right)$ \end_inset označimo število razčlenitev dolžine \begin_inset Formula $\leq k$ \end_inset , s \begin_inset Formula $p\left(n\right)$ \end_inset pa število razčlenitev \begin_inset Formula $n$ \end_inset (vseh dolžin). \end_layout \end_body \end_document