#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \begin_preamble \usepackage{hyperref} \usepackage{siunitx} \usepackage{pgfplots} \usepackage{listings} \usepackage{multicol} \sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} \usepackage{amsmath} \usepackage{tikz} \newcommand{\udensdash}[1]{% \tikz[baseline=(todotted.base)]{ \node[inner sep=1pt,outer sep=0pt] (todotted) {#1}; \draw[densely dashed] (todotted.south west) -- (todotted.south east); }% }% \DeclareMathOperator{\Lin}{\mathcal Lin} \DeclareMathOperator{\rang}{rang} \DeclareMathOperator{\sled}{sled} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\red}{red} \DeclareMathOperator{\karakteristika}{char} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\Slika}{Ker} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\n}{n} \DeclareMathOperator{\Col}{Col} \usepackage{algorithm,algpseudocode} \providecommand{\corollaryname}{Posledica} \usepackage[slovenian=quotes]{csquotes} \end_preamble \use_default_options true \begin_modules enumitem theorems-ams theorems-ams-extended \end_modules \maintain_unincluded_children no \language slovene \language_package default \inputencoding auto-legacy \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement H \float_alignment class \paperfontsize default \spacing single \use_hyperref true \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder false \pdf_colorlinks false \pdf_backref false \pdf_pdfusetitle true \papersize default \use_geometry true \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification false \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \leftmargin 2cm \topmargin 2cm \rightmargin 2cm \bottommargin 2cm \headheight 2cm \headsep 2cm \footskip 1cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style german \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Title Teorija Analize 1 — IŠRM 2023/24 \end_layout \begin_layout Author \noun on Anton Luka Šijanec \end_layout \begin_layout Date \begin_inset ERT status open \begin_layout Plain Layout \backslash today \end_layout \end_inset \end_layout \begin_layout Abstract Povzeto po zapiskih s predavanj profesorja Oliverja Dragičevića. \end_layout \begin_layout Standard \begin_inset CommandInset toc LatexCommand tableofcontents \end_inset \end_layout \begin_layout Section Števila \end_layout \begin_layout Definition* Množica je matematični objekt, ki predstavlja skupino elementov. Če element \begin_inset Formula $a$ \end_inset pripada množici \begin_inset Formula $A$ \end_inset , pišemo \begin_inset Formula $a\in A$ \end_inset , sicer pa \begin_inset Formula $a\not\in A$ \end_inset . Množica \begin_inset Formula $B$ \end_inset je podmnožica množice \begin_inset Formula $A$ \end_inset , pišemo \begin_inset Formula $B\subset A$ \end_inset , če \begin_inset Formula $\forall b\in B:b\in A$ \end_inset . Presek \begin_inset Formula $B$ \end_inset in \begin_inset Formula $C$ \end_inset označimo \begin_inset Formula $B\cap C\coloneqq\left\{ x;x\in B\wedge x\in C\right\} $ \end_inset . Unijo \begin_inset Formula $B$ \end_inset in \begin_inset Formula $C$ \end_inset označimo \begin_inset Formula $B\cup C\coloneqq\left\{ x;x\in B\vee x\in C\right\} $ \end_inset . Razliko/komplement \begin_inset Quotes gld \end_inset \begin_inset Formula $B$ \end_inset manj/brez \begin_inset Formula $C$ \end_inset \begin_inset Quotes grd \end_inset označimo \begin_inset Formula $B\setminus C\coloneqq\left\{ x;x\in B\wedge x\not\in C\right\} $ \end_inset . \end_layout \begin_layout Subsection Realna števila \end_layout \begin_layout Standard Množico realnih števil označimo \begin_inset Formula $\mathbb{R}$ \end_inset . V njej obstajata binarni operaciji seštevanje \begin_inset Formula $a+b$ \end_inset in množenje \begin_inset Formula $a\cdot b$ \end_inset . \end_layout \begin_layout Subsubsection Lastnosti seštevanja \end_layout \begin_layout Axiom Komutativnost: \begin_inset Formula $\forall a,b\in\mathbb{R}:a+b=b+a$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Axiom Asociativnost: \begin_inset Formula $\forall a,b,c\in\mathbb{R}:a+\left(b+c\right)=\left(a+b\right)+c$ \end_inset , torej je \begin_inset Formula $a+\cdots+z$ \end_inset dobro definiran izraz. \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Axiom Obstoj enote: \begin_inset Formula $\exists0\in\mathbb{R}\forall a\in\mathbb{R}:a+0=a$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Axiom Obstoj inverzov: \begin_inset Formula $\forall a\in\mathbb{R}\exists b\in\mathbb{R}\ni a+b=0$ \end_inset . \end_layout \begin_deeper \begin_layout Claim* Inverz je enoličen. \end_layout \begin_layout Proof Naj bo \begin_inset Formula $a,b,c\in\mathbb{R}$ \end_inset in \begin_inset Formula $a+b=0$ \end_inset in \begin_inset Formula $a+c=0$ \end_inset . Tedaj \begin_inset Formula $b=b+0=b+a+c=0+c=c$ \end_inset . \end_layout \begin_layout Corollary* Inverz je funkcija in aditivni inverz \begin_inset Formula $a$ \end_inset označimo z \begin_inset Formula $-a$ \end_inset . Pri zapisu \begin_inset Formula $a+\left(-b\right)$ \end_inset običajno \begin_inset Formula $+$ \end_inset izpustimo in pišemo \begin_inset Formula $a-b$ \end_inset , čemur pravimo odštevanje \begin_inset Formula $b$ \end_inset od \begin_inset Formula $a$ \end_inset . \end_layout \begin_layout Claim* \begin_inset Formula $\forall a\in\mathbb{R}:a=-\left(-a\right)$ \end_inset . \end_layout \begin_layout Proof Naj bo \begin_inset Formula $b=-a$ \end_inset in \begin_inset Formula $c=-b=-\left(-a\right)$ \end_inset . Tedaj velja \begin_inset Formula $c-a=c+b=-\left(-a\right)-a=0$ \end_inset in \begin_inset Formula $a=0+a=c-a+a=c+\left(-a\right)+a=c+0=c=-\left(-a\right)$ \end_inset . \end_layout \begin_layout Claim* \begin_inset Formula $-\left(b+c\right)=-b-c$ \end_inset \end_layout \begin_layout Proof Velja \begin_inset Formula $b+c+\left(-b-c\right)=b+c+\left(\left(-b\right)+\left(-c\right)\right)=b+\left(-b\right)+c+\left(-c\right)=0$ \end_inset , torej je \begin_inset Formula $b+c$ \end_inset inverz od \begin_inset Formula $\left(-b-c\right)$ \end_inset , torej je \begin_inset Formula $-\left(b+c\right)=-b-c$ \end_inset . \end_layout \end_deeper \begin_layout Subsubsection Lastnosti množenja \end_layout \begin_layout Axiom Komutativnost: \begin_inset Formula $\forall a,b\in\mathbb{R}:ab=ba$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Axiom Asociativnost: \begin_inset Formula $\forall a,b,c\in\mathbb{R}:a\left(bc\right)=\left(ab\right)c$ \end_inset , torej je \begin_inset Formula $a\cdots z$ \end_inset dobro definiran izraz. \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Axiom Obstoj enote: \begin_inset Formula $\exists1\in\mathbb{R}\forall a\in\mathbb{R}:a1=a$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Axiom Obstoj inverzov: \begin_inset Formula $\forall a\in\mathbb{R}\setminus\left\{ 0\right\} \exists b\in\mathbb{R}\setminus\left\{ 0\right\} \ni:ab=1$ \end_inset \end_layout \begin_deeper \begin_layout Claim* Inverz je enoličen. \end_layout \begin_layout Proof Naj bo \begin_inset Formula $a,b,c\in\mathbb{R}\setminus\left\{ 0\right\} $ \end_inset in \begin_inset Formula $ab=1$ \end_inset in \begin_inset Formula $ac=1$ \end_inset . Tedaj \begin_inset Formula $b=b1=bac=1c=c$ \end_inset . \end_layout \begin_layout Corollary* Inverz je funkcija in multiplikativni inverz \begin_inset Formula $a$ \end_inset označimo z \begin_inset Formula $a^{-1}$ \end_inset . Pri zapisu \begin_inset Formula $a\cdot b^{-1}$ \end_inset lahko \begin_inset Formula $\cdot$ \end_inset izpustimo in pišemo \begin_inset Formula $a/b$ \end_inset , čemur pravimo deljenje \begin_inset Formula $a$ \end_inset z \begin_inset Formula $b$ \end_inset za neničeln \begin_inset Formula $b$ \end_inset . \end_layout \end_deeper \begin_layout Subsubsection Skupne lastnosti v \begin_inset Formula $\mathbb{R}$ \end_inset \end_layout \begin_layout Axiom \begin_inset Formula $1\not=0$ \end_inset \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Axiom Distributivnost: \begin_inset Formula $\forall a,b,c\in\mathbb{R}:\left(a+b\right)c=ac+bc$ \end_inset \end_layout \begin_layout Paragraph Urejenost \begin_inset Formula $\mathbb{R}$ \end_inset \end_layout \begin_layout Standard Realna števila delimo na pozitivna \begin_inset Formula $\mathbb{R}_{+}\coloneqq\left\{ x\in\mathbb{R};x>0\right\} $ \end_inset , negativna \begin_inset Formula $\mathbb{R}_{-}\coloneqq\left\{ x\in\mathbb{R};x<0\right\} $ \end_inset in ničlo \begin_inset Formula $0$ \end_inset . Če je \begin_inset Formula $x\in\mathbb{\mathbb{R}}_{+}\cup\left\{ 0\right\} $ \end_inset , pišemo \begin_inset Formula $x\geq0$ \end_inset , če je \begin_inset Formula $x\in\mathbb{R}_{-}\cup\left\{ 0\right\} $ \end_inset , pišemo \begin_inset Formula $x\leq0$ \end_inset . \end_layout \begin_layout Axiom Če je \begin_inset Formula $a\not=0$ \end_inset , je natanko eno izmed \begin_inset Formula $\left\{ a,-a\right\} $ \end_inset pozitivno, imenujemo ga absolutna vrednost \begin_inset Formula $a$ \end_inset (pišemo \begin_inset Formula $\left|a\right|$ \end_inset ), in natanko eno negativno, pišemo \begin_inset Formula $-\left|a\right|$ \end_inset . \end_layout \begin_layout Definition* \begin_inset Formula $\left|0\right|=0$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Definition* Za \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset se \begin_inset Formula $\left|a-b\right|$ \end_inset imenuje razdalja. \end_layout \begin_layout Axiom \begin_inset Formula $\forall a,b\in\mathbb{R}:a,b>0\Rightarrow\left(a+b>0\right)\wedge\left(ab>0\right)$ \end_inset . \end_layout \begin_layout Definition* Za \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset : \begin_inset Formula $a$ \end_inset je večje od \begin_inset Formula $b$ \end_inset , oznaka \begin_inset Formula $a>b\Leftrightarrow a-b>0$ \end_inset . \begin_inset Formula $a$ \end_inset je manjše od \begin_inset Formula $b$ \end_inset , oznaka \begin_inset Formula $aa\right\} $ \end_inset in podobno \begin_inset Formula $[a,\infty)$ \end_inset . \end_layout \begin_layout Subsection Temeljne številske podmnožice \end_layout \begin_layout Subsubsection Naravna števila \begin_inset Formula $\mathbb{N}$ \end_inset \end_layout \begin_layout Definition* \begin_inset Formula $\mathbb{N}\coloneqq\left\{ 1,1+1,1+1+1,1+1+1+1,\dots\right\} $ \end_inset \end_layout \begin_layout Paragraph Matematična indukcija \end_layout \begin_layout Standard Če je \begin_inset Formula $A\subseteq\mathbb{N}$ \end_inset in velja \begin_inset Formula $1\in A$ \end_inset (baza) in \begin_inset Formula $a\in A\Rightarrow a+1\in A$ \end_inset (korak), tedaj \begin_inset Formula $A=\mathbb{N}$ \end_inset . \end_layout \begin_layout Claim* \begin_inset Formula $1+2+3+\cdots+n=\frac{n\left(n+1\right)}{2}$ \end_inset . \end_layout \begin_layout Proof \begin_inset Formula $A\coloneqq\left\{ n\in\mathbb{N};\text{velja trditev za }n\right\} $ \end_inset . Dokažimo \begin_inset Formula $A=\mathbb{N}$ \end_inset . \end_layout \begin_deeper \begin_layout Itemize Baza: \begin_inset Formula $1=\frac{1\cdot2}{2}=1$ \end_inset . \end_layout \begin_layout Itemize Korak: Predpostavimo \begin_inset Formula $1+2+3+\cdots+n=\frac{n\left(n+1\right)}{2}$ \end_inset . Prištejmo \begin_inset Formula $n+1$ \end_inset : \begin_inset Formula \[ 1+2+3+\cdots+n+\left(n+1\right)=\frac{n\left(n+1\right)}{2}+\left(n+1\right)=\frac{n\left(n+1\right)}{2}+\frac{2\left(n+1\right)}{2}=\frac{\left(n+2\right)\left(n+1\right)}{2} \] \end_inset \end_layout \end_deeper \begin_layout Subsubsection Cela števila \begin_inset Formula $\mathbb{Z}$ \end_inset \end_layout \begin_layout Standard Množica \begin_inset Formula $\mathbb{N}$ \end_inset je zaprta za seštevanje in množenje, torej \begin_inset Formula $\forall a,b\in\mathbb{N}:a+b\in\mathbb{N}\wedge ab\in\mathbb{N}$ \end_inset , ni pa zaprta za odštevanje, ker recimo \begin_inset Formula $5-3\not\in\mathbb{N}$ \end_inset . Zapremo jo za odštevanje in dobimo množico \begin_inset Formula $\mathbb{Z}$ \end_inset . \end_layout \begin_layout Definition* \begin_inset Formula $\mathbb{Z}\coloneqq\left\{ a-b;b,a\in\mathbb{N}\right\} $ \end_inset \end_layout \begin_layout Subsubsection Racionalna števila \begin_inset Formula $\mathbb{Q}$ \end_inset \end_layout \begin_layout Standard Najmanjša podmnožica \begin_inset Formula $\mathbb{R}$ \end_inset , ki vsebuje \begin_inset Formula $\mathbb{Z}$ \end_inset in je zaprta za deljenje, je \begin_inset Formula $\mathbb{Q}$ \end_inset . \end_layout \begin_layout Definition* \begin_inset Formula $\mathbb{Q}\coloneqq\left\{ a/b;a\in\mathbb{Z},b\in\mathbb{Z}\setminus\left\{ 0\right\} \right\} $ \end_inset . \end_layout \begin_layout Standard Velja \begin_inset Formula $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$ \end_inset . \end_layout \begin_layout Claim* Za \begin_inset Formula $a\in\mathbb{Q}$ \end_inset , \begin_inset Formula $b\not\in\mathbb{Q}$ \end_inset velja \begin_inset Formula $a+b\not\in\mathbb{Q}$ \end_inset in \begin_inset Formula $a\not=0\Rightarrow ab\not\in\mathbb{Q}$ \end_inset . \end_layout \begin_layout Proof PDDRAA \begin_inset Formula $a+b\in\mathbb{Q}$ \end_inset . Tedaj \begin_inset Formula $a+b-a\in\mathbb{Q}$ \end_inset , tedaj \begin_inset Formula $b\in\mathbb{Q}$ \end_inset , kar je \begin_inset Formula $\rightarrow\!\leftarrow$ \end_inset . PDDRAA \begin_inset Formula $ab\in\mathbb{Q}$ \end_inset . Tedaj \begin_inset Formula $\frac{ab}{a}\in\mathbb{Q}$ \end_inset , tedaj \begin_inset Formula $b\in\mathbb{Q}$ \end_inset , kar je \begin_inset Formula $\rightarrow\!\leftarrow$ \end_inset . \end_layout \begin_layout Subsection \begin_inset CommandInset label LatexCommand label name "subsec:Omejenost-množic" \end_inset Omejenost množic \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $A\subset\mathbb{R}$ \end_inset . \begin_inset Formula $A$ \end_inset je navzgor omejena \begin_inset Formula $\Leftrightarrow\exists m\in\mathbb{R}\forall a\in A:a\leq m$ \end_inset . Takemu \begin_inset Formula $m$ \end_inset pravimo zgornja meja. Najmanjši zgornji meji \begin_inset Formula $A$ \end_inset pravimo supremum ali natančna zgornja meja množice \begin_inset Formula $A$ \end_inset , označimo \begin_inset Formula $\sup A$ \end_inset . Če je zgornja meja \begin_inset Formula $A$ \end_inset ( \begin_inset Formula $m$ \end_inset ) element \begin_inset Formula $A$ \end_inset , je maksimum množice \begin_inset Formula $A$ \end_inset , označimo \begin_inset Formula $m=\max A$ \end_inset . Če množica ni navzgor omejena, pišemo \begin_inset Formula $\sup A=\infty$ \end_inset . \end_layout \begin_layout Standard Če \begin_inset Formula $s=\sup A\in\mathbb{R}$ \end_inset , mora veljati \begin_inset Formula $\forall a\in A:a\leq s$ \end_inset in \begin_inset Formula $\forall\varepsilon>0\exists b\in A\ni:b>s-\varepsilon$ \end_inset , torej za vsak neničeln \begin_inset Formula $\varepsilon$ \end_inset \begin_inset Formula $s-\varepsilon$ \end_inset ni več natančna zgornja meja za \begin_inset Formula $A$ \end_inset . \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $A\subset\mathbb{R}$ \end_inset . \begin_inset Formula $A$ \end_inset je navzdol omejena \begin_inset Formula $\Leftrightarrow\exists m\in\mathbb{R}\forall a\in A:a\geq m$ \end_inset . Takemu \begin_inset Formula $m$ \end_inset pravimo spodnja meja. Največji spodnji meji \begin_inset Formula $A$ \end_inset pravimo infimum ali natančna spodnja meja množice \begin_inset Formula $A$ \end_inset , označimo \begin_inset Formula $\inf A$ \end_inset . Če je spodnja meja \begin_inset Formula $A$ \end_inset ( \begin_inset Formula $m$ \end_inset ) element \begin_inset Formula $A$ \end_inset , je minimum množice \begin_inset Formula $A$ \end_inset , označimo \begin_inset Formula $m=\min A$ \end_inset . Če množica ni navzdol omejena, pišemo \begin_inset Formula $\inf A=-\infty$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Definition* Množica \begin_inset Formula $A\subset\mathbb{R}$ \end_inset je omejena, če je hkrati navzgor in navzdol omejena. \end_layout \begin_layout Axiom \begin_inset CommandInset label LatexCommand label name "axm:Dedekind.-Vsaka-navzgor" \end_inset Dedekind. Vsaka navzgor omejena množica v \begin_inset Formula $\mathbb{R}$ \end_inset ima natančno zgornjo mejo v \begin_inset Formula $\mathbb{R}$ \end_inset . \end_layout \begin_layout Remark* Za \begin_inset Formula $\mathbb{Q}$ \end_inset aksiom \begin_inset CommandInset ref LatexCommand ref reference "axm:Dedekind.-Vsaka-navzgor" plural "false" caps "false" noprefix "false" nolink "false" \end_inset ne velja. Če \begin_inset Formula $B\subset\mathbb{Q}$ \end_inset , se lahko zgodi, da \begin_inset Formula $\sup B\not\in\mathbb{Q}$ \end_inset . Primer: \begin_inset Formula $B\coloneqq\left\{ q\in\mathbb{Q};q^{2}\leq2\right\} $ \end_inset . \begin_inset Formula $\sup B=\sqrt{2}\not\in\mathbb{Q}$ \end_inset . \end_layout \begin_layout Example* \end_layout \begin_layout Subsection Decimalni zapis \end_layout \begin_layout Definition* \begin_inset Formula $\forall x\in\mathbb{R}^{+}\exists!m\in\mathbb{N}\cup\left\{ 0\right\} ,d_{1},d_{2},\dots\in\left\{ 0..9\right\} $ \end_inset , ki število natančno določajo. Pišemo \begin_inset Formula $x=m,d_{1}d_{2}\dots$ \end_inset . Natančno določitev mislimo v smislu: \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $m\leq xa_{n}$ \end_inset , strogo padajoče podobno, monotono, če je naraščajoče ali padajoče in strogo monotono, če je strogo naraščajoče ali strogo padajoče. \end_layout \begin_layout Subsection Limita zaporedja \end_layout \begin_layout Definition* Množica \begin_inset Formula $U\subseteq\mathbb{R}$ \end_inset je odprta, če \begin_inset Formula $\forall u\in U\exists r>0\ni:\left(u-r,u+r\right)\subseteq U$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Definition* Množica \begin_inset Formula $U\subseteq\mathbb{R}$ \end_inset je zaprta, če je \begin_inset Formula $U^{\mathcal{C}}\coloneqq\mathbb{R}\setminus U$ \end_inset odprta. \end_layout \begin_layout Claim* Odprt interval je odprta množica. \end_layout \begin_layout Proof Za poljubna \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset , \begin_inset Formula $b>a$ \end_inset , naj bo \begin_inset Formula $u\in\left(a,b\right)$ \end_inset poljuben. Ustrezen \begin_inset Formula $r$ \end_inset je \begin_inset Formula $\min\left\{ \left|r-a\right|,\left|r-b\right|\right\} $ \end_inset , da je \begin_inset Formula $\left(u-r,u+r\right)\subseteq U$ \end_inset . \end_layout \begin_layout Claim* Zaprt interval je zaprt. \end_layout \begin_layout Proof Naj bosta \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset poljubna in \begin_inset Formula $b>a$ \end_inset . Dokazujemo, da je \begin_inset Formula $\left[a,b\right]$ \end_inset zaprt, torej da je \begin_inset Formula $\left[a,b\right]^{\mathcal{C}}=\left(-\infty,a\right)\cup\left(b,\infty\right)$ \end_inset odprta množica. Za poljuben \begin_inset Formula $u\in\left[a,b\right]^{\mathcal{C}}$ \end_inset velja, da je bodisi \begin_inset Formula $\in\left(-\infty,a\right)$ \end_inset bodisi \begin_inset Formula $\left(b,\infty\right)$ \end_inset , kajti \begin_inset Formula $\left(-\infty,a\right)\cap\left(b,\infty\right)=\emptyset$ \end_inset . Po prejšnji trditvi v obeh primerih velja \begin_inset Formula $\exists r>0\ni:\left(u-r,u+r\right)\subseteq U$ \end_inset , torej je \begin_inset Formula $\left[a,b\right]^{\mathcal{C}}$ \end_inset res odprta, torej je \begin_inset Formula $\left[a,b\right]$ \end_inset res zaprta. \end_layout \begin_layout Definition* Množica \begin_inset Formula $B$ \end_inset je okolica točke \begin_inset Formula $t\in\mathbb{R}$ \end_inset , če vsebuje kakšno odprto množico \begin_inset Formula $U$ \end_inset , ki vsebuje \begin_inset Formula $t$ \end_inset , torej \begin_inset Formula $t\in U^{\text{odp.}}\subseteq B\subseteq\mathbb{R}$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Definition* \begin_inset Formula $L\in\mathbb{R}$ \end_inset je limita zaporedja \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{R}}$ \end_inset \begin_inset Formula $\Leftrightarrow\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|a_{n}-L\right|<\varepsilon$ \end_inset . ZDB \begin_inset Formula $\forall V$ \end_inset okolica \begin_inset Formula $L\in\mathbb{R}\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow a_{n}\in V$ \end_inset , pravimo, da \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset konvergira k \begin_inset Formula $L$ \end_inset in pišemo \begin_inset Formula $L\coloneqq\lim_{n\to\infty}a_{n}$ \end_inset ali drugače \begin_inset Formula $a_{n}\underset{n\to\infty}{\longrightarrow}L$ \end_inset . Če zaporedje ima limito, pravimo, da je konvergentno, sicer je divergentno. \end_layout \begin_layout Claim* Konvergentno zaporedje v \begin_inset Formula $\mathbb{R}$ \end_inset ima natanko eno limito. \end_layout \begin_layout Proof Naj bosta \begin_inset Formula $J$ \end_inset in \begin_inset Formula $L$ \end_inset limiti zaporedja \begin_inset Formula $\left(a_{n}\right)_{n\to\infty}$ \end_inset . Torej \begin_inset Foot status open \begin_layout Plain Layout Ko trdimo, da obstaja \begin_inset Formula $n_{0}$ \end_inset , še ne vemo, ali sta za \begin_inset Formula $L$ \end_inset in \begin_inset Formula $J$ \end_inset ta \begin_inset Formula $n_{0}$ \end_inset ista. Ampak trditev še vedno velja, ker lahko vzamemo večjega izmed njiju, ako bi bila drugačna. \end_layout \end_inset po definiciji \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|a_{n}-L\right|<\varepsilon\wedge\left|a_{n}-J\right|<\varepsilon$ \end_inset . Velja torej \begin_inset Formula $\forall\varepsilon>0:\left|J-L\right|<\varepsilon$ \end_inset . PDDRAA \begin_inset Formula $J\not=L$ \end_inset . Tedaj \begin_inset Formula $\left|J-L\right|\not=0$ \end_inset , naj bo \begin_inset Formula $\left|J-L\right|=k$ \end_inset . Tedaj \begin_inset Formula $\exists\varepsilon>0:\left|J-L\right|\not<\varepsilon$ \end_inset , ustrezen \begin_inset Formula $\varepsilon$ \end_inset je na primer \begin_inset Formula $\frac{\left|J-L\right|}{2}$ \end_inset . \end_layout \begin_layout Claim* \begin_inset CommandInset label LatexCommand label name "Konvergentno-zaporedje-v-R-je-omejeno" \end_inset Konvergentno zaporedje v \begin_inset Formula $\mathbb{R}$ \end_inset je omejeno. \end_layout \begin_layout Proof Naj bo \begin_inset Formula $L=\lim_{n\to\infty}a_{n}$ \end_inset . Znotraj intervala \begin_inset Formula $\left(L-1,L+1\right)$ \end_inset so vsi členi zaporedja razen končno mnogo ( \begin_inset Formula $\left\{ a_{1},\dots,a_{n_{0}}\right\} $ \end_inset ). \begin_inset Formula $\left\{ a_{n}\right\} _{n\in\mathbb{N}}$ \end_inset je unija dveh omejenih množic; \begin_inset Formula $\left(L-1,L+1\right)$ \end_inset in \begin_inset Formula $\left\{ a_{1},\dots,a_{n_{0}}\right\} $ \end_inset , zato je tudi sama omejena. \end_layout \begin_layout Theorem* \begin_inset ERT status open \begin_layout Plain Layout \backslash hypertarget{pmkdlim}{Naj bosta} \end_layout \end_inset \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset in \begin_inset Formula $\left(b_{n}\right)_{n\in\mathbb{N}}$ \end_inset konvergentni zaporedji v \begin_inset Formula $\mathbb{R}$ \end_inset . Tedaj so tudi \begin_inset Formula $\left(a_{n}*b_{n}\right)_{n\in\mathbb{N}}$ \end_inset konvergentna in velja \begin_inset Formula $\lim_{n\to\infty}a_{n}*b_{n}=\lim_{n\to\infty}a_{n}*\lim_{n\to\infty}b_{n}$ \end_inset za \begin_inset Formula $*\in\left\{ +,-,\cdot\right\} $ \end_inset . Če je \begin_inset Formula $\lim_{n\to\infty}b_{n}\not=0$ \end_inset , isto velja tudi za deljenje. \end_layout \begin_layout Proof Naj bo \begin_inset Formula $a_{n}\to A$ \end_inset in \begin_inset Formula $b_{n}\to B$ \end_inset oziroma \begin_inset Formula $\forall\varepsilon>0\exists n_{1},n_{2}\ni:\left(n>n_{1}\Rightarrow\left|a_{n}-A\right|<\varepsilon\right)\wedge\left(n>n_{2}\Rightarrow\left|b_{n}-B\right|<\varepsilon\right)$ \end_inset , torej \begin_inset Formula $\forall\varepsilon>0\exists n_{0}=\max\left\{ n_{1},n_{2}\right\} \ni:n>n_{0}\Rightarrow\left|a_{n}-A\right|<\varepsilon\wedge\left|b_{n}-B\right|<\varepsilon$ \end_inset . Dokažimo za vse operacije: \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $+$ \end_inset Po predpostavki velja \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\ni:n>n_{0}\Rightarrow\left|a_{n}-A\right|+\left|a_{n}-B\right|<2\varepsilon$ \end_inset . Oglejmo si sedaj \begin_inset Formula \[ \left|\left(a_{n}+b_{n}\right)-\left(A+B\right)\right|=\left|\left(a_{n}-A\right)+\left(b_{n}-B\right)\right|\leq\left|a_{n}-A\right|+\left|b_{n}-B\right| \] \end_inset in uporabimo še prejšnjo trditev, torej \begin_inset Formula $\forall2\varepsilon\exists n_{0}\ni:\left|\left(a_{n}+b_{n}\right)-\left(A+B\right)\right|\leq2\varepsilon$ \end_inset , s čimer dokažemo \begin_inset Formula $\left(a_{n}+b_{n}\right)\to A+B$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $-$ \end_inset Oglejmo si \begin_inset Formula \[ \left|\left(a_{n}-b_{n}\right)-\left(A-B\right)\right|=\left|a_{n}-b_{n}-A+B\right|=\left|\left(a_{n}-A\right)+\left(-\left(b_{n}-B\right)\right)\right|\leq\left|a_{n}-A\right|+\left|b_{n}-B\right| \] \end_inset in nato kot zgoraj. \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\cdot$ \end_inset Oglejmo si \begin_inset Formula \[ \left|a_{n}b_{n}-AB\right|=\left|a_{n}b_{n}-Ab_{n}+Ab_{n}-AB\right|=\left|\left(a_{n}-A\right)b_{n}+A\left(b_{n}-B\right)\right|\leq\left|a_{n}-A\right|\left|b_{n}\right|+\left|A\right|\left|b_{n}-B\right|. \] \end_inset Od prej vemo, da sta zaporedji omejeni, ker sta konvergentni, zato \begin_inset Formula $\exists M>0\forall n\in\mathbb{N}:\left|b_{n}\right|\leq M$ \end_inset . Naj bo \begin_inset Formula $\varepsilon>0$ \end_inset poljuben \begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ \end_inset taka, da \begin_inset Formula $n\geq n_{1}\Rightarrow\left|a_{n}-A\right|<\frac{\varepsilon}{2M}$ \end_inset in \begin_inset Formula $n\geq n_{2}\Rightarrow\left|b_{n}-B\right|<\frac{\varepsilon}{2\left|A\right|}$ \end_inset . Tedaj za \begin_inset Formula $n_{0}\coloneqq\max\left\{ n_{1},n_{2}\right\} $ \end_inset velja \begin_inset Formula $\left|a_{n}b_{n}-AB\right|\leq\left|a_{n}-A\right|\left|b_{n}\right|+\left|A\right|\left|b_{n}-B\right|<\frac{\varepsilon}{2M}M+\left|A\right|\frac{\varepsilon}{2\left|A\right|}=\varepsilon$ \end_inset , skratka \begin_inset Formula $\left|a_{n}b_{n}-AB\right|<\varepsilon$ \end_inset , s čimer dokažemo \begin_inset Formula $\left(a_{n}+b_{n}\right)\to A+B$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $/$ \end_inset Ker je \begin_inset Formula $B\not=0$ \end_inset , \begin_inset Formula $\exists n_{0}\in\mathbb{N}\forall n\geq n_{0}:\left|b_{n}\right|\geq\frac{\left|B\right|}{2}>0$ \end_inset . ZDB vsi členi zaporedja razen končno mnogo so v poljubno majhni okolici \begin_inset Formula $\left|B\right|$ \end_inset . Če torej vzamemo točko na polovici med 0 in \begin_inset Formula $\left|B\right|$ \end_inset , to je \begin_inset Formula $\frac{\left|B\right|}{2}$ \end_inset , bo neskončno mnogo absolutnih vrednosti členov večjih od \begin_inset Formula $\frac{\left|B\right|}{2}$ \end_inset . Pri razumevanju pomaga številska premica. Nadalje uporabimo predpostavko z \begin_inset Formula $\varepsilon=\frac{\left|B\right|}{2}$ \end_inset , torej je za \begin_inset Formula $n>n_{0}:$ \end_inset \begin_inset Formula $\left|B-b_{n}\right|<\frac{\left|B\right|}{2}$ \end_inset in velja \begin_inset Formula \[ \left|b_{n}\right|=\left|B-\left(B-b_{n}\right)\right|=\left|B+\left(-\left(B-b_{n}\right)\right)\right|\overset{\text{trik. neen.}}{\geq}\left|\left|B\right|-\left|B-b_{n}\right|\right|=\left|B\right|-\left|B-b_{n}\right|\overset{\text{predp.}}{>}\left|B\right|-\frac{\left|B\right|}{2}=\frac{\left|B\right|}{2}, \] \end_inset skratka \begin_inset Formula $\left|b_{n}\right|>\frac{\left|B\right|}{2}$ \end_inset . Če spet izpustimo končno začetnih členov, velja \begin_inset Formula \[ \frac{a_{n}}{b_{n}}-\frac{A}{B}=\frac{a_{n}B-Ab_{n}}{b_{n}B}\overset{\text{prištejemo in odštejemo člen}}{=}\frac{\left(a_{n}-A\right)B+A\left(B-b_{n}\right)}{Bb_{n}}=\frac{1}{b_{n}}\left(a_{n}-A\right)+\frac{A/B}{b_{n}}\left(B-b_{n}\right) \] \end_inset sedaj uporabimo na obeh straneh absolutno vrednost: \begin_inset Formula \[ \left|\frac{a_{n}}{b_{n}}-\frac{A}{B}\right|=\left|\frac{1}{b_{n}}\left(a_{n}-A\right)+\frac{A}{Bb_{n}}\left(B-b_{n}\right)\right|\leq\frac{1}{\left|b_{n}\right|}\left|a_{n}-A\right|+\frac{\left|A\right|}{\left|B\right|\left|b_{n}\right|}\left|B-b_{n}\right|<\frac{2}{\left|B\right|}\left|a_{n}-A\right|+\frac{2\left|A\right|}{\left|B\right|^{2}}\left|B-B_{n}\right| \] \end_inset skratka \begin_inset Formula $\left|\frac{a_{n}}{b_{n}}-\frac{A}{B}\right|<\frac{2}{\left|B\right|}\left|a_{n}-A\right|+\frac{2\left|A\right|}{\left|B\right|^{2}}\left|B-B_{n}\right|$ \end_inset . Opazimo, da \begin_inset Formula $\frac{2}{\left|B\right|}$ \end_inset in \begin_inset Formula $\frac{2\left|A\right|}{\left|B\right|^{2}}$ \end_inset nista odvisna od \begin_inset Formula $n$ \end_inset . Sedaj vzemimo poljuben \begin_inset Formula $\varepsilon>0$ \end_inset in \begin_inset Formula $n_{1},n_{2}\in\mathbb{N}$ \end_inset takšna, da velja: \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $n\geq n_{1}\Rightarrow\left|a_{n}-A\right|<\frac{\varepsilon\left|B\right|}{4}$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $n\geq n_{2}\Rightarrow\left|b_{n}-B\right|<\frac{\varepsilon\left|B\right|^{2}}{4\left|A\right|}$ \end_inset \end_layout \begin_layout Standard Tedaj iz zgornje ocene sledi za \begin_inset Formula $n\geq\max\left\{ n_{0},n_{1},n_{2}\right\} $ \end_inset : \begin_inset Formula \[ \left|\frac{a_{n}}{b_{n}}-\frac{A}{B}\right|<\frac{\cancel{2}}{\cancel{\left|B\right|}}\cdot\frac{\varepsilon\cancel{\left|B\right|}}{\cancelto{2}{4}}+\frac{\cancel{2}\cancel{\left|A\right|}}{\cancel{\left|B\right|^{2}}}\cdot\frac{\varepsilon\cancel{\left|B\right|^{2}}}{\cancelto{2}{4}\cancel{\left|A\right|}}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \] \end_inset s čimer dokažemo \begin_inset Formula $a_{n}/b_{n}\to A/B$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Example* Naj bo \begin_inset Formula $a>0$ \end_inset . Izračunajmo \begin_inset Formula \[ \sqrt{a+\sqrt{a+\sqrt{a+\sqrt{\cdots}}}}\eqqcolon\alpha. \] \end_inset \end_layout \begin_layout Example* \begin_inset Formula $\alpha$ \end_inset je torej \begin_inset Formula $\lim_{n\to\infty}x_{n}$ \end_inset , kjer je \begin_inset Formula $x_{0}=0,x_{1}=\sqrt{a},x_{2}=\sqrt{a+\sqrt{a}},x_{3}=\sqrt{a+\sqrt{a+\sqrt{a}}},\dots,x_{n+1}=\sqrt{a+x_{n}}$ \end_inset . Iz zadnjega sledi \begin_inset Formula $x_{n+1}^{2}=a+x_{n}$ \end_inset . Če torej limita \begin_inset Formula $\alpha\coloneqq\lim x_{n}$ \end_inset obstaja, mora veljati \begin_inset Formula $\alpha^{2}=a+\alpha$ \end_inset oziroma \begin_inset Formula $\alpha_{1,2}=\frac{1\pm\sqrt{1+4a}}{2}$ \end_inset . Opcija z minusom ni mogoča, ker je zaporedje \begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$ \end_inset očitno pozitivno. Če torej limita obstaja ( \series bold česar še nismo dokazali \series default ), je enaka \begin_inset Formula $\frac{1+\sqrt{1+4a}}{2}$ \end_inset , za primer \begin_inset Formula $a=2$ \end_inset je torej \begin_inset Formula $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{\cdots}}}}=2$ \end_inset . \end_layout \begin_layout Remark* Lahko se zgodi, da limita rekurzivno podanega zaporedja ne obstaja, čeprav jo znamo izračunati, če bi obstajala. Na primer \begin_inset Formula $y_{1}\coloneqq1$ \end_inset , \begin_inset Formula $y_{n+1}=1-2y_{n}$ \end_inset nam da zaporedje \begin_inset Formula $1,-1,3,-5,11,\dots$ \end_inset , kar očitno nima limite. Če bi limita obstajala, bi zanjo veljalo \begin_inset Formula $\beta=1-2\beta$ \end_inset oz. \begin_inset Formula $3\beta=1$ \end_inset , \begin_inset Formula $\beta=\frac{1}{3}$ \end_inset . Navedimo torej nekaj zadostnih in potrebnih pogojev za konvergenco zaporedij. \end_layout \begin_layout Theorem* Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset monotono realno zaporedje. Če narašča, ima limito \begin_inset Formula $\lim_{n\to\infty}a_{n}=\sup\left\{ a_{n},n\in\mathbb{N}\right\} $ \end_inset . Če pada, ima limito \begin_inset Formula $\lim_{n\to\infty}a_{n}=\inf\left\{ a_{n},n\in\mathbb{N}\right\} $ \end_inset . ( \begin_inset Formula $\sup$ \end_inset in \begin_inset Formula $\inf$ \end_inset imata lahko tudi vrednost \begin_inset Formula $\infty$ \end_inset in \begin_inset Formula $-\infty$ \end_inset — zaporedje s tako limito ni konvergentno v \begin_inset Formula $\mathbb{R}$ \end_inset ). \end_layout \begin_layout Proof Denimo, da \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset narašča. Pišimo \begin_inset Formula $s\coloneqq\sup_{n\in\mathbb{N}}a_{n}$ \end_inset . Vzemimo poljuben \begin_inset Formula $\varepsilon>0$ \end_inset . Tedaj \begin_inset Formula $s-\varepsilon$ \end_inset ni zgornja meja za \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset , zato \begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:s-\varepsilons-\varepsilon$ \end_inset . Hkrati je \begin_inset Formula $a_{n}\leq s$ \end_inset , saj je \begin_inset Formula $s$ \end_inset zgornja meja. Torej \begin_inset Formula $\forall n\geq n_{0}:a_{n}\in(s-\varepsilon,s]\subset\left(s-\varepsilon,s+\varepsilon\right)$ \end_inset , s čimer dokažemo konvergenco. \end_layout \begin_layout Proof Denimo sedaj, da \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset pada. Dokaz je povsem analogen. Pišimo \begin_inset Formula $m\coloneqq\inf_{n\in\mathbb{N}}a_{n}$ \end_inset . Vzemimo poljuben \begin_inset Formula $\varepsilon>0$ \end_inset . Tedaj \begin_inset Formula $m+\varepsilon$ \end_inset ni spodnja meja za \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset , zato \begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:m+\varepsilon>a_{n_{0}}$ \end_inset . Ker pa je \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset padajoče, sledi \begin_inset Formula $\forall n\geq n_{0}:a_{n}\leq a_{n_{0}}0$ \end_inset in \begin_inset Formula $x_{0}=0,x_{n+1}=\sqrt{a+x_{n}}$ \end_inset . Dokažimo, da je \begin_inset Formula $\left(x_{n}\right)_{n}$ \end_inset konvergentno. Dovolj je pokazati, da je naraščajoče in navzgor omejeno. \end_layout \begin_deeper \begin_layout Itemize Naraščanje z indukcijo: Baza: \begin_inset Formula $0=x_{0}>x_{1}=\sqrt{a}$ \end_inset . Dokažimo \begin_inset Formula $x_{n+1}-x_{n}>0$ \end_inset . \begin_inset Formula \[ \left(x_{n+1}-x_{n}\right)\left(x_{n+1}+x_{n}\right)=x_{n+1}^{2}-x_{n}^{2}=\left(a+x_{n}\right)-\left(a+x_{n-1}\right)=x_{n}-x_{n-1} \] \end_inset Ker je zaporedje pozitivno, je \begin_inset Formula $x_{n+1}+x_{n}>0$ \end_inset . Desna stran je po I. P. pozitivna, torej tudi \begin_inset Formula $x_{n+1}-x_{n}>0$ \end_inset . \end_layout \begin_layout Itemize Omejenost: Če je zaporedje res omejeno, je po zgornjem tudi konvergentno in je \begin_inset Formula $\sup_{n\in\mathbb{N}}x_{n}=\lim_{n\to\infty}x_{n}=\frac{1+\sqrt{1+4a}}{2}\leq\frac{1+\sqrt{1+4a+4a^{2}}}{2}=\frac{1+\sqrt{\left(2a+1\right)^{2}}}{}=1+a$ \end_inset . Uganili smo neko zgornjo mejo. Domnevamo, da \begin_inset Formula $\forall n\in\mathbb{N}:x_{n}\leq1+a$ \end_inset . Dokažimo to z indukcijo: Baza: \begin_inset Formula $0=x_{0}<1+a$ \end_inset . Po I. P. \begin_inset Formula $x_{n}>1+a$ \end_inset . Korak: \begin_inset Formula \[ x_{n+1}=\sqrt{x_{n}+a}\leq\sqrt{1+a+a}=\sqrt{1+2a}<\sqrt{1+2a+2a^{2}}=1+a \] \end_inset \end_layout \end_deeper \begin_layout Example* S tem smo dokazali, da \begin_inset Formula $\lim_{n\to\infty}x_{n}=\frac{1+\sqrt{1+4a}}{2}$ \end_inset . \end_layout \begin_layout Example* To lahko dokažemo tudi na alternativen način. Vidimo, da je edini kandidat za limito, če obstaja \begin_inset Formula $L=\frac{1+\sqrt{1+4a}}{2}$ \end_inset in da torej velja \begin_inset Formula $L^{2}=a+L$ \end_inset . Preverimo, da je \begin_inset Formula $L$ \end_inset res limita: \begin_inset Formula \[ x_{n+1}-L=\sqrt{a+x_{n}}-L=\frac{\left(\sqrt{a+x_{n}}-L\right)\left(\sqrt{a+x_{n}}+L\right)}{\sqrt{a+x_{n}}+L}=\frac{\left(a+x_{n}\right)-L^{2}}{\sqrt{a+x_{n}}+L}=\frac{\left(a+x_{n}\right)-\left(a+L\right)}{\sqrt{a+x_{n}}+L}=\frac{x_{n}-L}{\sqrt{a+x_{n}}+L}. \] \end_inset Vpeljimo sedaj \begin_inset Formula $y_{n}\coloneqq x_{n}-L$ \end_inset . Sledi \begin_inset Formula $\left|y_{n+1}\right|\leq\frac{\left|y_{n}\right|}{\sqrt{a+x_{n}}+L}\leq\frac{\left|y_{n}\right|}{L}$ \end_inset . Ker je \begin_inset Formula $\left|y_{0}\right|=L$ \end_inset , dobimo \begin_inset Foot status open \begin_layout Plain Layout Za razumevanje si oglej nekaj členov rekurzivnega zaporedje \begin_inset Formula $y_{0}=L,y_{n}=\frac{\left|y_{n+1}\right|}{L}$ \end_inset . Začnemo z 1 in nato vsakič delimo z \begin_inset Formula $L$ \end_inset . \end_layout \end_inset oceno \begin_inset Formula $\left|y_{n}\right|\leq\frac{1}{L^{n-1}}$ \end_inset oziroma \begin_inset Formula $\left|x_{n}-L\right|\leq\frac{1}{L^{n-1}}$ \end_inset . Ker iz definicije \begin_inset Formula $L$ \end_inset sledi \begin_inset Formula $L>1$ \end_inset , je \begin_inset Formula $L^{n}\to\infty$ \end_inset za \begin_inset Formula $n\to\infty$ \end_inset , torej smo dokazali, da \begin_inset Formula $\left|x_{n}-L\right|$ \end_inset eksponentno pada proti 0 za \begin_inset Formula $n\to\infty$ \end_inset . Eksponentno padanje \begin_inset Formula $\left|x_{n}-L\right|$ \end_inset proti 0 je dovolj, da rečemo, da zaporedje konvergira k \begin_inset Formula $L$ \end_inset \begin_inset Foot status open \begin_layout Plain Layout a res, vprašaj koga. ne razumem. zakaj. TODO. \end_layout \end_inset . \end_layout \begin_layout Claim* \begin_inset Formula $\lim_{n\to\infty}\sin n$ \end_inset in \begin_inset Formula $\lim_{n\to\infty}\cos n$ \end_inset ne obstajata. \end_layout \begin_layout Proof Pišimo \begin_inset Formula $a_{n}=\sin n$ \end_inset in \begin_inset Formula $b_{n}=\cos n$ \end_inset . Iz adicijskih izrekov dobimo \begin_inset Formula $a_{n+1}=\sin\left(n+1\right)=\sin n\cos1+\cos n\sin1=a_{n}\cos1+b_{n}\sin1$ \end_inset . Torej \begin_inset Formula $b_{n}=\frac{a_{n+1}-a_{n}\cos1}{\sin1}$ \end_inset . Torej če \begin_inset Formula $\exists a\coloneqq\lim_{n\to\infty}a_{n},a\in\mathbb{R}$ \end_inset , potem tudi \begin_inset Formula $\exists b\coloneqq\lim_{n\to\infty}b_{n},b\in\mathbb{R}$ \end_inset . Podobno iz adicijske formule za \begin_inset Formula $\cos\left(n+1\right)$ \end_inset sledi \begin_inset Formula $a_{n}=\frac{b_{n}\cos1-b_{n+1}}{\sin1}$ \end_inset , torej če \begin_inset Formula $\exists b$ \end_inset , potem tudi \begin_inset Formula $\exists a$ \end_inset . Iz obojega sledi, da \begin_inset Formula $\exists a\Leftrightarrow\exists b$ \end_inset . Posledično, če \begin_inset Formula $a$ \end_inset in \begin_inset Formula $b$ \end_inset obstajata, iz zgornjih obrazcev za \begin_inset Formula $a_{n}$ \end_inset in \begin_inset Formula $b_{n}$ \end_inset sledi, da za \begin_inset Formula \[ \lambda=\frac{1-\cos1}{\sin1}\in\left(0,1\right) \] \end_inset velja \begin_inset Formula $b=\lambda a$ \end_inset in \begin_inset Formula $a=-\lambda b$ \end_inset in zato \begin_inset Formula $b=\lambda\left(-\lambda b\right)$ \end_inset oziroma \begin_inset Formula $1=-\lambda^{2}$ \end_inset , torej \begin_inset Formula $-1=\lambda^{2}$ \end_inset , torej \begin_inset Formula $\lambda=i$ \end_inset , kar je v protislovju z \begin_inset Formula $\lambda\in\left(0,1\right)$ \end_inset . Podobno za \begin_inset Formula $a=-\lambda\left(\lambda a\right)$ \end_inset oziroma \begin_inset Formula $1=-\lambda^{2}$ \end_inset , kar je zopet \begin_inset Formula $\rightarrow\!\leftarrow$ \end_inset . Edina druga opcija je, da je \begin_inset Formula $a=b=0$ \end_inset . Hkrati pa vemo, da \begin_inset Formula $a_{n}^{2}+b_{n}^{2}=1$ \end_inset , zato \begin_inset Formula $a+b=1$ \end_inset , kar ni mogoče za ničelna \begin_inset Formula $a$ \end_inset in \begin_inset Formula $b$ \end_inset . Torej \begin_inset Formula $a$ \end_inset in \begin_inset Formula $b$ \end_inset ne obstajata. \end_layout \begin_layout Subsection Eulerjevo število \end_layout \begin_layout Theorem* Bernoullijeva neenakost. \begin_inset Formula $\forall\alpha\leq1,n\in\mathbb{N}$ \end_inset velja \begin_inset Formula $\left(1-\alpha\right)^{n}\geq1-n\alpha$ \end_inset . \end_layout \begin_layout Proof Z indukcijo na \begin_inset Formula $n$ \end_inset ob fiksnem \begin_inset Formula $\alpha$ \end_inset . \end_layout \begin_deeper \begin_layout Itemize Baza: \begin_inset Formula $n=1$ \end_inset : \begin_inset Formula $\left(1-\alpha\right)^{1}=1-1\alpha$ \end_inset . Velja celo enakost. \end_layout \begin_layout Itemize I. P.: Velja \begin_inset Formula $\left(1-\alpha\right)^{n}\geq1-n\alpha$ \end_inset \end_layout \begin_layout Itemize Korak: \begin_inset Formula $\left(1-\alpha\right)^{n+1}=\left(1-\alpha\right)\left(1-\alpha\right)^{n}\geq\left(1-\alpha\right)$ \end_inset \begin_inset Formula $\left(1-n\alpha\right)=1-n\alpha-\alpha-n\alpha^{2}=1-\left(n+1\right)\alpha-n\alpha^{2}\geq1-\left(n+1\right)\alpha$ \end_inset , torej ocena velja tudi za \begin_inset Formula $n+1$ \end_inset . \end_layout \end_deeper \begin_layout Definition* Vpeljimo oznaki: \end_layout \begin_deeper \begin_layout Itemize Za \begin_inset Formula $n\in\mathbb{N}$ \end_inset označimo \begin_inset Formula $n!=1\cdot2\cdot3\cdot\cdots\cdot n$ \end_inset (pravimo \begin_inset Formula $n-$ \end_inset faktoriala oziroma \begin_inset Formula $n-$ \end_inset fakulteta). Ker velja \begin_inset Formula $n!=n\cdot\left(n-1\right)!$ \end_inset za \begin_inset Formula $n\geq2$ \end_inset , je smiselno definirati še \begin_inset Formula $0!=1$ \end_inset . \end_layout \begin_layout Itemize Za \begin_inset Formula $n,k\in\mathbb{N}$ \end_inset označimo še binomski simbol: \begin_inset Formula $\binom{n}{k}\coloneqq\frac{n!}{k!\left(n-k\right)!}$ \end_inset (pravimo \begin_inset Formula $n$ \end_inset nad \begin_inset Formula $k$ \end_inset ). \end_layout \begin_layout Itemize Če je \begin_inset Formula $\left(a_{k}\right)_{k}$ \end_inset neko zaporedje (lahko tudi končno), lahko pišemo \begin_inset Formula $\sum_{k=1}^{n}a_{k}\coloneqq a_{1}+a_{2}+\cdots+a_{n}$ \end_inset (pravimo summa) in \begin_inset Formula $\prod_{k=1}^{n}a_{k}\coloneqq a_{1}\cdot\cdots\cdot a_{n}$ \end_inset (pravimo produkt). \end_layout \end_deeper \begin_layout Example* \begin_inset Formula $\sum_{k=1}^{n}\frac{1}{k}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ \end_inset in \begin_inset Formula $\prod_{k=1}^{n}k=1\cdot2\cdot3\cdot\cdots\cdot n=n!$ \end_inset . \end_layout \begin_layout Theorem* Binomska formula. \begin_inset Formula $\forall a,b\in\mathbb{R},n\in\mathbb{N}:\left(a+b\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k}$ \end_inset . \end_layout \begin_layout Proof Indukcija po \begin_inset Formula $n$ \end_inset . \end_layout \begin_deeper \begin_layout Itemize Baza \begin_inset Formula $n=1$ \end_inset : \begin_inset Formula $\sum_{k=0}^{1}\binom{n}{k}a^{k}b^{n-k}=\binom{1}{0}a^{0}b^{1-0}+\binom{1}{1}a^{1}b^{1-1}=a+b=\left(a+b\right)^{1}$ \end_inset \end_layout \begin_layout Itemize I. P. \begin_inset Formula $\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k}=\left(a+b\right)^{n}$ \end_inset \end_layout \begin_layout Itemize Korak: \begin_inset Formula \[ \left(a+b\right)^{n+1}=\left(a+b\right)\left(a+b\right)^{n}=\left(a+b\right)\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k}=\sum_{k=0}^{n}\binom{n}{k}a^{k+1}b^{n-k}+\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k+1}= \] \end_inset sedaj naj bo \begin_inset Formula $m=k+1$ \end_inset v levem členu: \begin_inset Formula \[ =\sum_{m=1}^{n+1}\binom{n}{m-1}a^{m}b^{n-\left(m-1\right)}+\sum_{k=0}^{n}\binom{n}{k}a^{k}b^{n-k+1}=a^{n+1}+\sum_{k=1}^{n}\left[\binom{n}{k-1}+\binom{n}{k}\right]a^{k}b^{n-k+1}+b^{n+1}= \] \end_inset Sedaj obravnavajmo le izraz v oglatih oklepajih: \begin_inset Formula \[ \binom{n}{k-1}+\binom{n}{k}=\frac{n!}{\left(k-1\right)!\left(n-k+1\right)!}+\frac{n!}{k!\left(n-k\right)!}=\frac{kn!}{k!\left(n-k+1\right)!}+\frac{n!\left(n-k+1\right)}{k!\left(n-k+1\right)!}=\frac{kn!+n!\left(n-k+1\right)}{k!\left(n-k+1\right)!}= \] \end_inset \begin_inset Formula \[ =\frac{n!\left(\cancel{k+}n\cancel{-k}+1\right)}{k!\left(n+1-k\right)!}=\frac{n!\left(n+1\right)}{k!\left(n+1-k\right)!}=\frac{\left(n+1\right)!}{k!\left(n+1-k\right)}=\binom{n+1}{k} \] \end_inset in skratka dobimo \begin_inset Formula $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$ \end_inset . Vstavimo to zopet v naš zgornji račun: \begin_inset Formula \[ \cdots=a^{n+1}+\sum_{k=1}^{n}\left[\binom{n}{k-1}+\binom{n}{k}\right]a^{k}b^{n-k+1}+b^{n+1}=a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k}a^{k}b^{n-k+1}+b^{n+1}= \] \end_inset \begin_inset Formula \[ =a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k}a^{k}b^{n-k+1}+b^{n+1}=a^{n+1}+\sum_{k=0}^{n}\binom{n+1}{k}a^{k}b^{n-k+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}a^{k}b^{n-k+1} \] \end_inset \end_layout \end_deeper \begin_layout Theorem* Bernoulli. Zaporedje \begin_inset Formula $a_{n}\coloneqq\left(1+\frac{1}{n}\right)^{n}$ \end_inset je konvergentno. \end_layout \begin_layout Proof Dokazali bomo, da je naraščajoče in omejeno. \end_layout \begin_deeper \begin_layout Itemize Naraščanje: Dokazujemo, da za \begin_inset Formula $n\geq2$ \end_inset velja \begin_inset Formula $a_{n}\geq a_{n-1}$ \end_inset oziroma \begin_inset Formula \[ \left(1+\frac{1}{n}\right)^{n}\overset{?}{\geq}\left(1+\frac{1}{n-1}\right)^{n-1}=\left(\frac{n-1}{n-1}+\frac{1}{n-1}\right)^{n-1}=\left(\frac{n}{n-1}\right)^{n-1}=\left(\frac{n-1}{n}\right)^{1-n}=\left(1-\frac{1}{n}\right)^{1-n} \] \end_inset \begin_inset Formula \[ \left(1+\frac{1}{n}\right)^{n}\overset{?}{\geq}\left(1-\frac{1}{n}\right)^{1-n} \] \end_inset \begin_inset Formula \[ \left(1+\frac{1}{n^{2}}\right)^{n}=\left(\left(1+\frac{1}{n}\right)\left(1-\frac{1}{n}\right)\right)^{n}=\left(1+\frac{1}{n}\right)^{n}\left(1-\frac{1}{n}\right)^{n}\overset{?}{\geq}1-\frac{1}{n} \] \end_inset \begin_inset Formula \[ \left(1+\frac{1}{n^{2}}\right)^{n}\overset{?}{\geq}1-\frac{1}{n}, \] \end_inset kar je poseben primer Bernoullijeve neenakosti za \begin_inset Formula $\alpha=\frac{1}{n^{2}}$ \end_inset . \end_layout \begin_layout Itemize Omejenost: Po binomski formuli je \begin_inset Formula \[ a_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k}=\sum_{k=0}^{n}\frac{n!}{k!\left(n-k\right)!n^{k}}=1+1+\sum_{k=2}^{n}\frac{n!}{k!\left(n-k\right)!n^{k}}=2+\sum_{k=2}^{n}\frac{1}{k!}\cdot\frac{n\left(n-1\right)\left(n-2\right)\cdots\left(n-k+1\right)}{n^{k}}= \] \end_inset \begin_inset Formula \[ =2+\sum_{k=2}^{n}\frac{1}{k!}\cdot\frac{n}{n}\cdot\frac{n-1}{n}\cdot\frac{n-2}{n}\cdot\cdots\cdot\frac{n-k+1}{n}=2+\sum_{k=2}^{n}\frac{1}{k!}\cdot\cancel{\left(1-0\right)}\cdot\left(1-\frac{1}{n}\right)\cdot\left(1-\frac{2}{n}\right)\cdot\cdots\cdot\left(1-\frac{k-1}{n}\right)= \] \end_inset \begin_inset Formula \[ =2+\sum_{k=2}^{n}\frac{1}{k!}\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)<2+\sum_{k=2}^{n}\frac{1}{k!}<2+\sum_{k=2}^{n}\frac{1}{2^{k-1}}=\cdots \] \end_inset Opomnimo, da je \begin_inset Formula $1-\frac{j}{n}<1$ \end_inset , zato \begin_inset Formula $\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)<1$ \end_inset (prvi neenačaj) ter \begin_inset Formula $k!=1\cdot2\cdot3\cdot\cdots\cdot k\geq1\cdot2\cdot2\cdot\cdots\cdot2=2^{k-1}$ \end_inset (drugi). Sedaj si z indukcijo dokažimo \begin_inset Formula $\sum_{k=2}^{n}\frac{1}{2^{k-1}}=1-\frac{1}{2^{n-1}}$ \end_inset : \end_layout \begin_deeper \begin_layout Itemize Baza: \begin_inset Formula $n=2$ \end_inset : \begin_inset Formula $\frac{1}{2^{2-1}}=1-\frac{1}{2^{2-1}}=1-\frac{1}{2}=\frac{1}{2}$ \end_inset . Velja! \end_layout \begin_layout Itemize I. P.: \begin_inset Formula $\sum_{k=2}^{n}\frac{1}{2^{k-1}}=1-\frac{1}{2^{n-1}}$ \end_inset \end_layout \begin_layout Itemize Korak: \begin_inset Formula $\sum_{k=2}^{n+1}\frac{1}{2^{k-1}}=1-\frac{1}{2^{n-1}}+\frac{1}{2^{n+1-1}}=1-2\cdot2^{-n}+2^{-n}=1+2^{-n}\left(1-2\right)=1+2^{-n}$ \end_inset \end_layout \begin_layout Standard In nadaljujmo z računanjem: \begin_inset Formula \[ \cdots=2+1-\frac{1}{2^{n-1}}=3-\frac{1}{2^{n-1}}, \] \end_inset s čimer dobimo zgornjo mejo \begin_inset Formula $\forall n\in\mathbb{N}:a_{n}<3$ \end_inset . Ker je očitno \begin_inset Formula $\forall n\in\mathbb{N}:a_{n}>0$ \end_inset , je torej zaporedje omejeno in ker je tudi monotono po prejšnjem izreku konvergira. \end_layout \end_deeper \end_deeper \begin_layout Definition* Označimo število \begin_inset Formula $e\coloneqq\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n}$ \end_inset in ga imenujemo Eulerjevo število. Velja \begin_inset Formula $e\approx2,71828$ \end_inset . \end_layout \begin_layout Remark* V dokazu vidimo moč izreka \begin_inset Quotes gld \end_inset omejenost in monotonost \begin_inset Formula $\Rightarrow$ \end_inset konvergenca \begin_inset Quotes grd \end_inset , saj nam omogoča dokazati konvergentnost zaporedja brez kandidata za limito. Jasno je, da ne bi mogli vnaprej uganiti, da je limita ravno \shape italic transcendentno število \shape default \begin_inset Formula $e$ \end_inset . \end_layout \begin_layout Definition* Podzaporedje zaporedja \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset je poljubno zaporedje oblike \begin_inset Formula $\left(a_{\varphi\left(n\right)}\right)_{n\in\mathbb{N}}$ \end_inset , kjer je \begin_inset Formula $\varphi:\mathbb{N}\to\mathbb{N}$ \end_inset strogo naraščajoča funkcija. \end_layout \begin_layout Theorem* Če je \begin_inset Formula $L=\lim_{n\to\infty}a_{n}$ \end_inset , tedaj je \begin_inset Formula $L$ \end_inset tudi limita vsakega podzaporedja. \end_layout \begin_layout Proof Po predpostavki velja \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}:\left|a_{n}-L\right|<\varepsilon$ \end_inset . Vzemimo poljuben \begin_inset Formula $\varepsilon>0$ \end_inset . Po predpostavki obstaja \begin_inset Formula $n_{0}\in\mathbb{N}$ \end_inset , da bodo vsi členi zaporedja po \begin_inset Formula $n_{0}-$ \end_inset tem v \begin_inset Formula $\left(L-\varepsilon,L+\varepsilon\right)$ \end_inset . Iz definicijskega območja \begin_inset Formula $\varphi$ \end_inset vzemimo poljuben element \begin_inset Formula $n_{1}$ \end_inset , da velja \begin_inset Formula $n_{1}\geq n_{0}$ \end_inset . Gotovo obstaja, ker je definicijsko območje števno neskončne moči in s pogojem \begin_inset Formula $n_{1}\geq n_{0}$ \end_inset onemogočimo izbiro le končno mnogo elementov. \begin_inset Note Note status open \begin_layout Plain Layout Če slednji ne obstaja, je v \begin_inset Formula $D_{\varphi}$ \end_inset končno mnogo elementov, tedaj vzamemo \begin_inset Formula $n_{1}\coloneqq\max D_{\varphi}+1$ \end_inset in je pogoj za limito izpolnjen na prazno. Sicer pa v \end_layout \end_inset Velja \begin_inset Formula $\forall n\in\mathbb{N}:n>n_{1}\Rightarrow\left|a_{\varphi n}-L\right|<\varepsilon$ \end_inset , ker je \begin_inset Formula $\varphi$ \end_inset strogo naraščajoča in izbiramo le elemente podzaporedja, ki so v izvornem zaporedju za \begin_inset Formula $n_{0}-$ \end_inset tim členom in zato v \begin_inset Formula $\left(L-\varepsilon,L+\varepsilon\right)$ \end_inset . \end_layout \begin_layout Example* \begin_inset Formula $\lim_{n\to\infty}\frac{1}{2n+3}=\lim_{n\to\infty}\frac{1}{n}=0$ \end_inset za zaporedje \begin_inset Formula $a_{n}=\frac{1}{n}$ \end_inset in podzaporedje \begin_inset Formula $a_{\varphi n}$ \end_inset , kjer je \begin_inset Formula $\varphi\left(n\right)=2n+3$ \end_inset . \end_layout \begin_layout Theorem* Karakterizacija limite s podzaporedji. Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset realno zaporedje in \begin_inset Formula $L\in\mathbb{R}$ \end_inset . Tedaj \begin_inset Formula $L=\lim_{n\to\infty}a_{n}\Leftrightarrow$ \end_inset za vsako podzaporedje \begin_inset Formula $\left(a_{n_{k}}\right)_{k\in\mathbb{N}}$ \end_inset zaporedja \begin_inset Formula $\left(a_{n}\right)_{n}$ \end_inset obstaja njegovo podzaporedje \begin_inset Formula $\left(a_{n_{k_{l}}}\right)_{l\in\mathbb{N}}$ \end_inset , ki konvergira k \begin_inset Formula $L$ \end_inset . \end_layout \begin_layout Proof Dokazujemo ekvivalenco: \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Rightarrow\right)$ \end_inset Dokazano poprej. Limita se pri prehodu na podzaporedje ohranja. \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Leftarrow\right)$ \end_inset PDDRAA \begin_inset Formula $a_{n}\not\to L$ \end_inset . Tedaj \begin_inset Formula $\exists\varepsilon>0$ \end_inset in podzaporedje \begin_inset Formula $\left(a_{n_{k}}\right)_{k\in\mathbb{N}}\ni:\forall k\in\mathbb{N}:\left|a_{n_{k}}-K\right|>\varepsilon$ \end_inset (*) \begin_inset Note Note status open \begin_layout Plain Layout tu je na \begin_inset Quotes gld \end_inset Zaporedja 2 \begin_inset Quotes grd \end_inset napaka, neenačaj obrne v drugo smer \end_layout \end_inset . Po predpostavki sedaj \begin_inset Formula $\exists\left(a_{n_{k_{l}}}\right)_{l\in\mathbb{N}}\ni:\lim_{l\to\infty}a_{n_{k_{l}}}=L$ \end_inset . To pa je v protislovju z (*), torej je začetna predpostavka \begin_inset Formula $a_{n}\not\to L$ \end_inset napačna, torej \begin_inset Formula $a_{n}\to L$ \end_inset . \end_layout \end_deeper \begin_layout Subsection Stekališča \end_layout \begin_layout Definition* Točka \begin_inset Formula $s\in\mathbb{R}$ \end_inset je stekališče zaporedje \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\subset\mathbb{R}$ \end_inset , če v vsaki okolici te točke leži neskončno členov zaporedja. \end_layout \begin_layout Remark* Pri limiti zahtevamo več; da izven vsake okolice limite leži le končno mnogo členov. \end_layout \begin_layout Example* Primeri stekališč. \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $L=\lim_{n\to\infty}a_{n}\Rightarrow L$ \end_inset je stekališče za \begin_inset Formula $a_{n}$ \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $0,1,0,1,\dots$ \end_inset stekališči sta \begin_inset Formula $\left\{ 0,1\right\} $ \end_inset in zaporedje nima limite (ni konvergentno) \end_layout \begin_layout Enumerate \begin_inset Formula $1,1,2,1,2,3,1,2,3,4,\dots$ \end_inset ima neskončno stekališč, \begin_inset Formula $\mathbb{N}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $b_{n}=n-$ \end_inset to racionalno število \begin_inset Foot status open \begin_layout Plain Layout Racionalnih števil je števno mnogo, zato jih lahko linearno uredimo in oštevilčimo. \end_layout \end_inset ima neskončno stekališč, \begin_inset Formula $\mathbb{R}$ \end_inset . \end_layout \end_deeper \begin_layout Remark* Limita je stakališče, stekališče pa ni nujno limita. Poleg tega, če se spomnimo, velja, da vsota konvergentnih zaporedij konvergira k vsoti njunih limit, ni pa nujno res, da so stekališča vsote dveh zaporedij paroma vsote stekališč teh dveh zaporedij. Primer: \begin_inset Formula $a_{n}=\left(-1\right)^{n}$ \end_inset in \begin_inset Formula $b_{n}=-\left(-1\right)^{n}$ \end_inset . Njuni stekališči sta \begin_inset Formula $\left\{ -1,1\right\} $ \end_inset , toda \begin_inset Formula $a_{n}+b_{n}=0$ \end_inset ima le stekališče \begin_inset Formula $\left\{ 0\right\} $ \end_inset , ne pa tudi \begin_inset Formula $\left\{ 1,-1,2,-2\right\} $ \end_inset . \end_layout \begin_layout Theorem* \begin_inset Formula $S$ \end_inset je stekališče \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\Leftrightarrow S$ \end_inset je limita nekega podzaporedja \begin_inset Formula $a_{n}$ \end_inset . \end_layout \begin_layout Proof Dokazujemo ekvivalenco. \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Leftarrow\right)$ \end_inset Očitno. \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Rightarrow\right)$ \end_inset Definirajmo \begin_inset Formula $\forall m\in\mathbb{N}:U_{m}\coloneqq\left(S-\frac{1}{m},S+\frac{1}{m}\right)$ \end_inset . Ker je \begin_inset Formula $S$ \end_inset stekališče, \begin_inset Formula $\forall m\in\mathbb{N}\exists a_{k_{m}}\in U_{m}$ \end_inset . Podzaporedje \begin_inset Formula $\left(a_{k_{m}}\right)_{m\in\mathbb{N}}$ \end_inset konvergira k \begin_inset Formula $S$ \end_inset , kajti \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|a_{k_{n}}-S\right|<\frac{1}{n}<\varepsilon$ \end_inset . \end_layout \end_deeper \begin_layout Corollary* Če je \begin_inset Formula $L$ \end_inset limita nekega zaporedja, je \begin_inset Formula $L$ \end_inset edino njegovo stekališče. \end_layout \begin_layout Proof Naj bo \begin_inset Formula $a_{n}\to L$ \end_inset . Naj bo \begin_inset Formula $S$ \end_inset stekališče za \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset . Po izreku zgoraj je \begin_inset Formula $S$ \end_inset limita nekega podzaporedja \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset . Toda limita vsakega podzaporedja je enaka limiti zaporedja, iz katerega to podzaporedje izhaja, če ta limita obstaja. Potemtakem je \begin_inset Formula $S=L$ \end_inset . \end_layout \begin_layout Theorem* \begin_inset ERT status open \begin_layout Plain Layout \backslash hypertarget{bw}{Bolzano-Weierstraß} \end_layout \end_inset . Eksistenčni izrek. Vsako omejeno zaporedje v realnih številih ima kakšno stekališče v \begin_inset Formula $\mathbb{R}$ \end_inset . \end_layout \begin_layout Proof Označimo \begin_inset Formula $m_{0}\coloneqq\inf_{n\in\mathbb{N}}a_{n},M_{0}\coloneqq\sup_{n\in\mathbb{N}}a_{n},I_{0}\coloneqq\left[m_{0},M_{0}\right]$ \end_inset . Očitno je \begin_inset Formula $\forall n\in\mathbb{N}:a_{n}\in I_{0}$ \end_inset . Interval \begin_inset Formula $I_{0}$ \end_inset razdelimo na dve polovici: \begin_inset Formula $I_{0}=\left[m_{0},\frac{m_{0}+M_{0}}{2}\right]\cup\left[\frac{m_{0}+M_{0}}{2},M_{0}\right]$ \end_inset . Izberemo polovico (vsaj ena obstaja), v kateri leži neskončno mnogo členov, in jo označimo z \begin_inset Formula $I_{1}$ \end_inset . Spet jo razdelimo na pol in z \begin_inset Formula $I_{2}$ \end_inset označimo tisto polovico, v kateri leži neskončno mnogo členov. Postopek ponavljamo in dobimo zaporedje zaprtih intervalov \begin_inset Formula $\left(I_{n}\right)_{n\in\mathbb{N}}$ \end_inset in velja \begin_inset Formula $I_{0}\supset I_{1}\supset I_{2}\supset\cdots$ \end_inset ter \begin_inset Formula $\left|I_{n}\right|=2^{-n}\left|I_{0}\right|$ \end_inset . \end_layout \begin_layout Proof Označimo sedaj \begin_inset Formula $I_{n}\eqqcolon\left[l_{n},d_{n}\right]$ \end_inset . Iz konstrukcije je očitno, da \begin_inset Formula $\left(l_{n}\right)_{n\in\mathbb{N}}$ \end_inset narašča in \begin_inset Formula $\left(d_{n}\right)_{n\in\mathbb{N}}$ \end_inset pada ter da sta obe zaporedji omejeni. Posledično \begin_inset Formula $\exists l\coloneqq\lim_{n\to\infty}l_{n},d\coloneqq\lim_{n\to\infty}d_{n}$ \end_inset . Iz \begin_inset Formula $l_{n}\leq l\leq d\leq d_{n}$ \end_inset sledi ocena \begin_inset Formula $d-l\leq l_{n}-d_{n}=\left|I_{n}\right|=2^{-n}\left|I_{0}\right|$ \end_inset , kar konvergira k 0. Posledično \begin_inset Formula $d=l$ \end_inset . \end_layout \begin_layout Proof Treba je pokazati še, da je \begin_inset Formula $d=l$ \end_inset stekališče za \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset . Vzemimo poljuben \begin_inset Formula $\varepsilon>0$ \end_inset . Ker je \begin_inset Formula $l=\lim_{n\to\infty}l_{n}\Rightarrow\exists n_{1}\in\mathbb{N}\ni:l_{n_{1}}>l-\varepsilon$ \end_inset in ker je \begin_inset Formula $d=\lim_{n\to\infty}d_{n}\Rightarrow\exists n_{2}\in\mathbb{N}\ni:d_{n_{2}}0\ni:$ \end_inset izven \begin_inset Formula $\left(s-\varepsilon,s+\varepsilon\right)$ \end_inset se nahaja neskončno mnogo členov zaporedja. Ti členi sami zase tvorijo omejeno zaporedje, ki ima po \begin_inset ERT status open \begin_layout Plain Layout \backslash hyperlink{bw}{B.-W.} \end_layout \end_inset izreku stekališče. Slednje gotovo ne more biti enako \begin_inset Formula $s$ \end_inset , torej imamo vsaj dve stekališči, kar je v je v \begin_inset Formula $\rightarrow\!\leftarrow$ \end_inset s predpostavko. \end_layout \begin_layout Definition* Pravimo, da ima realno zaporedje: \end_layout \begin_deeper \begin_layout Itemize stekališče v \begin_inset Formula $\infty$ \end_inset , če \begin_inset Formula $\forall M>0:\left(M,\infty\right)$ \end_inset vsebuje neskončno mnogo členov zapopredja \end_layout \begin_layout Itemize limito v \begin_inset Formula $\infty$ \end_inset , če \begin_inset Formula $\forall M>0:\left(M,\infty\right)$ \end_inset vsebuje vse člene zaporedja od nekega indeksa dalje \end_layout \begin_layout Standard in podobno za \begin_inset Formula $-\infty$ \end_inset . \end_layout \end_deeper \begin_layout Remark* Povezava s pojmom realnega stekališča/limite: okolice \begin_inset Quotes gld \end_inset točke \begin_inset Quotes grd \end_inset \begin_inset Formula $\infty$ \end_inset so intervali oblike \begin_inset Formula $\left(M,\infty\right)$ \end_inset . To je smiselno, saj biti \begin_inset Quotes gld \end_inset blizu \begin_inset Formula $\infty$ \end_inset \begin_inset Quotes grd \end_inset pomeni bizi zelo velik, kar je ravno biti v \begin_inset Formula $\left(M,\infty\right)$ \end_inset za poljubno velik \begin_inset Formula $M$ \end_inset . \begin_inset Quotes gld \end_inset Okolica točke \begin_inset Formula $\infty$ \end_inset \begin_inset Quotes grd \end_inset so torej vsi intervali oblike \begin_inset Formula $\left(M,\infty\right)$ \end_inset . \end_layout \begin_layout Subsection Limes superior in limes inferior \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset realno zaporedje. Tvorimo novo zaporedje \begin_inset Formula $s_{n}\coloneqq\sup\left\{ a_{k};k\geq n\right\} $ \end_inset . Očitno je padajoče ( \begin_inset Formula $s_{1}\geq s_{2}\geq s_{3}\geq\cdots$ \end_inset ), ker je supremum množice vsaj supremum njene stroge podmnožice. Zaporedje \begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ \end_inset ima limito, ki ji rečemo limes superior oziroma zgornja limita zaporedja \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset in označimo \begin_inset Formula $\limsup_{n\to\infty}a_{n}=\overline{\lim_{n\to\infty}}a_{n}\coloneqq\lim_{n\to\infty}s_{n}$ \end_inset in velja, da leži v \begin_inset Formula $\mathbb{R}\cup\left\{ -\infty,\infty\right\} $ \end_inset . Podobno definiramo tudi limes inferior oz. spodnjo limito zaporedja: \begin_inset Formula $\liminf_{n\to\infty}a_{n}=\underline{\lim_{n\to\infty}}a_{n}\coloneqq\lim_{n\to\infty}\left(\inf_{k\geq n}a_{k}\right)=\sup_{n\in\mathbb{N}}\left(\inf_{k\geq n}a_{k}\right)$ \end_inset . \end_layout \begin_layout Remark* Za razliko od običajne limite, ki lahko ne obstaja, \begin_inset Formula $\limsup$ \end_inset in \begin_inset Formula $\liminf$ \end_inset vedno obstajata. \end_layout \begin_layout Claim* \begin_inset Formula $\limsup_{n\to\infty}a_{n}$ \end_inset je največje stekališče zaporedja \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset in \begin_inset Formula $\liminf_{n\to\infty}$ \end_inset najmanjše. \end_layout \begin_layout Proof Označimo \begin_inset Formula $s\coloneqq\limsup_{n\to\infty}a_{n}$ \end_inset . Za \begin_inset Formula $\liminf$ \end_inset je dokaz analogen in ga ne bomo pisali. Dokazujemo, da je \begin_inset Formula $s$ \end_inset stekališče in \begin_inset Formula $\forall t>s:t$ \end_inset ni stekališče. Ločimo primere: \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $s\in\mathbb{R}$ \end_inset Naj bo \begin_inset Formula $\varepsilon>0$ \end_inset poljuben. Ker \begin_inset Foot status open \begin_layout Plain Layout Infimum padajočega konvergentnega zaporedja je očitno njegova limita. \end_layout \end_inset je \begin_inset Formula $s=\inf s_{n}$ \end_inset , \begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:s_{n_{0}}\in[s,s+\varepsilon)$ \end_inset . Ker \begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ \end_inset pada proti \begin_inset Formula $s$ \end_inset , sledi \begin_inset Formula $\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow s_{n}\in[s,s+\varepsilon)$ \end_inset . Po definiciji \begin_inset Formula $s_{n}$ \end_inset velja \begin_inset Formula $\forall n\in\mathbb{N}\exists N\left(n\right)\geq n\ni:s_{n}-\varepsilons:t$ \end_inset ni stekališče. Naj bo \begin_inset Formula $t>s$ \end_inset . Označimo \begin_inset Formula $\delta\coloneqq t-s>0$ \end_inset . Po definiciji \begin_inset Foot status open \begin_layout Plain Layout \begin_inset Formula $s$ \end_inset je limita zaporedja \begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ \end_inset , zato v poljubno majhni okolici obstaja tak \begin_inset Formula $s_{n_{1}}$ \end_inset . \begin_inset Formula $s_{n_{1}}$ \end_inset torej tu najdemo v \begin_inset Formula $[s,s+\frac{\delta}{2})$ \end_inset . \end_layout \end_inset \begin_inset Formula $s$ \end_inset \begin_inset Formula $\exists n_{1}\in\mathbb{N}\ni:s\leq s_{n_{1}}0$ \end_inset poljuben. Ker je \begin_inset Formula $s=\inf s_{n}$ \end_inset , velja \begin_inset Formula $\forall n\in\mathbb{N}:s_{n}=\infty$ \end_inset . Po definiciji \begin_inset Formula $s_{n}=\infty$ \end_inset velja \begin_inset Formula $\forall n\in\mathbb{N}\exists N\left(n\right):a_{N\left(n\right)}>M$ \end_inset . Ker je \begin_inset Formula $N\left(n\right)\geq n$ \end_inset , je \begin_inset Formula $\left\{ N\left(n\right);n\in\mathbb{N}\right\} $ \end_inset neskončna množica, torej je neskončno mnogo členov v \begin_inset Formula $\left(M,\infty\right)$ \end_inset za poljuben \begin_inset Formula $M$ \end_inset , torej je \begin_inset Formula $s=\infty$ \end_inset res stekališče. \end_layout \begin_deeper \begin_layout Standard Večjih stekališč od \begin_inset Formula $\infty$ \end_inset očitno ni. \end_layout \end_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $s=-\infty$ \end_inset Naj bo \begin_inset Formula $m<0$ \end_inset poljuben. Ker je \begin_inset Formula $s=\inf s_{n}$ \end_inset , \begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:s_{n_{0}}\in\left(-\infty,m\right)$ \end_inset Ker \begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ \end_inset pada proti \begin_inset Formula $s=-\infty$ \end_inset , sledi \begin_inset Formula $\forall n\in\mathbb{N}:n\geq n_{0}:s_{n}\in\left(-\infty,m\right)$ \end_inset . Po definiciji \begin_inset Formula $s_{n}$ \end_inset velja \begin_inset Formula $\forall n\in\mathbb{N}:a_{n}\in\left(-\infty,m\right)$ \end_inset . Ker je za poljuben \begin_inset Formula $m$ \end_inset neskončno mnogo členov v \begin_inset Formula $\left(-\infty,m\right)$ \end_inset , je \begin_inset Formula $s=-\infty$ \end_inset res stekališče. \end_layout \end_deeper \begin_layout Subsection Cauchyjev pogoj \end_layout \begin_layout Definition* Zaporedje \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset ustreza Cauchyjevemu pogoju (oz. je Cauchyjevo), če \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\ni:\forall m,n\in\mathbb{N}:m,n\geq n_{0}\Rightarrow\left|a_{m}-a_{n}\right|<\varepsilon$ \end_inset . ZDB Dovolj pozni členi so si poljubno blizu. \end_layout \begin_layout Claim* Zaporedje v \begin_inset Formula $\mathbb{R}$ \end_inset je konvergentno \begin_inset Formula $\Leftrightarrow$ \end_inset je Cauchyjevo. \end_layout \begin_layout Proof Dokazujemo ekvivalenco. \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Rightarrow\right)$ \end_inset Če \begin_inset Formula $a_{n}\to L$ \end_inset , tedaj \begin_inset Formula $\left|a_{m}-a_{n}\right|=\left|\left(a_{m}-L\right)+\left(L-a_{n}\right)\right|\leq\left|a_{m}-\varepsilon\right|+\left|a_{n}-\varepsilon\right|$ \end_inset . Cauchyjev pogoj sledi iz definicije limite za \begin_inset Formula $\frac{\varepsilon}{2}$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Leftarrow\right)$ \end_inset Če je zaporedje Cauchyjevo, je omejeno: \begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:\forall m,n\in\mathbb{N}:m,n\geq n_{0}\Rightarrow\left|a_{m}-a_{n}\right|\leq1$ \end_inset . V posebnem, \begin_inset Formula $m=n_{0}$ \end_inset , \begin_inset Formula $\left|a_{n_{0}}-a_{n}\right|\leq1$ \end_inset oziroma \begin_inset Formula $\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow a_{n}\in\left[a_{n_{0}}-1,a_{n_{0}}+1\right]$ \end_inset . Preostali členi tvorijo končno veliko množico, ki ima \begin_inset Formula $\min$ \end_inset in \begin_inset Formula $\max$ \end_inset , torej je \begin_inset Formula $\left\{ a_{k};k\in\mathbb{N}\right\} =\left\{ a_{1},a_{2},\dots,a_{n_{0}-1}\right\} \cup\left\{ a_{k};k\in\mathbb{N},k\geq n_{0}\right\} $ \end_inset tudi omejena. Po \begin_inset ERT status open \begin_layout Plain Layout \backslash hyperlink{bw}{izreku od prej} \end_layout \end_inset sledi, da ima zaporedje stekališče \begin_inset Formula $s$ \end_inset . Dokažimo, da je \begin_inset Formula $s=\lim_{n\to\infty}a_{n}$ \end_inset . Vzemimo poljuben \begin_inset Formula $\varepsilon>0$ \end_inset . Ker je \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset Cauchyjevo, \begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:\forall m,n\in\mathbb{N}:m,n\geq n_{0}\Rightarrow\left|a_{m}-a_{n}\right|<\frac{\varepsilon}{2}$ \end_inset . Po definiciji \begin_inset Formula $s$ \end_inset \begin_inset Formula $\exists n_{1}\geq n_{0}\ni:\left|a_{n_{1}}-s\right|<\frac{\varepsilon}{2}$ \end_inset . Sledi \begin_inset Formula $\forall n\geq n_{0}:\left|a_{n}-s\right|=\left|a_{n}-s+s-a_{n_{1}}\right|\leq\left|a_{n}-s\right|+\left|s-a_{n_{1}}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ \end_inset . \end_layout \end_deeper \begin_layout Remark* Moč izreka je v tem, da lahko konvergenco preverjamo tudi tedaj, ko nimamo kandidatov za limito. \end_layout \begin_layout Section Številske vrste \end_layout \begin_layout Standard Kako sešteti neskončno mnogo števil? Nadgradimo pristop končnih vsot na neskončne vsote! \end_layout \begin_layout Definition* Imejmo zaporedje \begin_inset Formula $\left(a_{k}\right)_{k\in\mathbb{N}},a_{k}\in\mathbb{R}$ \end_inset . Izraz \begin_inset Formula $\sum_{j=1}^{\infty}a_{j}$ \end_inset se imenuje vrsta s členi \begin_inset Formula $a_{j}$ \end_inset . Pomen izraza opredelimo na naslednjo način: \end_layout \begin_layout Definition* Tvorimo novo zaporedje, pravimo mu zaporedje delnih vsot vrste: \begin_inset Formula $s_{1}=a_{1}$ \end_inset , \begin_inset Formula $s_{2}=a_{1}+a_{2}$ \end_inset , \begin_inset Formula $s_{3}=a_{1}+a_{2}+a_{3}$ \end_inset , ..., \begin_inset Formula $s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{j=1}^{n}a_{j}$ \end_inset — številu \begin_inset Formula $s_{n}$ \end_inset pravimo \begin_inset Formula $n-$ \end_inset ta delna vsota. \end_layout \begin_layout Definition* Vrsta je konvergentna, če je v \begin_inset Formula $\mathbb{R}$ \end_inset konvergentno zaporedje \begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ \end_inset . Številu \begin_inset Formula $s=\lim_{n\to\infty}s_{n}$ \end_inset tedaj pravimo vsota vrste in pišemo \begin_inset Formula $s\eqqcolon\sum_{j=1}^{\infty}a_{j}$ \end_inset . Pojem neskončne vsote torej prevedemo na pojem limite pridruženega zaporedja delnih vsot. Včasih vrsto (kot operacijo) enačimo z njeno vsoto (izidom operacije). \end_layout \begin_layout Definition* Če vrsta ni konvergentna, rečemo, da je divergentna. Enako, če je \begin_inset Formula $s\in\left\{ \pm\infty\right\} $ \end_inset . \end_layout \begin_layout Example* Primeri vrst. \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $a_{n}=\frac{1}{2^{n}}$ \end_inset , torej zaporedje \begin_inset Formula $\frac{1}{2},\frac{1}{4},\frac{1}{8},\dots$ \end_inset . Ali se sešteje v 1? Velja \begin_inset Formula $s=\lim_{n\to\infty}\sum_{j=1}^{n}a_{j}$ \end_inset . Pišimo \begin_inset Formula $q=\frac{1}{2}$ \end_inset , tedaj \begin_inset Formula $a_{n}=q^{n}$ \end_inset in \begin_inset Formula \[ s_{n}=q+q^{2}+q^{3}+\cdots+q^{n}=q\left(1+q+q^{2}+\cdots+q^{n-1}\right)=q\frac{\left(1+q+q^{2}+\cdots+q^{n-1}\right)\left(1-q\right)}{1-q}= \] \end_inset \begin_inset Formula \[ =q\frac{\left(1+q+q^{2}+\cdots+q^{n-1}\right)-\left(q+q^{2}+q^{3}+\cdots+q^{n}\right)}{1-q}=q\frac{1-q^{n}}{1-q}=\frac{q}{1-q}\left(1-q^{n}\right) \] \end_inset Izračunajmo \begin_inset Formula $\lim_{n\to\infty}s_{n}=\lim_{n\to\infty}\frac{q}{1-q}\left(1-\cancelto{0}{q^{n}}\right)=\frac{q}{1-q}$ \end_inset (velja, ker \begin_inset Formula $q\in\left(-1,1\right)$ \end_inset ), torej je \begin_inset Formula $s=\sum_{n=1}^{\infty}q^{n}=\frac{q}{1-q}$ \end_inset . \end_layout \begin_layout Enumerate Geometrijska vrsta (splošno). Naj bo \begin_inset Formula $q\in\mathbb{R}$ \end_inset . Vrsta \begin_inset Formula $\sum_{j=0}^{\infty}q^{j}$ \end_inset se imenuje geometrijska vrsta. Velja \begin_inset Formula $s=\lim_{n\to\infty}\sum_{j=0}^{n}q^{j}$ \end_inset in \begin_inset Formula $s_{n}=1+q+q^{2}+q^{3}+\cdots+q^{n}$ \end_inset . Če je \begin_inset Formula $q=1$ \end_inset , je \begin_inset Formula $s_{n}=n+1$ \end_inset , sicer množimo izraz z \begin_inset Formula $\left(1-q\right)$ \end_inset : \begin_inset Formula \[ \left(1+q+q^{2}+\cdots+q^{n}\right)\left(1-q\right)=\left(1+q+q^{2}+\cdots+q^{n}\right)-\left(q+q^{2}+q^{3}+\cdots+q^{n+1}\right)=1-q^{n+1} \] \end_inset torej \begin_inset Formula $s_{n}=\frac{1-q^{n+1}}{1-q}$ \end_inset in vrsta konvergira \begin_inset Formula $\Leftrightarrow q\not=1$ \end_inset in \begin_inset Formula $\lim_{n\to\infty}\frac{1-q^{n+1}}{1-q}\exists$ \end_inset v \begin_inset Formula $\mathbb{R}$ \end_inset . To pa se zgodi natanko za \begin_inset Formula $q\in\left(-1,1\right)$ \end_inset , takrat je \begin_inset Formula $\lim_{n\to\infty}\frac{1-\cancelto{0}{q^{n+1}}}{1-q}=\frac{1}{1-q}$ \end_inset . \end_layout \begin_layout Enumerate Harmonična vrsta. Je vrsta \begin_inset Formula $\sum_{j=1}^{\infty}\frac{1}{j}$ \end_inset . Velja \begin_inset Formula $\frac{1}{j}\underset{j\to\infty}{\longrightarrow}0$ \end_inset , toda vrsta divergira. Dokaz sledi kmalu malce spodaj. \end_layout \end_deeper \begin_layout Question* Kako lahko enostavno določimo, ali dana vrsta konvergira? \end_layout \begin_layout Subsection Konvergenčni kriteriji \end_layout \begin_layout Theorem* \begin_inset ERT status open \begin_layout Plain Layout \backslash hypertarget{cauchyvrste}{Cauchyjev pogoj} \end_layout \end_inset . Vrsta \begin_inset Formula $\sum_{j=1}^{\infty}a_{j}$ \end_inset je konvergentna \begin_inset Formula $\Leftrightarrow$ \end_inset delne vrste ustrezajo Cauchyjevemu pogoju; \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n,m\in\mathbb{N}:n,m\geq n_{0}\Rightarrow\left|s_{m}-s_{n}\right|=\left|\sum_{j=n+1}^{m}a_{j}\right|<\varepsilon$ \end_inset . \end_layout \begin_layout Corollary* \begin_inset Formula $\sum_{j=1}^{\infty}a_{j}$ \end_inset konvergira \begin_inset Formula $\Rightarrow\lim_{j\to\infty}a_{j}=0$ \end_inset . \end_layout \begin_layout Proof Uporabimo izrek zgoraj za \begin_inset Formula $n=m-1$ \end_inset : \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|s_{n}-s_{n+1}\right|=\left|a_{n}\right|<\varepsilon$ \end_inset . \end_layout \begin_layout Example* Vrsti \begin_inset Formula $\sum_{j=1}^{\infty}\cos n$ \end_inset in \begin_inset Formula $\sum_{j=1}^{\infty}\sin n$ \end_inset divergirata, saj smo videli, da členi ne ene ne druge ne konvergirajo nikamor, torej tudi ne proti 0, kar je potreben pogoj za konvergenco vrste. \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Example* Harmonična vrsta divergira. Protiprimer Cauchyjevega pogoja: Naj bo \begin_inset Formula $\varepsilon=\frac{1}{4}$ \end_inset . Tedaj ne glede na izbiro \begin_inset Formula $n_{0}$ \end_inset najdemo: \begin_inset Formula \[ s_{2n}-s_{n}=\sum_{j=n+1}^{2n}\frac{1}{j}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}>\frac{1}{2n}+\frac{1}{2n}+\cdots+\frac{1}{2n}=\frac{1}{2} \] \end_inset Dokaz divergence brez Cauchyjevega pogoja: \begin_inset Formula $s_{2^{n}}=a_{1}+\sum_{j=1}^{n}\left(s_{2^{j}}-s_{s^{j-1}}\right)>1+\frac{n}{2}$ \end_inset in \begin_inset Formula $\lim_{n\to\infty}1+\frac{n}{2}=\infty$ \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout Geometrični argument za divergenco: TODO XXX FIXME DODAJ \end_layout \end_inset \end_layout \begin_layout Theorem* \begin_inset ERT status open \begin_layout Plain Layout \backslash hypertarget{pk}{Primerjalni kriterij} \end_layout \end_inset . Naj bosta \begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ \end_inset in \begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ \end_inset vrsti z nenegativnimi členi. Naj bo \begin_inset Formula $\forall k\geq k_{0}:a_{k}\leq b_{k}$ \end_inset (od nekod naprej) — pravimo, da je \begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ \end_inset majoranta za \begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ \end_inset od nekod naprej. \end_layout \begin_deeper \begin_layout Itemize Če \begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ \end_inset konvergira, tedaj tudi \begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ \end_inset konvergira. \end_layout \begin_layout Itemize Če \begin_inset Formula $\text{\ensuremath{\sum_{n=1}^{\infty}a_{n}=\infty}}$ \end_inset , tedaj tudi \begin_inset Formula $\sum_{n=1}^{\infty}b_{n}=\infty$ \end_inset . \end_layout \end_deeper \begin_layout Example* Videli smo, da \begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k}$ \end_inset divergira. Kaj pa \begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k^{2}}$ \end_inset ? Preverimo naslednje in uporabimo primerjalni kriterij: \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $\forall k\in\mathbb{N}:\frac{1}{k^{2}}\leq\frac{2}{k\left(k+1\right)}$ \end_inset ? Računajmo \begin_inset Formula $k^{2}\geq\frac{k\left(k+1\right)}{2}\sim k\geq\frac{k+1}{2}\sim\frac{k}{2}\geq\frac{1}{2}$ \end_inset . Velja, ker \begin_inset Formula $k\in\mathbb{N}$ \end_inset . \end_layout \begin_layout Enumerate Vrsta \begin_inset Formula $\sum_{k=1}^{\infty}\frac{2}{k\left(k+1\right)}$ \end_inset konvergira? Opazimo \begin_inset Formula $\frac{1}{k}-\frac{1}{k+1}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k\left(k+1\right)}$ \end_inset . Za delne vsote vrste \begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k\left(k+1\right)}$ \end_inset velja: \begin_inset Formula \[ \sum_{k=1}^{n}\frac{1}{k\left(k+1\right)}=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{n+1}\underset{n\to\infty}{\longrightarrow}1, \] \end_inset torej \begin_inset Formula $\sum_{k=1}^{\infty}\frac{2}{k\left(k+1\right)}=2$ \end_inset . Posledično po primerjalnem kriteriju tudi \begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k^{2}}$ \end_inset konvergira. Izkaže se \begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}\approx1,645$ \end_inset . \end_layout \end_deeper \begin_layout Theorem* Kvocientni oz. d'Alembertov kriterij. Za vrsto s pozitivnimi členi \begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ \end_inset definirajmo \begin_inset Formula $D_{n}\coloneqq\frac{a_{n+1}}{a_{n}}$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $\exists n_{0}\in\mathbb{N},q\in\left(0,1\right)\forall n\geq n_{0}:D_{n}\leq q\Longrightarrow\sum_{n=1}^{\infty}a_{n}<\infty$ \end_inset (vrsta konvergira) \end_layout \begin_layout Enumerate \begin_inset Formula $\exists n_{0}\in\mathbb{N}\forall n\geq n_{0}:D_{n}\geq1\Longrightarrow\sum_{n=1}^{\infty}a_{n}=\infty$ \end_inset (vrsta divergira) \end_layout \begin_layout Enumerate \begin_inset Formula $\exists D=\lim_{n\to\infty}D_{n}\in\mathbb{R}\Longrightarrow$ \end_inset \end_layout \begin_deeper \begin_layout Enumerate \begin_inset CommandInset label LatexCommand label name "enu:kvocientni3a" \end_inset \begin_inset Formula $D<1\Longrightarrow\sum_{n=1}^{\infty}a_{n}<\infty$ \end_inset (vrsta konvergira) \end_layout \begin_layout Enumerate \begin_inset Formula $D>1\Longrightarrow\sum_{n=1}^{\infty}a_{n}=\infty$ \end_inset (vrsta divergira) \end_layout \begin_layout Enumerate \begin_inset Formula $D=1\Longrightarrow$ \end_inset s tem kriterijem ne moremo določiti konvergence. \end_layout \end_deeper \end_deeper \begin_layout Proof Razlaga. \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $\forall n>n_{0}:D_{n}\leq q$ \end_inset , torej \begin_inset Formula $\frac{a_{n+1}}{a_{n}}\leq q\sim a_{n+1}\leq qa_{n}$ \end_inset in hkrati \begin_inset Formula $\text{\ensuremath{\frac{a_{n+2}}{a_{n+1}}\leq q\sim a_{n+2}\leq qa_{n+1}}}$ \end_inset , torej skupaj \begin_inset Formula $a_{n+2}\leq qa_{n+1}\leq qqa_{n}=q^{2}a_{n}$ \end_inset , sledi \begin_inset Formula $q_{n+2}\leq q^{2}a_{n}$ \end_inset in \begin_inset Formula $\forall k\in\mathbb{N}:q_{n+k}\leq q^{k}a_{n}$ \end_inset . Vrsto smo majorizirali z geometrijsko vrsto, ki ob \begin_inset Formula $q\in\left(0,1\right)$ \end_inset konvergira po primerjalnem kriteriju, zato tudi naša vrsta konvergira. \end_layout \begin_layout Enumerate \begin_inset Formula $\forall n>n_{0}:\frac{a_{n+1}}{a_{n}}\geq D\geq1$ \end_inset , torej \begin_inset Formula $a_{n+1}\geq a_{n}$ \end_inset in hkrati \begin_inset Formula $a_{n+2}\geq a_{n+1}$ \end_inset , torej skupaj \begin_inset Formula $a_{n+2}\geq a_{n}$ \end_inset , sledi \begin_inset Formula $\forall k\in\mathbb{N}:a_{n+k}\geq a_{n}$ \end_inset . Naša vrsta torej majorizira konstantno vrsto, ki očitno divergira; \begin_inset Formula $\sum_{k=n_{0}}^{\infty}a_{k}\geq\sum_{k=n_{0}}^{\infty}a_{n}=0$ \end_inset . Potemtakem tudi naša vrsta divergira. Poleg tega niti ne velja \begin_inset Formula $a_{k}\underset{k\to\infty}{\longrightarrow}0$ \end_inset , torej vrsta gotovo divergira. \end_layout \begin_layout Enumerate Enako kot 1 in 2. \end_layout \end_deeper \begin_layout Example* Za \begin_inset Formula $x>0$ \end_inset definiramo \begin_inset Formula $e^{x}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}$ \end_inset . Vrsta res konvergira po točki \begin_inset CommandInset ref LatexCommand ref reference "enu:kvocientni3a" plural "false" caps "false" noprefix "false" nolink "false" \end_inset . \begin_inset Formula \[ D_{n}=\frac{\frac{x^{n+1}}{\left(n+1\right)!}}{\frac{x^{n}}{n!}}=\frac{x^{n+1}n!}{x^{n}\left(n+1\right)!}=\frac{x}{n+1}\underset{n\to\infty}{\longrightarrow}0 \] \end_inset \end_layout \begin_layout Theorem* Korenski oz. Cauchyjev kriterij. Naj bo \begin_inset Formula $\sum_{k=1}^{\infty}a_{k}$ \end_inset vrsta z nenegativnimi členi. Naj bo \begin_inset Formula $c_{n}\coloneqq\sqrt[n]{a_{n}}$ \end_inset .ž \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $\exists n_{0}\in\mathbb{N},q\in\left(0,1\right)\forall n>n_{0}:c_{n}\leq q\Longrightarrow\sum_{k=1}^{\infty}a_{k}<\infty$ \end_inset (vrsta konvergira) \end_layout \begin_layout Enumerate \begin_inset Formula $\exists n_{0}\in\mathbb{N}\forall n>n_{0}:c_{n}\geq1\Longrightarrow\sum_{k=1}^{\infty}a_{k}=\infty$ \end_inset (vrsta divergira) \end_layout \begin_layout Enumerate \begin_inset Formula $\exists c=\lim_{n\to\infty}c_{n}\in\mathbb{R}\Longrightarrow$ \end_inset \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $c<1\Longrightarrow\sum_{k=1}^{\infty}a_{k}<\infty$ \end_inset (vrsta konvergira) \end_layout \begin_layout Enumerate \begin_inset Formula $c>1\Longrightarrow\sum_{k=1}^{\infty}a_{k}=\infty$ \end_inset (vrsta divergira) \end_layout \begin_layout Enumerate \begin_inset Formula $c=1\Longrightarrow$ \end_inset s tem kriterijem ne moremo določiti konvergence. \end_layout \end_deeper \end_deeper \begin_layout Proof Skica dokazov. \end_layout \begin_deeper \begin_layout Enumerate Velja \begin_inset Formula $\forall n>n_{0}:c_{n}\leq q$ \end_inset . To pomeni \begin_inset Formula $\sqrt[n]{a_{n}}\leq q$ \end_inset , torej \begin_inset Formula $a_{n}\leq q^{n}$ \end_inset in \begin_inset Formula $a_{n+1}\leq q^{n+1}$ \end_inset , torej je vrsta majorizirana z geometrijsko vrsto \begin_inset Formula $\sum_{n=1}^{\infty}q^{n}$ \end_inset . \end_layout \begin_layout Enumerate Velja \begin_inset Formula $\forall n>n_{0}:c_{n}\geq1$ \end_inset . To pomeni \begin_inset Formula $\sqrt[n]{a_{n}}\geq1$ \end_inset , torej \begin_inset Formula $a_{n}\geq1$ \end_inset , torej je vrsta majorizirana s konstantno in zato divergentno vrsto \begin_inset Formula $\sum_{n=1}^{\infty}1$ \end_inset . \end_layout \begin_layout Enumerate Enako kot 1 in 2. \end_layout \end_deeper \begin_layout Subsection Alternirajoče vrste \end_layout \begin_layout Definition* Vrsta je alternirajoča, če je predznak naslednjega člena nasproten predznaku tega člena. ZDB \begin_inset Formula $\forall n\in\mathbb{N}:\sgn a_{n+1}=-\sgn a_{n}$ \end_inset , kjer je \begin_inset Formula $\sgn:\mathbb{R}\to\left\{ -1,0,1\right\} $ \end_inset s predpisom \begin_inset Formula $\sgn a=\begin{cases} -1 & ;a<0\\ 1 & ;a>0\\ 0 & ;a=0 \end{cases}$ \end_inset . ZDB \begin_inset Formula $\forall n\in\mathbb{N}:a_{n+1}a_{n}\leq0$ \end_inset . \end_layout \begin_layout Theorem* Leibnizov konvergenčni kriterij. Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset padajoče zaporedje in \begin_inset Formula $\lim_{n\to\infty}a_{n}=0$ \end_inset . Tedaj vrsta \begin_inset Formula $\sum_{k=1}^{\infty}\left(-1\right)^{k}a_{k}$ \end_inset konvergira. Če je \begin_inset Formula $s\coloneqq\sum_{k=1}^{\infty}\left(-1\right)^{k}a_{k}$ \end_inset in \begin_inset Formula $s_{n}\coloneqq\sum_{k=1}^{\infty}\left(-1\right)^{k}a_{k}$ \end_inset , tedaj \begin_inset Formula $\left|s-s_{k}\right|\leq a_{n+1}$ \end_inset . \end_layout \begin_layout Proof Skica dokaza. Vidimo, da delne vsote \begin_inset Formula $s_{2n}$ \end_inset padajo k \begin_inset Formula $s''$ \end_inset in delne vsote \begin_inset Formula $s_{2n-1}$ \end_inset naraščajo k \begin_inset Formula $s'$ \end_inset . Toda ker \begin_inset Formula $s_{2n}-s_{2n-1}=a_{2n}$ \end_inset , velja \begin_inset Formula $s'=s''$ \end_inset . Limita razlike dveh zaporedij je razlika limit teh dveh zaporedij, torej \begin_inset Formula $s'=s''=s$ \end_inset . \begin_inset Formula $s$ \end_inset je supremum lihih in infimum sodih vsot. \begin_inset Formula $\left|s-s_{n}\right|\leq\left|s_{n+1}-s_{n}\right|=a_{n+1}$ \end_inset . \end_layout \begin_layout Example* Harmonična vrsta \begin_inset Formula $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots\to\infty$ \end_inset , toda alternirajoča harmonična vrsta \begin_inset Formula $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\to\log2$ \end_inset . \end_layout \begin_layout Subsection Absolutno konvergentne vrste \end_layout \begin_layout Definition* Vrsta \begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ \end_inset je absolutno konvergentna, če je \begin_inset Formula $\sum_{n=1}^{\infty}\left|a_{n}\right|$ \end_inset konvergentna. \end_layout \begin_layout Theorem* Absolutna konvergenca \begin_inset Formula $\Rightarrow$ \end_inset konvergenca. \end_layout \begin_layout Proof Uporabimo \begin_inset ERT status open \begin_layout Plain Layout \backslash hyperlink{cauchyvrste}{Cauchyjev pogoj za konvergenco vrst} \end_layout \end_inset in trikotniško neenakost. \begin_inset Formula \[ \left|s_{m}-s_{n}\right|=\left|\sum_{j=n+1}^{m}a_{j}\right|\leq\sum_{j=n+1}^{m}\left|a_{j}\right|<\varepsilon \] \end_inset za \begin_inset Formula $m,n\geq n_{0}$ \end_inset za nek \begin_inset Formula $n_{0}$ \end_inset . \end_layout \begin_layout Remark* Obrat ne velja, protiprimer je alternirajoča harmonična vrsta. \end_layout \begin_layout Subsection Pogojno konvergentne vrste \end_layout \begin_layout Standard \begin_inset Formula $\sum_{k=0}^{\infty}2-\sum_{k=0}^{\infty}1\not=\sum_{k=0}^{\infty}\left(2-1\right)$ \end_inset , temveč \begin_inset Formula $\infty-\infty=$ \end_inset nedefinirano. \end_layout \begin_layout Question* Ross-Littlewoodov paradoks. Ali smemo zamenjati vrstni red seštevanja, če imamo neskončno mnogo sumandov? \end_layout \begin_layout Standard Najprej vprašanje natančneje opredelimo in vpeljimo orodja za njegovo obravnavo. \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $\mathcal{M}\subset\mathbb{N}$ \end_inset . Permutacija \begin_inset Formula $\mathcal{M}$ \end_inset je vsaka bijektivna preslikava \begin_inset Formula $\pi:\mathcal{M}\to\mathcal{M}$ \end_inset . Če je \begin_inset Formula $\mathcal{M}=\left\{ a_{1},\dots,a_{n}\right\} $ \end_inset končna množica, tedaj \begin_inset Formula $\pi$ \end_inset označimo s tabelo: \begin_inset Formula \[ \left(\begin{array}{ccc} a_{1} & \cdots & a_{n}\\ \pi\left(a_{1}\right) & \cdots & \pi\left(a_{n}\right) \end{array}\right) \] \end_inset \end_layout \begin_layout Example* \begin_inset Formula \[ \pi=\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5\\ 5 & 3 & 1 & 4 & 2 \end{array}\right) \] \end_inset \end_layout \begin_layout Definition* Vrsta \begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ \end_inset je brezpogojno konvergentna, če za vsako permutacijo \begin_inset Formula $\pi:\mathbb{N}\to\mathbb{N}$ \end_inset vrsta \begin_inset Formula $\sum_{n=1}^{\infty}\pi\left(a_{n}\right)$ \end_inset konvergira in vsota ni odvisna od \begin_inset Formula $\pi$ \end_inset . Vrsta je pogojno konvergentna, če je konvergentna, toda ne brezpogojno. \end_layout \begin_layout Example* \begin_inset Formula $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$ \end_inset je pogojno konvergentna, ker pri seštevanju z vrstnim redom, pri katerem tisočim pozitivnim členom sledi en negativen in njemu zopet tisoč pozitivnih itd., vrsta ne konvergira. \end_layout \begin_layout Theorem* Absolutna konvergenca \begin_inset Formula $\Leftrightarrow$ \end_inset Brezpogojna konvergenca \end_layout \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Theorem* Riemannov sumacijski izrek. Če je vrsta pogojno konvergentna, tedaj \begin_inset Formula $\forall x\in\mathbb{R}\cup\left\{ \pm\infty\right\} \exists$ \end_inset permutacija \begin_inset Formula $\pi:\mathbb{N}\to\mathbb{N}\ni:\sum_{n=1}^{\infty}a_{\pi\left(n\right)}=x$ \end_inset . ZDB Končna vsota je lahko karkoli, če lahko poljubno spremenimo vrstni red seštevanja. Prav tako obstaja taka permutacija \begin_inset Formula $\pi$ \end_inset , pri kateri \begin_inset Formula $\sum_{n=1}^{\infty}a_{\pi\left(n\right)}$ \end_inset nima vsote ZDB delne vsotee ne konvergirajo. \end_layout \begin_layout Example* \begin_inset Formula $\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}}{n}$ \end_inset . \end_layout \begin_layout Section Funkcijske vrste \end_layout \begin_layout Standard Tokrat poskušamo seštevati funkcije. V prejšnjem razdelku seštevamo le realna števila. Funkcijska vrsta, če je \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset zaporedije funkcij \begin_inset Formula $X\to\mathbb{R}$ \end_inset in \begin_inset Formula $x$ \end_inset zunanja konstanta, izgleda takole: \end_layout \begin_layout Standard \begin_inset Formula \[ \sum_{n=1}^{\infty}a_{n}\left(x\right) \] \end_inset \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $X$ \end_inset neka množica in \begin_inset Formula $\Phi=\left\{ \varphi_{n}:X\to\mathbb{R},n\in\mathbb{N}\right\} $ \end_inset družina funkcij. \end_layout \begin_layout Definition* Pravimo, da funkcije \begin_inset Formula $\varphi_{n}$ \end_inset konvergirajo po točkah na \begin_inset Formula $X$ \end_inset , če je \begin_inset Formula $\forall x\in X$ \end_inset zaporedje \begin_inset Formula $\left(\varphi_{n}\left(x\right)\right)_{n\in\mathbb{N}}$ \end_inset konvergentno. \end_layout \begin_layout Definition* Označimo limito s \begin_inset Formula $\varphi\left(x\right)$ \end_inset . ZDB to pomeni, da \begin_inset Formula \[ \forall\varepsilon>0,x\in X:\exists n_{0}=n_{0}\left(\varepsilon,x\right)\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|\varphi_{n}\left(x\right)-\varphi\left(x\right)\right|<\varepsilon. \] \end_inset \end_layout \begin_layout Definition* Pravimo, da funkcije \begin_inset Formula $\varphi_{n}$ \end_inset konvergirajo enakomerno na \begin_inset Formula $X$ \end_inset , če \begin_inset Formula \[ \forall\varepsilon>0\exists n_{0}=n_{0}\left(\varepsilon\right)\in\mathbb{N}\forall x\in X,n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|\varphi_{n}\left(x\right)-\varphi\left(x\right)\right|\leq\varepsilon \] \end_inset oziroma ZDB \begin_inset Formula \[ \forall\varepsilon>0\exists n_{0}=n_{0}\left(\varepsilon\right)\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\sup_{x\in X}\left|\varphi_{n}\left(x\right)-\varphi\left(x\right)\right|\leq\varepsilon. \] \end_inset \end_layout \begin_layout Definition* Poudariti je treba, da je pri konvergenci po točkah \begin_inset Formula $n_{0}$ \end_inset lahko odvisen od \begin_inset Formula $\varepsilon$ \end_inset in \begin_inset Formula $x$ \end_inset , pri enakomerni konvergenci pa le od \begin_inset Formula $\varepsilon$ \end_inset . \end_layout \begin_layout Note* Očitno enakomerna konvergenca implicira konvergenco po točkah, obratno pa ne velja. \end_layout \begin_layout Example* Za \begin_inset Formula $n\in\mathbb{N}$ \end_inset definiramo \begin_inset Formula $\varphi_{n}:\left[0,1\right]\to\left[0,1\right]$ \end_inset s predpisom \begin_inset Formula $\varphi_{n}\left(x\right)=x^{n}$ \end_inset . Tedaj obstaja \begin_inset Formula $\varphi\left(x\right)\coloneqq\lim_{n\to\infty}\varphi_{n}\left(x\right)=\begin{cases} 0 & ;x\in[0,1)\\ 1 & ;x=1 \end{cases}$ \end_inset . Torej po definiciji velja \begin_inset Formula $\varphi_{n}\to\varphi$ \end_inset po točkah, toda ne velja \begin_inset Formula $\varphi_{n}\to\varphi$ \end_inset enakomerno. Za poljubno velik pas okoli \begin_inset Formula $\varphi\left(x\right)$ \end_inset bodo še tako pozne funkcijske vrednosti \begin_inset Formula $\varphi_{n}\left(x\right)$ \end_inset od nekega \begin_inset Formula $x$ \end_inset dalje izven tega pasu. Če bi \begin_inset Formula $\varphi_{n}\to\varphi$ \end_inset enakomerno, tedaj bi za poljuben \begin_inset Formula $\varepsilon\in\left(0,1\right)$ \end_inset in dovolj pozne \begin_inset Formula $n$ \end_inset (večje od nekega \begin_inset Formula $n_{0}\in\mathbb{N}$ \end_inset ) veljalo \begin_inset Formula $\forall x\in\left[0,1\right]:\left|\varphi_{n}\left(x\right)-\varphi\left(x\right)\right|<\varepsilon$ \end_inset . To je ekvivalentno \begin_inset Formula $\forall x\in\left(0,1\right):\left|x^{n}\right|<\varepsilon\Leftrightarrow n\log x<\log\varepsilon\Leftrightarrow n>\frac{\log\varepsilon}{\log x}$ \end_inset . Toda \begin_inset Formula $\lim_{x\nearrow1}\frac{\log\varepsilon}{\log x}=\infty$ \end_inset , zato tak \begin_inset Formula $n$ \end_inset ne obstaja. \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $X$ \end_inset neka množica in \begin_inset Formula $\left(f_{j}:X\to\mathbb{R}\right)_{j\in\mathbb{N}}$ \end_inset dano zaporedje funkcij. Pravimo, da funkcijska vrsta \begin_inset Formula $\sum_{j=1}^{\infty}f_{j}$ \end_inset konvergira po točkah na \begin_inset Formula $X$ \end_inset , če \begin_inset Formula $\forall x\in X:\sum_{j=1}^{\infty}f_{j}\left(x\right)<0$ \end_inset (številska vrsta je konvergentna). ZDB to pomeni, da funkcijsko zaporedje delnih vsot \begin_inset Formula $s_{n}\coloneqq\sum_{j=1}^{n}f_{j}$ \end_inset konvergira po točkah na \begin_inset Formula $X$ \end_inset . \end_layout \begin_layout Definition* Funkcijska vrsta \begin_inset Formula $s=\sum_{j=1}^{\infty}$ \end_inset konvergira enakomerno na \begin_inset Formula $X$ \end_inset , če funkcijsko zaporedje delnih vsot \begin_inset Formula $s_{n}\coloneqq\sum_{j=1}^{n}f_{j}$ \end_inset konvergira enakomerno na \begin_inset Formula $X$ \end_inset . \end_layout \begin_layout Definition* Funkcija oblike \begin_inset Formula $x\mapsto\sum_{j=1}^{\infty}f_{j}\left(x\right)$ \end_inset se imenuje funkcijska vrsta. \end_layout \begin_layout Exercise* Dokaži, da \begin_inset Formula $\sum_{n=1}^{\infty}x^{n}$ \end_inset ne konvergira enakomerno! Vrsta konvergira po točkah le na intervalu \begin_inset Formula $x\in\left(0,1\right)$ \end_inset , za druge \begin_inset Formula $x$ \end_inset divergira. Ko fiksiramo zunanjo konstanto, gre za geometrijsko vrsto. Delna vsota \begin_inset Formula $\sum_{j=1}^{n}x^{j}=\frac{x\left(1-x^{n}\right)}{1-x}$ \end_inset . Velja \begin_inset Formula $\lim_{n\to\infty}\frac{x\left(1-x^{n}\right)}{1-x}=x\lim_{n\to\infty}\frac{1-\cancelto{0}{x^{n}}}{1-x}=\frac{x}{1-x}$ \end_inset . Sedaj prevedimo, ali \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall x\in\left(-1,1\right),n\geq n_{0}:\left|\frac{x\left(1-x^{n}\right)}{1-x}-\frac{x}{1-x}\right|<\varepsilon$ \end_inset . Za začetekk si oglejmo le \begin_inset Formula $x>0$ \end_inset . Ker je tedaj \begin_inset Formula $\frac{x\left(1-x^{n}\right)}{1-x}<\frac{x}{1-x}$ \end_inset , je \begin_inset Formula $\left|\frac{x\left(1-x^{n}\right)}{1-x}-\frac{x}{1-x}\right|=\frac{x}{1-x}-\frac{x\left(1-x^{n}\right)}{1-x}=\frac{\cancel{x-x+}x^{n+1}}{1-x}$ \end_inset . Računajmo sedaj \begin_inset Formula $\frac{x^{n+1}}{1-x}<\varepsilon\sim x^{n+1}<\varepsilon\left(1-x\right)\sim\left(n+1\right)\log x<\log\left(\varepsilon\left(1-x\right)\right)\sim n+1>\frac{\log\left(\varepsilon\left(1-x\right)\right)}{\log x}\sim n>\frac{\log\left(\varepsilon\left(1-x\right)\right)}{\log x}-1$ \end_inset . Ker je \begin_inset Formula $n$ \end_inset odvisen od \begin_inset Formula $x$ \end_inset , vsota ni enakomerno konvergentna. \end_layout \begin_layout Standard Poseben primer funkcijskih vrst so funkcijske vrste funkcij oblike \begin_inset Formula $f_{j}=b_{j}\cdot x^{j}$ \end_inset , torej potence (monomi). \end_layout \begin_layout Definition* Potenčna vrsta je funkcijska vrsta oblike \begin_inset Formula $\sum_{j=1}^{\infty}b_{j}\cdot x^{j}$ \end_inset , kjer so a \begin_inset Formula $\left(b_{j}\right)_{j\in\mathbb{N}}$ \end_inset dana realna števila. \end_layout \begin_layout Theorem* Cauchy-Hadamard. Za vsako potenčno vrsto obstaja konvergenčni radij \begin_inset Formula $R\in\left[0,\infty\right]\ni:$ \end_inset \end_layout \begin_deeper \begin_layout Itemize vrsta absolutno konvergira za \begin_inset Formula $\left|x\right|R$ \end_inset . \end_layout \end_deeper \begin_layout Theorem* Velja \begin_inset Formula $\text{\ensuremath{\frac{1}{R}=\limsup_{k\to\infty}\sqrt[k]{\left|b_{k}\right|}}}$ \end_inset , kjer vzamemo \begin_inset Formula $\frac{1}{0}\coloneqq\infty$ \end_inset in \begin_inset Formula $\frac{1}{\infty}\coloneqq0$ \end_inset . \end_layout \begin_layout Proof Rezultat že poznamo za zelo poseben primer \begin_inset Formula $\forall j\in\mathbb{N}:b_{j}=1$ \end_inset (geometrijska vrsta). Ideja dokaza je, da konvergenco vsake potenčne vrste opišemo s pomočjo geometrijske vrste. \end_layout \begin_deeper \begin_layout Itemize Konvergenca: Za \begin_inset Formula $x=0$ \end_inset vrsta očitno konvergira, zato privzamemo \begin_inset Formula $x\not=0$ \end_inset . Definirajmo \begin_inset Formula $R$ \end_inset s formulo iz definicije ( \begin_inset Formula $R=\frac{1}{\limsup_{k\to\infty}\sqrt[k]{\left|b_{k}\right|}}$ \end_inset ). Naj bo \begin_inset Formula $x$ \end_inset tak, da \begin_inset Formula $\left|x\right|0$ \end_inset ). Naj bo \begin_inset Formula $\varepsilon>0$ \end_inset . Tedaj po definiciji \begin_inset Formula $R$ \end_inset velja \begin_inset Formula $\sqrt[k]{\left|b_{k}\right|}\leq\frac{1}{R}+\varepsilon$ \end_inset za vse dovolj velike \begin_inset Formula $k$ \end_inset . Za take \begin_inset Formula $k$ \end_inset sledi \begin_inset Formula \[ \left|b_{k}\right|\left|x\right|^{k}\leq\left(\left(\frac{1}{R}+\varepsilon\right)\left|x\right|\right)^{k}. \] \end_inset Opazimo, da je desna stran neenačbe člen geometrijske vrste, s katero majoriziramo vrsto iz absolutnih vrednosti členov naše vrste. Preverimo, da desna stran konvergira. Konvergira, kadar \begin_inset Formula $\left(\frac{1}{R}+\varepsilon\right)\left|x\right|<1$ \end_inset oziroma \begin_inset Formula $\varepsilon<\frac{1}{\left|x\right|}-\frac{1}{R}$ \end_inset . Po \begin_inset ERT status open \begin_layout Plain Layout \backslash hyperlink{pk}{primerjalnem kriteriju} \end_layout \end_inset torej naša vrsta absolutno konvergira. \end_layout \begin_layout Itemize Divergenca: Vzemimo poljuben \begin_inset Formula $\varepsilon>0$ \end_inset . Po definciji \begin_inset Formula $R$ \end_inset sledi, da je \begin_inset Formula $\sqrt[k]{\left|b_{k}\right|}\geq\frac{1}{R}-\varepsilon$ \end_inset za vse dovolj velike \begin_inset Formula $k$ \end_inset . Za take \begin_inset Formula $k$ \end_inset sledi \begin_inset Formula \[ \left|b_{k}\right|\left|x\right|^{k}\geq\left(\left(\frac{1}{R}-\varepsilon\right)\left|x\right|\right)^{k}. \] \end_inset Opazimo, da je desna stran neenačbe člen geometrijske vrste, ki je majorizirana z vrsto iz absolutnih vrednosti členov naše vrste. Desna stran divergira, ko \begin_inset Formula $\left(\frac{1}{R}-\varepsilon\right)\left|x\right|=1$ \end_inset oziroma \begin_inset Formula $\varepsilon=\frac{1}{R}-\frac{1}{\left|x\right|}$ \end_inset , zato tudi naša vrsta divergira. \end_layout \end_deeper \begin_layout Example* Primer konvergenčnega radija potenčne vrste od prej: \begin_inset Formula $\sum_{j=1}^{\infty}x^{j}$ \end_inset . Velja \begin_inset Formula $\forall j\in\mathbb{N}:b_{j}=1$ \end_inset , torej \begin_inset Formula $R=\frac{1}{\limsup_{j\to\infty}\sqrt[k]{\left|b_{k}\right|}}=1$ \end_inset , torej po zgornjem izreku vrsta konvergira za \begin_inset Formula $x\in\left(-1,1\right)$ \end_inset in divergira za \begin_inset Formula $x\not\in\left[-1,1\right]$ \end_inset . Ročno lahko še preverimo, da divergira tudi v \begin_inset Formula $\left\{ -1,1\right\} $ \end_inset . \end_layout \begin_layout Section Zveznost \begin_inset Note Note status open \begin_layout Plain Layout TODO XXX FIXME PREVERI ŠE V profesrojevih PDFJIH, recimo dodaj dokaz zveznosti x^2 \end_layout \end_inset \end_layout \begin_layout Standard Ideja: Izdelati želimo formulacijo, s katero preverimo, le lahko z dovolj majhno spremembo \begin_inset Formula $x$ \end_inset povzročimo majhno spremembo funkcijske vrednosti. \end_layout \begin_layout Example* Primer nezvezne funkcije je \begin_inset Formula $f\left(x\right)=\begin{cases} 0 & ;0\leq x<1\\ 1 & ;x=1 \end{cases}$ \end_inset . \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $D\subseteq\mathbb{R},a\in D$ \end_inset in \begin_inset Formula $f:D\to\mathbb{R}$ \end_inset . Pravimo, da je \begin_inset Formula $f$ \end_inset zvezna v \begin_inset Formula $a$ \end_inset , če \begin_inset Formula $\forall\varepsilon>0\exists\delta>0\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ \end_inset . \begin_inset Formula $f$ \end_inset je zvezna na množici \begin_inset Formula $x\subseteq D$ \end_inset , če je zvezna na vsaki točki v \begin_inset Formula $D$ \end_inset . \end_layout \begin_layout Theorem* \begin_inset ERT status open \begin_layout Plain Layout \backslash hypertarget{kzzz}{Karakterizacija zveznosti z zaporedji} \end_layout \end_inset . Naj bodo \begin_inset Formula $D,a,f$ \end_inset kot prej. Velja: \begin_inset Formula $f$ \end_inset zvezna v \begin_inset Formula $a\Leftrightarrow\forall\left(a_{n}\right)_{n\in\mathbb{N}},a_{n}\in D:\lim_{n\to\infty}a_{n}=a\Rightarrow\lim_{n\to\infty}f\left(a_{n}\right)=f\left(a\right)$ \end_inset ZDB \begin_inset Formula $f$ \end_inset je zvezna v \begin_inset Formula $a$ \end_inset , če za vsako k \begin_inset Formula $a$ \end_inset konvergentno zaporedje na domeni velja, da funkcijske vrednosti členov zaporedja konvergirajo k funkcijski vrednosti \begin_inset Formula $a$ \end_inset . \end_layout \begin_layout Proof Dokazujemo ekvivalenco. \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Rightarrow\right)$ \end_inset Predpostavimo, da je \begin_inset Formula $f$ \end_inset zvezna v \begin_inset Formula $a$ \end_inset , torej \begin_inset Formula $\forall\varepsilon>0\exists\delta>0\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ \end_inset . Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset poljubno zaporedje na \begin_inset Formula $D$ \end_inset , ki konvergira k \begin_inset Formula $a$ \end_inset , se pravi \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|a-a_{n}\right|<\varepsilon$ \end_inset . Naj bo \begin_inset Formula $\varepsilon$ \end_inset poljuben. Vsled zveznosti \begin_inset Formula $f$ \end_inset velja, da je \begin_inset Formula $\left|f\left(a_{n}\right)-f\left(a\right)\right|<\varepsilon$ \end_inset za vse take \begin_inset Formula $a_{n}$ \end_inset , da velja \begin_inset Formula $\left|a_{n}-a\right|<\delta$ \end_inset za neko \begin_inset Formula $\delta\in\mathbb{R}$ \end_inset . Ker je zaporedje \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset konvergentno k \begin_inset Formula $a$ \end_inset , so vsi členi po nekem \begin_inset Formula $n_{0}$ \end_inset v \begin_inset Formula $\delta-$ \end_inset okolici \begin_inset Formula $a$ \end_inset , torej velja pogoj \begin_inset Formula $\left|a_{n}-a\right|<\delta$ \end_inset , torej velja \begin_inset Formula $\left|f\left(a_{n}\right)-f\left(a\right)\right|<\varepsilon$ \end_inset za vse \begin_inset Formula $n\geq n_{0}$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Leftarrow\right)$ \end_inset PDDRAA \begin_inset Formula $f$ \end_inset ni zvezna v \begin_inset Formula $a$ \end_inset . Da pridemo do protislovja, moramo dokazati, da \begin_inset Formula $\exists\left(a_{n}\right)_{n\in\mathbb{N}},a_{n}\in D\ni:\lim_{n\to\infty}a_{n}=a$ \end_inset , a vendar \begin_inset Formula $\lim_{n\to\infty}f\left(a_{n}\right)\not=f\left(a\right)$ \end_inset . Ker \begin_inset Formula $f$ \end_inset ni zvezna, velja, da \begin_inset Formula $\exists\varepsilon>0\forall\delta>0\exists x\in D\ni:\left|x-a\right|<\delta\wedge\left|f\left(x\right)-f\left(a\right)\right|\geq\varepsilon$ \end_inset . Izberimo \begin_inset Formula $\forall n\in\mathbb{N}:\delta_{n}\coloneqq\frac{1}{n}$ \end_inset . Tedaj \begin_inset Formula $\forall n\in\mathbb{N}\exists\varepsilon>0,x\in D\eqqcolon x_{n}\ni:\left|x_{n}-a\right|<\frac{1}{n}\wedge\left|f\left(x_{n}\right)-f\left(a\right)\right|\geq\varepsilon$ \end_inset . S prvim argumentom konjunkcije smo poskrbeli za to, da je naše konstruiramo zaporedje \begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$ \end_inset konvergentno k \begin_inset Formula $a$ \end_inset . Konstruirali smo zaporedje, pri katerem so funkcijske vrednosti za vsak \begin_inset Formula $\varepsilon$ \end_inset izven \begin_inset Formula $\varepsilon-$ \end_inset okolice \begin_inset Formula $f\left(a\right)$ \end_inset , torej zaporedje ne konvergira k \begin_inset Formula $f\left(a\right)$ \end_inset . \end_layout \end_deeper \begin_layout Theorem* Naj bo \begin_inset Formula $f:D\to\mathbb{R}$ \end_inset . \begin_inset Formula $f$ \end_inset je zvezna na \begin_inset Formula $D\Leftrightarrow$ \end_inset za vsako odprto množico \begin_inset Formula $V\subset\mathbb{R}$ \end_inset je \begin_inset Formula $f^{-1}\left(V\right)$ \end_inset spet odprta množica \begin_inset Foot status open \begin_layout Plain Layout Za funkcijo \begin_inset Formula $f:D\to V$ \end_inset za \begin_inset Formula $X\subseteq V$ \end_inset definiramo \begin_inset Formula $f^{-1}\left(X\right)\coloneqq\left\{ x\in D;f\left(x\right)\in V\right\} \subseteq D$ \end_inset . \end_layout \end_inset . \end_layout \begin_layout Proof Dokazujemo ekvivalenco. \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Leftarrow\right)$ \end_inset Predpostavimo, da za vsako odprto množico \begin_inset Formula $V\subset\mathbb{R}$ \end_inset je \begin_inset Formula $f^{-1}\left(V\right)$ \end_inset spet odprta množica. Dokazujemo, da je \begin_inset Formula $f$ \end_inset zvezna na \begin_inset Formula $D$ \end_inset . Naj bosta \begin_inset Formula $a\in D,\varepsilon>0$ \end_inset poljubna. Naj bo \begin_inset Formula $V\coloneqq\left(f\left(a\right)-\varepsilon,f\left(a\right)+\varepsilon\right)$ \end_inset odprta množica. Po predpostavki sledi, da je \begin_inset Formula $f^{-1}\left(V\right)$ \end_inset spet odprta. Ker je \begin_inset Formula $a\in f^{-1}\left(V\right)$ \end_inset , je \begin_inset Formula $a\in V$ \end_inset . Ker je \begin_inset Formula $V$ \end_inset odprta, \begin_inset Formula $\exists\delta>0\ni:\left(a-\delta,a+\delta\right)\in V$ \end_inset . Torej \begin_inset Formula $\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ \end_inset , torej je \begin_inset Formula $f$ \end_inset zvezna na \begin_inset Formula $D$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $\left(\Rightarrow\right)$ \end_inset Predpostavimo, da je \begin_inset Formula $f$ \end_inset zvezna na \begin_inset Formula $D$ \end_inset , to pomeni \begin_inset Formula $\forall a\in D\forall\varepsilon>0\exists\delta>0\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ \end_inset . Naj bo \begin_inset Formula $V$ \end_inset poljubna odprta podmnožica \begin_inset Formula $\mathbb{R}$ \end_inset in naj bo \begin_inset Formula $a\in f^{-1}\left(V\right)$ \end_inset poljuben (torej \begin_inset Formula $f\left(a\right)\in V$ \end_inset ). Ker je \begin_inset Formula $f\left(a\right)\in V$ \end_inset , ki je odprta, \begin_inset Formula $\exists\varepsilon>0\ni:\left(f\left(a\right)-\varepsilon,f\left(a\right)+\varepsilon\right)\subseteq V$ \end_inset . Ker je \begin_inset Formula $f$ \end_inset zvezna v \begin_inset Formula $a$ \end_inset , \begin_inset Formula $\exists\delta>0\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ \end_inset , torej je tudi neka odprta okolica \begin_inset Formula $f\left(a\right)$ \end_inset v \begin_inset Formula $f^{-1}\left(V\right)$ \end_inset . Ker je bil \begin_inset Formula $a$ \end_inset poljuben, je \begin_inset Formula $f^{-1}\left(V\right)$ \end_inset odprta, ker je bila \begin_inset Formula $V$ \end_inset poljubna, je izrek dokazan. \end_layout \end_deeper \begin_layout Theorem* Naj bosta \begin_inset Formula $f,g:D\to\mathbb{R}$ \end_inset zvezni v \begin_inset Formula $a\in D$ \end_inset . Tedaj so v \begin_inset Formula $a$ \end_inset zvezne tudi funkcije \begin_inset Formula $f+g,f-g,f\cdot g$ \end_inset in \begin_inset Formula $f/g$ \end_inset , slednja le, če je \begin_inset Formula $g\left(a\right)\not=0$ \end_inset . \end_layout \begin_layout Proof Ker je \begin_inset Formula $f$ \end_inset zvezna v \begin_inset Formula $a$ \end_inset po \begin_inset ERT status open \begin_layout Plain Layout \backslash hyperlink{kzzz}{izreku o karakterizaciji zveznosti z zaporedji} \end_layout \end_inset velja za vsako \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}},\forall n\in\mathbb{N}:a_{n}\subset D,\lim_{n\to\infty}a_{n}=a$ \end_inset tudi \begin_inset Formula $\lim_{n\to\infty}f\left(a_{n}\right)=f\left(a\right)$ \end_inset . Po \begin_inset ERT status open \begin_layout Plain Layout \backslash hyperlink{pmkdlim}{izreku iz poglavja o zaporedjih} \end_layout \end_inset velja, da \begin_inset Formula $f\left(a_{n}\right)*g\left(a_{n}\right)\to\left(f*g\right)\left(a_{n}\right)$ \end_inset za \begin_inset Formula $*\in\left\{ +,-,\cdot,/\right\} $ \end_inset . Zopet uporabimo izrek o karakterizaciji zveznosti z zaporedji, ki pove, da so tudi \begin_inset Formula $f*g$ \end_inset za \begin_inset Formula $*\in\left\{ +,-,\cdot,/\right\} $ \end_inset zvezne v \begin_inset Formula $a$ \end_inset . Pri deljenju velja omejitev \begin_inset Formula $f\left(a\right)\not=0$ \end_inset . \end_layout \begin_layout Theorem* Če sta \begin_inset Formula $D,E\subseteq\mathbb{R}$ \end_inset in \begin_inset Formula $f:D\to E$ \end_inset in \begin_inset Formula $g:E\to\mathbb{R}$ \end_inset , je \begin_inset Formula $g\circ f:D\to\mathbb{R}$ \end_inset . Hkrati pa, če je \begin_inset Formula $f$ \end_inset zvezna v \begin_inset Formula $a$ \end_inset in \begin_inset Formula $g$ \end_inset zvezna v \begin_inset Formula $f\left(a\right)$ \end_inset , je \begin_inset Formula $g\circ f$ \end_inset zvezna v \begin_inset Formula $a$ \end_inset . \begin_inset Foot status open \begin_layout Plain Layout Velja \begin_inset Formula $\left(g\circ f\right)\left(x\right)=g\left(f\left(x\right)\right)$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Proof Vzemimo poljubno \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\subseteq D$ \end_inset , da \begin_inset Formula $a_{n}\to a\in D$ \end_inset . Zopet uporabimo \begin_inset ERT status open \begin_layout Plain Layout \backslash hyperlink{kzzz}{izrek o karakterizaciji zveznosti z zaporedji} \end_layout \end_inset : ker je \begin_inset Formula $f$ \end_inset zvezna, velja \begin_inset Formula $f\left(a_{n}\right)\to f\left(a\right)$ \end_inset in ker je \begin_inset Formula $g$ \end_inset zvezna, velja \begin_inset Formula $g\left(f\left(a_{n}\right)\right)\to g\left(f\left(a\right)\right)$ \end_inset . Potemtakem \begin_inset Formula $\left(g\circ f\right)\left(a_{n}\right)\to\left(g\circ f\right)\left(a\right)$ \end_inset in po istem izreku je \begin_inset Formula $g\circ f$ \end_inset zvezna na \begin_inset Formula $D$ \end_inset . \end_layout \begin_layout Theorem* Vsi polinomi so zvezni na \begin_inset Formula $\mathbb{R}$ \end_inset . \end_layout \begin_layout Proof Vzemimo \begin_inset Formula $p\left(x\right)=\sum_{k=0}^{n}a_{k}k^{k}$ \end_inset . Uporabimo prejšnji izrek. Polinom je sestavljen iz vsote konstantne funkcije, zmnožene z identiteto, ki je s seboj \begin_inset Formula $n-$ \end_inset krat množena. Ker vsota in množenje ohranjata zveznost, je treba dokazati le, da je \begin_inset Formula $f\left(x\right)=x$ \end_inset zvezna in da so \begin_inset Formula $\forall c\in\mathbb{R}:f\left(x\right)=c$ \end_inset zvezne. \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $f\left(x\right)=x$ \end_inset Ali velja \begin_inset Formula $\forall\varepsilon>0\exists\delta>0\ni:\forall x\in\mathbb{R}:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ \end_inset ? Da, velja. Vzamemo lahko katerokoli \begin_inset Formula $\delta\in(0,\varepsilon]$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $f\left(x\right)=c$ \end_inset Naj bo \begin_inset Formula $c\in\mathbb{R}$ \end_inset poljuben. Tu je \begin_inset Formula $\left|f\left(x\right)-f\left(a\right)\right|=\left|c-c\right|=0$ \end_inset , torej je desna stran implikacije vedno resnična, torej je implikacija vedno resnična. \end_layout \end_deeper \begin_layout Theorem* Vse elementarne funkcije so na njihovih definicijskih območjih povsod zvezne. To so: polinomi, potence, racionalne funkcije, koreni, eksponentne funkcije, logaritmi, trigonometrične, ciklometrične in kombinacije neskončno mnogo naštetih, spojenih s \begin_inset Formula $+,-,\cdot,/,\circ$ \end_inset . \end_layout \begin_layout Proof Tega izreka ne bomo dokazali. \end_layout \begin_layout Example* \begin_inset Formula $f\left(x\right)\coloneqq\log\left(\sin^{3}x+\frac{1}{8}\right)+\frac{1}{\sqrt[4]{x-7}}$ \end_inset je zvezna povsod, kjer je definirana. \end_layout \begin_layout Definition* Naj bo \begin_inset Formula $\varepsilon>0,a\in\mathbb{R}$ \end_inset in \begin_inset Formula $f:\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} \to\mathbb{R}$ \end_inset . Pravimo, da je \begin_inset Formula $L\in\mathbb{R}$ \end_inset limita \begin_inset Formula $f$ \end_inset v točki \begin_inset Formula $a$ \end_inset (zapišemo \begin_inset Formula $L=\lim_{x\to a}f\left(x\right)$ \end_inset ), če za vsako zaporedje \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}},a_{n}\in\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} $ \end_inset , za katero velja \begin_inset Formula $a_{n}\to a$ \end_inset , velja \begin_inset Formula $f\left(a_{n}\right)\to L$ \end_inset \end_layout \begin_layout Definition* ZDB če \begin_inset Formula $\forall\varepsilon>0\exists\delta>0\ni:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-L\right|<\varepsilon$ \end_inset \end_layout \begin_layout Definition* ZDB če za \begin_inset Formula $\overline{f}:\left(a-\varepsilon,a+\varepsilon\right)\to\mathbb{R}$ \end_inset s predpisom \begin_inset Formula $\overline{f}\left(x\right)\coloneqq\begin{cases} f\left(x\right) & ;x\in\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} \\ L & ;x\in a \end{cases}$ \end_inset velja, da je zvezna v \begin_inset Formula $a$ \end_inset . \end_layout \begin_layout Note* Vrednost \begin_inset Formula $f\left(a\right)$ \end_inset , če sploh obstaja, nima vloge pri vrednosti limite. \end_layout \begin_layout Corollary* Naj bo \begin_inset Formula $a\in D\subseteq\mathbb{R}$ \end_inset in \begin_inset Formula $f:D\to\mathbb{R}$ \end_inset . \begin_inset Formula $f$ \end_inset je zvezna v \begin_inset Formula $a\Leftrightarrow\lim_{x\to a}f\left(x\right)=f\left(a\right)$ \end_inset . \end_layout \begin_layout Example* Naj bo \begin_inset Formula $f:\mathbb{R}\setminus\left\{ 0\right\} \to\mathbb{R}$ \end_inset s predpisom \begin_inset Formula $x\mapsto\frac{\sin x}{x}$ \end_inset . Zanima nas, ali obstaja \begin_inset Formula $\lim_{x\to0}f\left(x\right)$ \end_inset . Grafični dokaz. \end_layout \begin_layout Example* \begin_inset Float figure placement document alignment document wide false sideways false status open \begin_layout Plain Layout TODO XXX FIXME SKICA S TKZ EUCLID, glej ZVZ III/ANA1P1120/str.8 \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Skica. \end_layout \end_inset \end_layout \end_inset Očitno velja \begin_inset Formula $\triangle ABD\subset$ \end_inset krožni izsek \begin_inset Formula $DAB\subset\triangle ABC$ \end_inset , torej za njihove ploščine velja \begin_inset Formula \[ \frac{\sin x}{2}\leq\frac{x}{2\pi}\cdot x=\frac{x}{2}\leq\frac{\tan x}{2}\quad\quad\quad\quad/\cdot\frac{2}{\sin x} \] \end_inset \begin_inset Formula \[ 1\leq\frac{x}{\sin x}\leq\frac{1}{\cos x}\quad\quad\quad\quad/\lim_{x\to0} \] \end_inset \begin_inset Formula \[ \lim_{x\to0}1\leq\lim_{x\to0}\frac{x}{\sin x}\leq\lim_{x\to0}\frac{1}{\cos x} \] \end_inset \begin_inset Formula \[ 1\leq\lim_{x\to0}\frac{x}{\sin x}\leq1 \] \end_inset \begin_inset Formula \[ \lim_{x\to0}\frac{x}{\sin x}=1 \] \end_inset Da naš sklep res potrdimo, je potreben spodnji izrek. \end_layout \begin_layout Theorem* Če za \begin_inset Formula $f,g,h:D\to\mathbb{R}$ \end_inset velja za \begin_inset Formula $a\in D$ \end_inset : \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $\exists\varepsilon>0\forall x\in\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} :f\left(x\right)\leq g\left(x\right)\leq h\left(x\right)$ \end_inset in hkrati \end_layout \begin_layout Itemize \begin_inset Formula $\exists\lim_{x\to a}f\left(x\right),\lim_{x\to a}h\left(x\right)$ \end_inset in \begin_inset Formula $\lim_{x\to a}f\left(x\right)=\lim_{x\to a}h\left(x\right)=1$ \end_inset , tedaj tudi \begin_inset Formula $\exists\lim_{x\to a}g\left(x\right)$ \end_inset in \begin_inset Formula $\lim_{x\to a}g\left(x\right)=1$ \end_inset . \end_layout \end_deeper \begin_layout Proof TODO XXX FIXME DOKAZ V SKRIPTi \end_layout \begin_layout Example* \begin_inset Formula $\lim_{x\to0}\frac{1}{1+e^{1/x}}$ \end_inset ne obstaja. Zakaj? Izračunajmo levo in desno limito: \begin_inset Formula \[ \lim_{x\searrow0}\frac{1}{1+e^{1/x}}=0,\lim_{x\nearrow0}\frac{1}{1+e^{1/x}}=1 \] \end_inset Toda \begin_inset Formula $\exists\lim_{x\to a}f\left(x\right)\Leftrightarrow\exists\lim_{x\nearrow a}f\left(x\right)\wedge\exists\lim_{x\searrow a}f\left(x\right)\wedge\lim_{x\nearrow a}f\left(x\right)=\lim_{x\searrow a}f\left(x\right)$ \end_inset . \end_layout \begin_layout Definition* Označimo \begin_inset Formula $\lim_{x\searrow a}f\left(x\right)\eqqcolon f\left(a+0\right),\lim_{x\nearrow a}f\left(x\right)\eqqcolon f\left(a-0\right)$ \end_inset . Če \begin_inset Formula $\exists f\left(a+0\right)$ \end_inset in \begin_inset Formula $\exists f\left(a-0\right)$ \end_inset , vendar \begin_inset Formula $f\left(a+0\right)\not=f\left(a-0\right)$ \end_inset , pravimo, da ima \begin_inset Formula $f$ \end_inset v točki \begin_inset Formula $a$ \end_inset \begin_inset Quotes gld \end_inset skok \begin_inset Quotes grd \end_inset . \end_layout \begin_layout Corollary* sssssssssss \end_layout \begin_layout Corollary* sssssssssss \end_layout \begin_layout Corollary* sssssssssss \end_layout \begin_layout Corollary* sssssssssss \end_layout \begin_layout Corollary* sssssssssss \end_layout \begin_layout Corollary* sssssssssss \end_layout \begin_layout Corollary* sssssssssss \end_layout \begin_layout Corollary* sssssssssss \end_layout \end_body \end_document