summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--cv/cv.md32
-rwxr-xr-xskripti/fienta_availability.sh44
-rwxr-xr-xskripti/spotify_publish_saved.py43
-rw-r--r--šola/ana1/kolokvij2.lyx121
-rw-r--r--šola/ana1/teor3.lyx1086
-rw-r--r--šola/aps1/dn/osvetlitev/Makefile4
-rw-r--r--šola/aps1/dn/osvetlitev/in.txt9
-rw-r--r--šola/aps1/dn/osvetlitev/resitev.cpp46
-rw-r--r--šola/aps1/dn/zlivanje/in.txt26
-rw-r--r--šola/aps1/dn/zlivanje/out.txt1
-rw-r--r--šola/aps1/dn/zlivanje/resitev.cpp39
11 files changed, 1364 insertions, 87 deletions
diff --git a/cv/cv.md b/cv/cv.md
index ebd46bb..23918c3 100644
--- a/cv/cv.md
+++ b/cv/cv.md
@@ -22,8 +22,9 @@ Delovne izkušnje
================
* Študentsko delo:
+ - 2024-09: Pomoč pri administraciji strežnikov FMF
- Pri SAZU popravil odjemni del sistema za zaznavanje napak na DAT kasetah
-* Tehnik za osvetlitev odra v Klubu Gromka: 2022 - 2023
+* Tehnik za osvetlitev odra v Klubu Gromka: 2022 - 2024
Jezikovno znanje
================
@@ -32,6 +33,18 @@ Jezikovno znanje
* **angleščina**: prvi tuji jezik - potrdilo o znanju na višjem nivoju slovenske mature
* nemščina: drugi tuji jezik - potrdilo o znanju na nivoju C1
+Raziskovalno delo
+=================
+
+* [Pridobivanje podatkov iz omrežja DHT, 2023](https://plus.cobiss.net/cobiss/si/sl/bib/163807491) -- COBISS.SI ID 163807491 pdf: <http://splet.sijanec.eu./dir/kon%C4%8Dna.pdf>
+* [Kaj prenašamo s protokolom BitTorrent?, 2024](https://plus.cobiss.net/cobiss/si/sl/bib/209546499) -- COBISS.SI ID 209546499 pdf: <http://glasilo-fri.si./wp-content/uploads/2024/09/revija24.pdf#page=19>
+
+Tekmovanja
+==========
+
+* 2023-10: Udeležil sem se tekmovanja v informacijski varnosti [ECSC](http://ecsc.no) na Norveškem v slovenski reprezentanci.
+* Enkrat prvo in enkrat drugo mesto na [računalniškem tekmovanju ACM](http://rtk.ijs.si) ter srebrno priznanje na računalniškem tekmovanju ZOTKS
+
Področja znanja
===============
@@ -59,23 +72,12 @@ Formalne izobrazbe na naštetih področjih nimam.
+ **Pretakanje zvoka** (icecast2)
+ **ArtNet**, **OSC** (uporabil za izdelavo DMX512 vmesnika za upravljanje luči)
+ **OBS**+**RTSP** na nginx
- + Osnovno poznavanje delovanja delovanja IEEE 802.11 protokolov (Wi-Fi)
+ + Osnovno poznavanje delovanja IEEE 802.11 protokolov (Wi-Fi)
* Umetniška tehnika
- **Odrska osvetlitev** s protokolom DMX512 in programom QLC+
- Osnovne **izkušnje obdelave zvoka v živo** na mešalkah Behringer X32 in PreSonus StudioLive 32SX
- Osnove fotografije in videosnemanja
-Tekmovanja
-==========
-
-* 2023-10: Udeležil sem se tekmovanja [ECSC](http://ecsc.no) na Norveškem v slovenski reprezentanci.
-* Enkrat prvo in enkrat drugo mesto na [računalniškem tekmovanju ACM](http://rtk.ijs.si) ter srebrno priznanje na računalniškem tekmovanju ZOTKS
-
-Raziskovalno delo
-=================
-
-* [Pridobivanje podatkov iz omrežja DHT, 2023](https://plus.cobiss.net/cobiss/si/sl/bib/163807491) -- COBISS.SI ID 163807491 pdf: <http://splet.sijanec.eu./dir/kon%C4%8Dna.pdf>
-
Hobiji
======
@@ -84,5 +86,5 @@ Poleg zgoraj naštetega sem od 5. 2022 radioamater in član Radiokluba Triglav.
Meta
====
-* Življenjepis nazadnje spremenjen 2024-07-05
-* Aktualna različica: <http://upload.sijanec.eu./d/cv.pdf>
+* Življenjepis nazadnje spremenjen 2024-10-15
+* Aktualna različica: <http://splet.sijanec.eu./dir/cv.pdf>
diff --git a/skripti/fienta_availability.sh b/skripti/fienta_availability.sh
new file mode 100755
index 0000000..79018ee
--- /dev/null
+++ b/skripti/fienta_availability.sh
@@ -0,0 +1,44 @@
+#!/bin/bash
+set -e
+if [ x$1 = x ]
+then
+ echo uporaba: $0 spoznavni-zur-fri [sekund] >&2
+ echo če je 2. argument nastavljen, program ne exita in v neskončnost piše timestampane podatke o zasedenosti, sicer outputa samo enkrat podatke o zasedenosti brez timestampov >&2
+ echo če sta prvi argument dve mali črki, se izpišejo prosta mesta za vse evente v državi s to kodo države >&2
+ exit 1
+fi
+fienta_availability() {
+ p=`rev <<<$0 | cut -d/ -f1 | rev`
+ t=`mktemp -p "" $p.XXX`
+ page=`curl --no-progress-meter --fail-with-body --cookie $t --cookie-jar $t https://fienta.com/$1`
+ token=`tr '<' $'\n' <<<$page | grep _token | cut -d\" -f6`
+ items=`grep -o 'data-id="[0-9]*"' <<<$page | cut -d \" -f2`
+ postbody=`for item in $items; do echo -n "&qty%5B$item%5D=1000000"; done`
+ curl --no-progress-meter --cookie $t --cookie-jar $t https://fienta.com/$1 -X POST -H 'X-Requested-With: XMLHttpRequest' --data-raw "_token=$token$postbody" | tr ']' $'\n' | grep "availability has been changed" | sed -E 's/.*"qty.([0-9]*)":."Sorry, \\"(.*)\\" availability has been changed meanwhile. We only have ([0-9]*) places* left.*/\1\t\2\t\3/g'
+ rm $t
+}
+fienta_all() {
+ all=`curl --no-progress-meter --fail-with-body https://fienta.com/?country=$1 | grep ?utm_source=fienta-search | grep -v /s/ | cut -d/ -f4 | cut -d? -f1 | tr $'\n' ' '`
+ for slug in $all
+ do
+ fienta_availability $slug | sed -e "s/^/$slug\t/"
+ done
+}
+fienta_entry() {
+ if [ `wc -c <<<$1` -eq 3 ]
+ then
+ fienta_all $1
+ else
+ fienta_availability $1
+ fi
+}
+if [ x$2 = x ]
+then
+ fienta_entry $1
+else
+ while :
+ do
+ fienta_entry $1 | sed -e "s/^/`date +%s`\t/"
+ sleep $2
+ done
+fi
diff --git a/skripti/spotify_publish_saved.py b/skripti/spotify_publish_saved.py
new file mode 100755
index 0000000..a7f737a
--- /dev/null
+++ b/skripti/spotify_publish_saved.py
@@ -0,0 +1,43 @@
+#!/usr/bin/python3
+import spotipy
+from spotipy.oauth2 import SpotifyOAuth
+import json
+import sys
+import datetime
+scope = "user-library-read playlist-modify-public"
+sp = spotipy.Spotify(auth_manager=SpotifyOAuth(scope=scope, client_id="1034e542fa064c27859b61a6ec5f864e", client_secret="2503172e78ce4d5e9146047db0a39077", redirect_uri="http://b.4a.si:25425/"))
+for playlist, rev in [("0ASvlSEvlQu5nyFwUZqf9n", False), ("4B9TSgOGQRRvFtOnQav42J", True)]:
+ publicized_uris = []
+ results = {"items": [None]}
+ offset = 0
+ while len(results["items"]) != 0:
+ results = sp.playlist_items(playlist, None, 100, offset)
+ for idx, item in enumerate(results["items"]):
+ publicized_uris.append(item["track"]["uri"])
+ offset += 100
+ results = {"items": [None]}
+ offset = 0
+ saved_items = []
+ to_add = []
+ while len(results["items"]) != 0:
+ results = sp.current_user_saved_tracks(50, offset)
+ for idx, item in enumerate(results['items']):
+ saved_items.append(item)
+ if item["track"]["uri"] not in publicized_uris:
+ to_add.append(item["track"]["uri"])
+ else:
+ publicized_uris.remove(item["track"]["uri"])
+ offset += 50
+ if rev == False:
+ to_add.reverse()
+ if len(to_add) != 0:
+ iterator = [to_add[i:i+50] for i in range(0, len(to_add), 50)]
+ if rev:
+ iterator = reversed(iterator)
+ for batch in iterator:
+ sp.playlist_add_items(playlist, batch, 0 if rev else None)
+ if len(publicized_uris) != 0:
+ sp.playlist_remove_all_occurrences_of_items(playlist, publicized_uris)
+ todaystring = datetime.datetime.now().isoformat().replace("T", " ").split(".")[0]
+ sp.playlist_change_details(playlist, name="public mirror of my liked songs." + " [REVERSED]" if rev else "", public=True, collaborative=False, description=f"updated {todaystring} automatically daily using http://4a.si/spotsync")
+ print(json.dumps(saved_items))
diff --git a/šola/ana1/kolokvij2.lyx b/šola/ana1/kolokvij2.lyx
index a057288..4d94e99 100644
--- a/šola/ana1/kolokvij2.lyx
+++ b/šola/ana1/kolokvij2.lyx
@@ -1,5 +1,5 @@
-#LyX 2.3 created this file. For more info see http://www.lyx.org/
-\lyxformat 544
+#LyX 2.4 created this file. For more info see https://www.lyx.org/
+\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
@@ -17,11 +17,11 @@
enumitem
theorems-ams
\end_modules
-\maintain_unincluded_children false
+\maintain_unincluded_children no
\language slovene
\language_package default
-\inputencoding auto
-\fontencoding global
+\inputencoding auto-legacy
+\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
@@ -29,7 +29,9 @@ theorems-ams
\font_default_family default
\use_non_tex_fonts false
\font_sc false
-\font_osf false
+\font_roman_osf false
+\font_sans_osf false
+\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
@@ -63,7 +65,9 @@ theorems-ams
\suppress_date false
\justification false
\use_refstyle 1
+\use_formatted_ref 0
\use_minted 0
+\use_lineno 0
\index Index
\shortcut idx
\color #008000
@@ -86,42 +90,20 @@ theorems-ams
\papercolumns 1
\papersides 1
\paperpagestyle default
+\tablestyle default
\tracking_changes false
\output_changes false
+\change_bars false
+\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
+\docbook_table_output 0
+\docbook_mathml_prefix 1
\end_header
\begin_body
-\begin_layout Title
-List s formulami za 2.
- kolokvij Analize 1
-\end_layout
-
-\begin_layout Author
-
-\noun on
-Anton Luka Šijanec
-\end_layout
-
-\begin_layout Date
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-today
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
\begin_layout Standard
\begin_inset ERT
status open
@@ -161,15 +143,18 @@ begin{multicols}{2}
\begin_inset Formula $\log_{a}1=0$
\end_inset
-,
+,
+
\begin_inset Formula $\log_{a}a=1$
\end_inset
-,
+,
+
\begin_inset Formula $\log_{a}a^{x}=x$
\end_inset
-,
+,
+
\begin_inset Formula $a^{\log_{a}x}=x$
\end_inset
@@ -187,7 +172,8 @@ begin{multicols}{2}
\begin_inset Formula $D=b^{2}-4ac$
\end_inset
-,
+,
+
\begin_inset Formula $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$
\end_inset
@@ -205,7 +191,8 @@ begin{multicols}{2}
\begin_inset Formula $zw=\left(ac-bd\right)+\left(ad+bc\right)i$
\end_inset
-,
+,
+
\begin_inset Formula $\vert zw\vert=\vert z\vert\vert w\vert$
\end_inset
@@ -241,7 +228,8 @@ begin{multicols}{2}
\begin_inset Formula $z^{2}=a^{2}+2abi-b^{2}$
\end_inset
-,
+,
+
\begin_inset Formula $z^{3}=a^{3}-3ab^{2}+\left(3a^{2}b-b^{3}\right)i$
\end_inset
@@ -259,7 +247,8 @@ begin{multicols}{2}
\begin_inset Formula $z^{n}=r^{3}\left(\cos\left(3\phi\right)+i\sin\left(3\phi\right)\right)$
\end_inset
-,
+,
+
\begin_inset Formula $\phi=\arctan\frac{\Im z}{\Re z}$
\end_inset
@@ -316,7 +305,8 @@ je konv.
\end_layout
\begin_layout Standard
-Vrsta je konv., če je konv.
+Vrsta je konv.,
+ če je konv.
njeno zap.
delnih vsot.
\end_layout
@@ -343,7 +333,8 @@ n+1; & q=1
\series bold
Primerjalni krit.
\series default
-:
+:
+
\begin_inset Formula $\sum_{1}^{\infty}a_{k}$
\end_inset
@@ -389,11 +380,13 @@ majoranta
\series bold
Kvocientni
\series default
-:
+:
+
\begin_inset Formula $a_{k}>0$
\end_inset
-,
+,
+
\begin_inset Formula $D_{n}\coloneqq\frac{a_{n}+1}{a_{n}}$
\end_inset
@@ -419,11 +412,13 @@ Kvocientni
\begin_inset Formula $\exists D\coloneqq\lim_{n\to\infty}D_{n}$
\end_inset
-:
+:
+
\begin_inset Formula $\vert D\vert<1\Longrightarrow$
\end_inset
-konv.,
+konv.,
+
\begin_inset Formula $\vert D\vert>1\Longrightarrow div.$
\end_inset
@@ -435,7 +430,9 @@ konv.,
\series bold
Korenski
\series default
-: Kot Kvocientni, le da
+:
+ Kot Kvocientni,
+ le da
\begin_inset Formula $D_{n}\coloneqq\sqrt[n]{a_{n}}$
\end_inset
@@ -447,7 +444,8 @@ Korenski
\series bold
Leibnizov
\series default
-:
+:
+
\begin_inset Formula $a_{n}\to0\Longrightarrow\sum_{1}^{\infty}\left(\left(-1\right)^{k}a_{k}\right)<\infty$
\end_inset
@@ -476,11 +474,13 @@ Pri konv.
\begin_inset Formula $x$
\end_inset
-, pri enakomerni ni.
+,
+ pri enakomerni ni.
\end_layout
\begin_layout Standard
-Potenčna vrsta:
+Potenčna vrsta:
+
\begin_inset Formula $\sum_{j=1}^{\infty}b_{j}x^{j}$
\end_inset
@@ -495,7 +495,8 @@ Potenčna vrsta:
\end_inset
abs.
- konv.,
+ konv.,
+
\begin_inset Formula $\vert x\vert>R\Longrightarrow$
\end_inset
@@ -719,7 +720,8 @@ divergira
\end_layout
\begin_layout Standard
-Krožnica:
+Krožnica:
+
\begin_inset Formula $\left(x-p\right)^{2}+\left(y-q\right)^{2}=r^{2}$
\end_inset
@@ -727,7 +729,8 @@ Krožnica:
\end_layout
\begin_layout Standard
-Elipsa:
+Elipsa:
+
\begin_inset Formula $\frac{\left(x-p\right)^{2}}{a^{2}}+\frac{\left(y-q\right)^{2}}{b^{2}}=1$
\end_inset
@@ -800,7 +803,8 @@ Odvod
\begin_inset Formula $\frac{f'g-fg'}{g^{2}}$
\end_inset
-,
+,
+
\begin_inset Formula $g\not=0$
\end_inset
@@ -1260,7 +1264,8 @@ Zvezna
\begin_inset Formula $\sup$
\end_inset
-, je omejena in doseže vse funkcijske vrednosti na
+,
+ je omejena in doseže vse funkcijske vrednosti na
\begin_inset Formula $\left[f\left(a\right),f\left(b\right)\right]$
\end_inset
@@ -1275,7 +1280,8 @@ Zvezna
\begin_inset Formula $I$
\end_inset
-, če
+,
+ če
\begin_inset Formula $\forall\varepsilon>0\exists\delta_{\left(\varepsilon\right)}>0\ni:\forall x,y\in I:\left|x-y\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(y\right)\right|<\varepsilon$
\end_inset
@@ -1290,7 +1296,8 @@ Zvezna
\begin_inset Formula $I$
\end_inset
-, če
+,
+ če
\begin_inset Formula $\forall\varepsilon>0\forall x\in I\exists\delta_{\left(x,\varepsilon\right)}>0\ni:\forall x,y\in I:\left|x-y\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(y\right)\right|<\varepsilon$
\end_inset
diff --git a/šola/ana1/teor3.lyx b/šola/ana1/teor3.lyx
index 107763e..97befd1 100644
--- a/šola/ana1/teor3.lyx
+++ b/šola/ana1/teor3.lyx
@@ -1,4 +1,4 @@
-#LyX 2.4 created this file. For more info see https://www.lyx.org/
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
@@ -76,14 +76,22 @@
\begin_body
\begin_layout Title
-Rešen tretji izpit teorije Analize 1 —
- IŠRM 2023/24
+Rešen tretji izpit teorije Analize 1 — IŠRM 2023/24
\end_layout
\begin_layout Abstract
-Izpit je potekal v petek,
- 30.
- avgusta 2024.
+Izpit je potekal v petek, 30.
+ avgusta 2024 od desete
+\begin_inset Foot
+status open
+
+\begin_layout Plain Layout
+Avtor tega besedila je na izpit zamudil poldrugo uro.
+\end_layout
+
+\end_inset
+
+ do dvanajste ure.
Nosilec predmeta je
\noun on
Oliver Dragičević
@@ -109,46 +117,429 @@ Podaj natančne definicije naslednjih pojmov:
\begin_deeper
\begin_layout Enumerate
-limita zaporedja,
- stekališče zaporedja
+limita zaporedja, stekališče zaporedja
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Naj bo
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ realno zaporedje in
+\begin_inset Formula $L\in\mathbb{R}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $L$
+\end_inset
+
+ je limita
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\sim L=\lim_{n\to\infty}a_{n}\Leftrightarrow\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n>n_{0}:\left|a_{n}-L\right|<\varepsilon$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $L$
+\end_inset
+
+ je stekališče
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\Leftrightarrow\forall\varepsilon>0\exists\mathcal{A}\subseteq\mathbb{N},\left|\mathcal{A}\right|=\left|\mathcal{\mathbb{N}}\right|\ni:\left\{ a_{n};n\in\mathcal{A}\right\} \subseteq\left(L-\varepsilon,L+\varepsilon\right)$
+\end_inset
+
+
\end_layout
+\end_deeper
\begin_layout Enumerate
vsota (neskončne) konvergentne vrste
\end_layout
+\begin_deeper
+\begin_layout Standard
+Naj bo
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ poljubno zaporedje.
+
+\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}\coloneqq\lim_{n\to\infty}\sum_{k=1}^{n}a_{n}$
+\end_inset
+
+.
+ Če limita obstaja, je vrsta
+\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$
+\end_inset
+
+ konvergentna in njena vsota je enaka tej limiti.
+\end_layout
+
+\end_deeper
\begin_layout Enumerate
Cauchyjev pogoj za zaporedja
\end_layout
+\begin_deeper
+\begin_layout Standard
+Naj bo
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ realno zaporedje.
+ Konvergentno je natanko tedaj, ko ustreza Cauchyjevemu pogoju:
+\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall m,n\geq n_{0}:\left|a_{n}-a_{m}\right|<\varepsilon$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
\begin_layout Enumerate
-odprte,
- zaprte,
- omejene,
- kompaktne množice v
+odprte, zaprte, omejene, kompaktne množice v
\begin_inset Formula $\mathbb{R}$
\end_inset
\end_layout
+\begin_deeper
+\begin_layout Enumerate
+Množica
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+ je odprta, ko
+\begin_inset Formula $\forall a\in\mathcal{A}\exists\varepsilon>0\ni:\left(a-\varepsilon,a+\varepsilon\right)\subseteq\mathcal{A}$
+\end_inset
+
+, ko za vsako točko množice obstaja neka njena okolica, ki je podmnožica
+ množice
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Množica
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+ je zaprta, ko je
+\begin_inset Formula $\mathcal{A}^{\mathcal{C}}\coloneqq\mathbb{R}\setminus\mathcal{A}$
+\end_inset
+
+ odprta.
+\end_layout
+
+\begin_layout Enumerate
+Množica
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+ je omejena, ko
+\begin_inset Formula $\exists m,M\in\mathbb{R}\forall a\in\mathcal{A}:a\leq M\wedge a\geq m$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Množica
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+ je kompaktna
+\begin_inset Formula $\Leftrightarrow\mathcal{A}$
+\end_inset
+
+ zaprta
+\begin_inset Formula $\wedge$
+\end_inset
+
+
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+ omejena.
+\end_layout
+
+\end_deeper
\begin_layout Enumerate
limita funkcije v dani točki
\end_layout
+\begin_deeper
+\begin_layout Standard
+Naj bodo
+\begin_inset Formula $a\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $\mathcal{D}$
+\end_inset
+
+ okolica
+\begin_inset Formula $a$
+\end_inset
+
+ in
+\begin_inset Formula $f:\mathcal{D}\setminus\left\{ a\right\} \to\mathbb{R}$
+\end_inset
+
+ poljubne.
+
+\begin_inset Formula $L\in\mathbb{R}$
+\end_inset
+
+ je limita
+\begin_inset Formula $f$
+\end_inset
+
+ v točki
+\begin_inset Formula $a\sim L=\lim_{x\to a}f\left(x\right)\Leftrightarrow\forall\varepsilon>0\exists\delta>0\forall x\in\mathcal{D}\setminus\left\{ a\right\} :\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-L\right|<\varepsilon$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
\begin_layout Enumerate
zveznost funkcije
\end_layout
+\begin_deeper
+\begin_layout Standard
+Naj bodo
+\begin_inset Formula $\mathcal{D}\subseteq\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $a\in\mathcal{D}$
+\end_inset
+
+ in
+\begin_inset Formula $f:\mathcal{D}\to\mathbb{R}$
+\end_inset
+
+ poljubne.
+
+\begin_inset Formula $f$
+\end_inset
+
+ je zvezna v
+\begin_inset Formula $a\Leftrightarrow\forall\varepsilon>0\exists\delta>0\forall x\in\mathcal{D}:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$
+\end_inset
+
+ .
+
+\begin_inset Formula $f$
+\end_inset
+
+ je zvezna na množici
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+, če je zvezna na vsaki točki množice
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
\begin_layout Enumerate
odvedljivost funkcije
\end_layout
+\begin_deeper
+\begin_layout Standard
+Naj bodo
+\begin_inset Formula $a\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $\mathcal{D}\subseteq\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $f:\mathcal{D}\to\mathbb{R}$
+\end_inset
+
+ poljubne.
+
+\begin_inset Formula $f$
+\end_inset
+
+ je odvedljiva v
+\begin_inset Formula $a\text{\ensuremath{\Leftrightarrow\lim_{h\to0}\frac{f\left(a+h\right)-f\left(a\right)}{h}}}\in\mathbb{R}$
+\end_inset
+
+, ZDB ko obstaja slednja limita.
+ Tedaj definiramo
+\begin_inset Quotes eld
+\end_inset
+
+odvod funkcije
+\begin_inset Formula $f$
+\end_inset
+
+ v točki
+\begin_inset Formula $a$
+\end_inset
+
+
+\begin_inset Quotes erd
+\end_inset
+
+:
+\begin_inset Formula $f'\left(a\right)=\lim_{h\to0}\frac{f\left(a+h\right)-f\left(a\right)}{h}$
+\end_inset
+
+.
+
+\begin_inset Formula $f$
+\end_inset
+
+ je odvedljiva na množici
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+, če je odvedljiva na vsaki točki množice
+\begin_inset Formula $\mathcal{A}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+določen integral realne funkcije na zaprtem omejenem intervalu.
+\end_layout
+
+\begin_deeper
+\begin_layout Enumerate
+Naj bodo
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ in
+\begin_inset Formula $f:\left[a,b\right]\to\mathbb{R}$
+\end_inset
+
+ poljubne.
+\end_layout
+
+\begin_layout Enumerate
+Definirajmo pojem delitve
+\begin_inset Formula $\left[a,b\right]$
+\end_inset
+
+.
+ Delitev so točke
+\begin_inset Formula $t_{0},\dots,t_{n}$
+\end_inset
+
+, da velja
+\begin_inset Formula $a=t_{0}<t_{1}<\cdots<t_{n}=b$
+\end_inset
+
+ za nek
+\begin_inset Formula $n\in\mathbb{N}$
+\end_inset
+
+.
+ Točke identificiramo z delilnimi intervali takole:
+\begin_inset Formula $D_{n}=\left[t_{n-1},t_{n}\right]$
+\end_inset
+
+.
+ Delitev torej identificiramo z množico teh dedlilnih intervalov:
+\begin_inset Formula $D=\left\{ D_{k};\forall k\in\left\{ 1..n\right\} \right\} $
+\end_inset
+
+.
+ Definiramo tudi velikost delitve:
+\begin_inset Formula $\left|D_{\infty}\right|=\max_{k\in\left\{ 1..n\right\} }\left|D_{k}\right|$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Definirajmo pojem izbire za dano delitev.
+ Naj bo
+\begin_inset Formula $D$
+\end_inset
+
+ delitev.
+ Pripadajoča izbira so take izbirne točke
+\begin_inset Formula $\xi_{1},\dots,\xi_{n}$
+\end_inset
+
+, da velja
+\begin_inset Formula $\forall k\in\left\{ 1..n\right\} :\xi_{k}\in D_{k}$
+\end_inset
+
+.
+ Množico teh izbirnih točk označimo z
+\begin_inset Formula $\xi\coloneqq\left\{ \xi_{k};\forall k\in\left\{ 1..n\right\} \right\} $
+\end_inset
+
+.
+\end_layout
+
\begin_layout Enumerate
-določeni integral realne funkcije na zaprtem omejenem intervalu.
+\begin_inset Formula $f$
+\end_inset
+
+ je integrabilna na
+\begin_inset Formula $\left[a,b\right]$
+\end_inset
+
+, če
+\begin_inset Formula $\exists I\in\mathbb{R}\forall\varepsilon>0\exists\delta>0\forall$
+\end_inset
+
+ delitev
+\begin_inset Formula $D\forall$
+\end_inset
+
+ izbiro
+\begin_inset Formula $\xi$
+\end_inset
+
+, pripadajočo delitvi
+\begin_inset Formula $D:\left|D_{\infty}\right|<\delta\Rightarrow\left|\sum_{k=1}^{n}\left|D_{k}\right|f\left(\xi\right)-I\right|<\varepsilon$
+\end_inset
+
+.
+ Tedaj pravimo, da je
+\begin_inset Formula $I$
+\end_inset
+
+ določen integral
+\begin_inset Formula $f$
+\end_inset
+
+ na
+\begin_inset Formula $\left[a,b\right]$
+\end_inset
+
+ in pišemo
+\begin_inset Formula $I\eqqcolon\int_{a}^{b}f\left(x\right)dx$
+\end_inset
+
+.
\end_layout
\end_deeper
+\end_deeper
\begin_layout Enumerate
\begin_inset Formula $\left[15\right]$
\end_inset
@@ -161,11 +552,177 @@ določeni integral realne funkcije na zaprtem omejenem intervalu.
Pojasni princip matematične indukcije.
\end_layout
+\begin_deeper
+\begin_layout Standard
+Naj bo
+\begin_inset Formula $\left(P_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ zaporedje logičnih vrednosti/izjav/izrazov.
+ Če velja
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $P_{1}$
+\end_inset
+
+ drži in hkrati
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\forall n\in\mathbb{N}:P_{n}$
+\end_inset
+
+ drži
+\begin_inset Formula $\Rightarrow P_{n+1}$
+\end_inset
+
+ drži,
+\end_layout
+
+\begin_layout Standard
+potem velja
+\begin_inset Formula $\forall n\in\mathbb{N}:P_{n}$
+\end_inset
+
+ drži.
+\end_layout
+
+\end_deeper
\begin_layout Enumerate
Z matematično indukcijo dokaži
\begin_inset Formula
\[
-1+2+\cdots+n=\frac{n\left(n+1\right)}{2}
+\forall n\in\mathbb{N}:1+2+\cdots+n=\frac{n\left(n+1\right)}{2}
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_deeper
+\begin_layout Enumerate
+Baza
+\begin_inset Formula $n=1$
+\end_inset
+
+:
+\begin_inset Formula $1=\frac{1\left(1+1\right)}{2}$
+\end_inset
+
+ Velja.
+\end_layout
+
+\begin_layout Enumerate
+Indukcijska predpostavka:
+\begin_inset Formula $1+2+\cdots+n=\frac{n\left(n+1\right)}{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Korak
+\begin_inset Formula $n\to n+1$
+\end_inset
+
+:
+\begin_inset Formula
+\[
+1+2+\cdots+n+\cancel{n+1}\overset{?}{=}\frac{\left(n+1\right)\left(n+1+1\right)}{2}=\frac{n^{2}+2n+n+2}{2}=\frac{n\left(n+1\right)}{2}+\cancel{n+1}
+\]
+
+\end_inset
+
+
+\begin_inset Formula
+\[
+1+2+\cdots+n\overset{\text{I.P.}}{=}\frac{n\left(n+1\right)}{2}
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+Sklep:
+\begin_inset Formula $\forall n\in\mathbb{N}:1+2+\cdots+n=\frac{n\left(n+1\right)}{2}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\left[25\right]$
+\end_inset
+
+
+\begin_inset Newline newline
+\end_inset
+
+Naj bosta
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ in
+\begin_inset Formula $\left(b_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ realni konvergentni zaporedji.
+ Dokaži, da je
+\begin_inset Formula $c_{n}\coloneqq a_{n}b_{n}$
+\end_inset
+
+ prav tako konvergentno zaporedje.
+\end_layout
+
+\begin_deeper
+\begin_layout Itemize
+Označimo
+\begin_inset Formula $\lim_{n\to\infty}a_{n}\eqqcolon A$
+\end_inset
+
+ in
+\begin_inset Formula $\lim_{n\to\infty}b_{n}\eqqcolon B$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Uganemo, da je
+\begin_inset Formula $\lim_{n\to\infty}a_{n}b_{n}=AB$
+\end_inset
+
+.
+ To moramo sedaj dokazati.
+\end_layout
+
+\begin_layout Itemize
+Dokazujemo, da
+\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\geq n_{0}:\left|a_{n}b_{n}-AB\right|<\varepsilon\sim\left|a_{n}b_{n}+a_{n}B-a_{n}B-AB\right|=\left|a_{n}\left(b_{n}-B\right)+B\left(a_{n}-A\right)\right|<\varepsilon$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Itemize
+Ker po trikotniški neenakosti velja
+\begin_inset Formula $\left|a_{n}\left(b_{n}-B\right)+B\left(a_{n}-A\right)\right|\leq\left|a_{n}\right|\left|b_{n}-B\right|+\left|B\right|\left|a_{n}-A\right|$
+\end_inset
+
+, je dovolj za poljuben
+\begin_inset Formula $\varepsilon>0$
+\end_inset
+
+ dokazati
+\begin_inset Formula
+\[
+\exists n_{0}\in\mathbb{N}\forall n\geq n_{0}:\left|a_{n}\right|\left|b_{n}-B\right|+\left|B\right|\left|a_{n}-A\right|<\varepsilon
\]
\end_inset
@@ -173,10 +730,509 @@ Z matematično indukcijo dokaži
\end_layout
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ konvergentno,
+\begin_inset Formula $\exists n_{1}\in\mathbb{N}\forall n\geq n_{1}:\left|a_{n}-A\right|<\frac{\varepsilon}{2\left|a\right|}$
+\end_inset
+
+, kjer je
+\begin_inset Formula $a$
+\end_inset
+
+ zgornja meja zaporedja
+\begin_inset Formula $a_{n}$
+\end_inset
+
+.
+ Slednje je omejeno, ker je konvergentno.
+\end_layout
+
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $\left(b_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ konvergentno,
+\begin_inset Formula $\exists n_{2}\in\mathbb{N}\forall n\geq n_{1}:\left|b_{n}-B\right|<\frac{\varepsilon}{2\left|B\right|}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Tedaj za
+\begin_inset Formula $n_{0}\coloneqq\max\left\{ n_{1},n_{2}\right\} $
+\end_inset
+
+ velja
+\begin_inset Formula
+\[
+\left|a_{n}\right|\left|b_{n}-B\right|+\left|B\right|\left|a_{n}-A\right|<\frac{\varepsilon\left|a\right|}{2\left|a_{n}\right|}+\frac{\varepsilon}{2}\leq\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
+\]
+
+\end_inset
+
+in izrek je dokazan.
+\end_layout
+
\end_deeper
\begin_layout Enumerate
-Naj bo
+\begin_inset Formula $\left[?\right]$
+\end_inset
+
+
+\begin_inset Newline newline
+\end_inset
+
+Dokaži, da je zvezna realna funkcija na zaprtem intervalu omejena.
+ Natančno navedi vse izreke, ki jih pri tem dokazu uporabiš.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Naj bodo
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ in zvezna
+\begin_inset Formula $f:\left[a,b\right]\to\mathbb{R}$
+\end_inset
+
+ poljubne.
+\end_layout
+
+\begin_layout Itemize
+Dokaz, da je
+\begin_inset Formula $f$
+\end_inset
+
+ omejena navzgor.
+\end_layout
+
+\begin_deeper
+\begin_layout Itemize
+PDDRAA
+\begin_inset Formula $f$
+\end_inset
+
+ ni navzgor omejena.
+ Tedaj
+\begin_inset Formula $\forall n\in\mathbb{N}\exists x_{n}\in\left[a,b\right]\ni:f\left(x_{n}\right)\geq n$
+\end_inset
+
+.
\end_layout
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ na zaprti množici, je omejeno zaporedje, torej ima stekališče.
+ Recimo mu
+\begin_inset Formula $s\in\mathbb{R}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $\left[a,b\right]$
+\end_inset
+
+ zaprta, je
+\begin_inset Formula $s\in\left[a,b\right]$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $f$
+\end_inset
+
+ zvezna na
+\begin_inset Formula $\left[a,b\right]$
+\end_inset
+
+ in s tem v
+\begin_inset Formula $s$
+\end_inset
+
+, velja
+\begin_inset Formula $\lim_{n\to\infty}f\left(x_{n}\right)=f\left(s\right)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Po konstrukciji
+\begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ velja
+\begin_inset Formula $\lim_{n\to\infty}f\left(x_{n}\right)=\infty$
+\end_inset
+
+, torej
+\begin_inset Formula $f\left(s\right)=\infty$
+\end_inset
+
+, kar ni mogoče, saj
+\begin_inset Formula $f\left(s\right)\in\mathbb{R}$
+\end_inset
+
+ po predpostavki.
+
+\begin_inset Formula $\rightarrow\!\leftarrow$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Predpostavka
+\begin_inset Quotes eld
+\end_inset
+
+
+\begin_inset Formula $f$
+\end_inset
+
+ ni navzgor omejena
+\begin_inset Quotes erd
+\end_inset
+
+ ne velja, torej smo dokazali, da je
+\begin_inset Formula $f$
+\end_inset
+
+ navzgor omejena.
+\end_layout
+
+\end_deeper
+\begin_layout Itemize
+Dokaz, da je
+\begin_inset Formula $f$
+\end_inset
+
+ omejena navzdol.
+\end_layout
+
+\begin_deeper
+\begin_layout Itemize
+PDDRAA
+\begin_inset Formula $f$
+\end_inset
+
+ ni navzdol omejena.
+ Tedaj
+\begin_inset Formula $\forall n\in\mathbb{N}\exists x_{n}\in\left[a,b\right]\ni:f\left(x_{n}\right)\leq-n$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{\mathbb{N}}}$
+\end_inset
+
+ na zaprti množici, je omejeno zaporedje, torej ima stekališče.
+ Recimo mu
+\begin_inset Formula $s\in\mathbb{R}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $\left[a,b\right]$
+\end_inset
+
+ zaprta, je
+\begin_inset Formula $s\in\left[a,b\right]$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $f$
+\end_inset
+
+ zvezna na
+\begin_inset Formula $\left[a,b\right]$
+\end_inset
+
+ in s tem v
+\begin_inset Formula $s$
+\end_inset
+
+, velja
+\begin_inset Formula $\lim_{n\to\infty}f\left(x_{n}\right)=f\left(s\right)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Po konstrukciji
+\begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ velja
+\begin_inset Formula $\lim_{n\to\infty}f\left(x_{n}\right)=-\infty$
+\end_inset
+
+, torej
+\begin_inset Formula $f\left(s\right)=-\infty$
+\end_inset
+
+, kar ni mogoče, saj
+\begin_inset Formula $f\left(s\right)\in\mathbb{R}$
+\end_inset
+
+ po predpostavki.
+
+\begin_inset Formula $\rightarrow\!\leftarrow$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Predpostavka
+\begin_inset Quotes eld
+\end_inset
+
+
+\begin_inset Formula $f$
+\end_inset
+
+ ni navzdol omejena
+\begin_inset Quotes erd
+\end_inset
+
+ ne velja, torej smo dokazali, da je
+\begin_inset Formula $f$
+\end_inset
+
+ navzdol omejena.
+\end_layout
+
+\end_deeper
+\begin_layout Itemize
+Ker je
+\begin_inset Formula $f$
+\end_inset
+
+ omejena navzgor in navzdol, je omejena.
+\end_layout
+
+\begin_layout Itemize
+Uporabljeni izreki.
+\end_layout
+
+\begin_deeper
+\begin_layout Itemize
+Zaporedje
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+ s členi na kompaktni množici je omejeno.
+\end_layout
+
+\begin_layout Itemize
+Omejeno zaporedje ima stekališče.
+\end_layout
+
+\begin_layout Itemize
+Če je
+\begin_inset Formula $s\in\mathbb{R}$
+\end_inset
+
+ stekališče zaporedja
+\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$
+\end_inset
+
+, obstaja konvergentno podzaporedje
+\begin_inset Formula $\left(a_{n_{k}}\right)_{k\in\mathbb{N}}$
+\end_inset
+
+, da je
+\begin_inset Formula $s$
+\end_inset
+
+ njegova limita.
+\end_layout
+
+\begin_layout Itemize
+Množica je kompaktna natanko tedaj, ko vsebuje limite vseh konvergentnih
+ zaporedij s členi v njej.
+\end_layout
+
+\begin_layout Itemize
+Funkcija
+\begin_inset Formula $f$
+\end_inset
+
+ je zvezna v
+\begin_inset Formula $s$
+\end_inset
+
+, če za vsako k
+\begin_inset Formula $s$
+\end_inset
+
+ konvergentno zaporedje velja, da njegovi s
+\begin_inset Formula $f$
+\end_inset
+
+ preslikani členi konvergirajo v
+\begin_inset Formula $f\left(s\right)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\left[?\right]$
+\end_inset
+
+
+\begin_inset Newline newline
+\end_inset
+
+Za realno funkcijo ene spremenljivke dokaži verižno pravilo.
+\end_layout
+
+\begin_deeper
+\begin_layout Itemize
+Naj bodo
+\begin_inset Formula $\mathcal{D},\mathcal{E},\mathcal{F}\subseteq\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $x\in\mathcal{D}$
+\end_inset
+
+ in
+\begin_inset Formula $f:\mathcal{D}\to\mathcal{E}$
+\end_inset
+
+,
+\begin_inset Formula $g:\mathcal{E}\to\mathcal{F}$
+\end_inset
+
+ poljubne.
+ Naj bo
+\begin_inset Formula $f$
+\end_inset
+
+ odvedljiva v
+\begin_inset Formula $x$
+\end_inset
+
+ in
+\begin_inset Formula $g$
+\end_inset
+
+ odvedljiva v
+\begin_inset Formula $f\left(x\right)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Dokažimo, da je
+\begin_inset Formula $g\circ f$
+\end_inset
+
+ odvedljiva v
+\begin_inset Formula $x$
+\end_inset
+
+ in da velja
+\begin_inset Formula
+\[
+\left(g\circ f\right)'\left(x\right)=g'\left(f\left(x\right)\right)f'\left(x\right).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Itemize
+Označimo
+\begin_inset Formula $a\coloneqq f\left(x\right)$
+\end_inset
+
+ in
+\begin_inset Formula $\delta_{h}\coloneqq f\left(x+h\right)-f\left(x\right)$
+\end_inset
+
+.
+ Potemtakem
+\begin_inset Formula $f\left(x+h\right)=\delta_{h}+a$
+\end_inset
+
+.
+\begin_inset Formula
+\[
+\left(g\circ f\right)'\left(x\right)=\lim_{h\to0}\frac{g\left(f\left(x+h\right)\right)-g\left(f\left(x\right)\right)=g\left(\delta_{h}+a\right)-g\left(a\right)}{h}=
+\]
+
+\end_inset
+
+
+\begin_inset Formula
+\[
+=\lim_{h\to0}\frac{g\left(\delta_{h}+a\right)-g\left(a\right)}{\delta_{h}}\cdot\frac{\delta_{h}}{h}=\lim_{h\to0}\frac{g\left(\delta_{h}+a\right)-g\left(a\right)}{\delta_{h}}\cdot\frac{f\left(x+h\right)-f\left(x\right)}{h}=\cdots
+\]
+
+\end_inset
+
+Ker je
+\begin_inset Formula $f$
+\end_inset
+
+ v
+\begin_inset Formula $x$
+\end_inset
+
+ odvedljiva, je v
+\begin_inset Formula $x$
+\end_inset
+
+ zvezna, zato sledi
+\begin_inset Formula $h\to0\Rightarrow\delta_{h}\to0$
+\end_inset
+
+.
+\begin_inset Formula
+\[
+\cdots=g'\left(a\right)\cdot f'\left(x\right)=g'\left(f\left(x\right)\right)\cdot f'\left(x\right)
+\]
+
+\end_inset
+
+
+\end_layout
+
+\end_deeper
\end_body
\end_document
diff --git a/šola/aps1/dn/osvetlitev/Makefile b/šola/aps1/dn/osvetlitev/Makefile
new file mode 100644
index 0000000..2d78386
--- /dev/null
+++ b/šola/aps1/dn/osvetlitev/Makefile
@@ -0,0 +1,4 @@
+program: resitev.cpp
+ g++ -Wall -Wextra -pedantic -Wformat-security -std=c++20 -o$@ $<
+clean:
+ rm program
diff --git a/šola/aps1/dn/osvetlitev/in.txt b/šola/aps1/dn/osvetlitev/in.txt
new file mode 100644
index 0000000..76b90fe
--- /dev/null
+++ b/šola/aps1/dn/osvetlitev/in.txt
@@ -0,0 +1,9 @@
+30
+7
+10 2
+23 2
+14 1
+4 1
+14 4
+11 5
+1 2
diff --git a/šola/aps1/dn/osvetlitev/resitev.cpp b/šola/aps1/dn/osvetlitev/resitev.cpp
new file mode 100644
index 0000000..0a17f31
--- /dev/null
+++ b/šola/aps1/dn/osvetlitev/resitev.cpp
@@ -0,0 +1,46 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdbool.h>
+struct event {
+ int pos;
+ bool tip; // true za začetek, false za konec
+};
+int compar_events (const void * a, const void * b) {
+ if (((struct event *) a)->pos == ((struct event *) b)->pos)
+ return 0;
+ if (((struct event *) a)->pos < ((struct event *) b)->pos)
+ return -1;
+ return 1;
+}
+int main (void) {
+ struct event events[20000];
+ int M, N, x, d;
+ scanf("%d %d", &M, &N);
+ for (int i = 0; i < N; i++) {
+ scanf("%d %d", &x, &d);
+ events[2*i].pos = x-d >= 0 ? x-d : 0;
+ events[2*i].tip = true;
+ events[2*i+1].pos = x+d <= M ? x+d : M;
+ events[2*i+1].tip = false;
+ }
+ qsort(events, 2*N, sizeof events[0], compar_events);
+ int osv = 0;
+ int depth = 0;
+ int start;
+ for (int i = 0; i < 2*N; i++) {
+ // fprintf(stderr, "pos=%d\ttip=%d\n", events[i].pos, events[i].tip);
+ if (events[i].tip == true) {
+ if (depth == 0)
+ start = events[i].pos;
+ depth++;
+ }
+ if (events[i].tip == false) {
+ depth--;
+ if (depth == 0)
+ osv += events[i].pos - start;
+ }
+ }
+ if (depth != 0)
+ fprintf(stderr, "depth == %d\n", depth);
+ printf("%d\n", M-osv);
+}
diff --git a/šola/aps1/dn/zlivanje/in.txt b/šola/aps1/dn/zlivanje/in.txt
new file mode 100644
index 0000000..eaca3bf
--- /dev/null
+++ b/šola/aps1/dn/zlivanje/in.txt
@@ -0,0 +1,26 @@
+25 3 2
+13
+18
+7
+8
+17
+3
+16
+9
+10
+11
+11
+0
+2
+19
+14
+5
+6
+15
+4
+5
+12
+3
+18
+1
+3
diff --git a/šola/aps1/dn/zlivanje/out.txt b/šola/aps1/dn/zlivanje/out.txt
new file mode 100644
index 0000000..6def2f9
--- /dev/null
+++ b/šola/aps1/dn/zlivanje/out.txt
@@ -0,0 +1 @@
+0 2 3 3 4 5 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 18 19 1 3
diff --git a/šola/aps1/dn/zlivanje/resitev.cpp b/šola/aps1/dn/zlivanje/resitev.cpp
new file mode 100644
index 0000000..8926019
--- /dev/null
+++ b/šola/aps1/dn/zlivanje/resitev.cpp
@@ -0,0 +1,39 @@
+#include <sys/param.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdbool.h>
+int compar_long (const void * a, const void * b) {
+ if (*(long *)a < *(long *)b)
+ return -1;
+ return *(long *)a > *(long *) b;
+}
+int main (void) {
+ long N, K, A;
+ scanf("%ld %ld %ld", &N, &K, &A);
+ long * d = (long *) malloc(N*sizeof *d);
+ long čet = 0;
+ long lastidx = 0;
+ long long četkončno = 1;
+ for (long i = 0; i < A && četkončno <= 2000000; i++) // pravzaprav četkončno := K**A,
+ četkončno *= K; // toda C nima int potence
+ // fprintf(stderr, "aaaaaaaa %ld\n", četkončno);
+ for (long i = 0; i < N; i++) {
+ scanf("%ld", d+i);
+ if (i && d[i-1] > d[i])
+ if (++čet >= četkončno) {
+ qsort(d+lastidx, i-lastidx, sizeof d[0], compar_long);
+ čet = 0;
+ lastidx = i;
+ }
+ }
+ qsort(d+lastidx, N-lastidx, sizeof d[0], compar_long);
+ bool devica = true;
+ for (long i = 0; i < N; i++) {
+ if (devica)
+ devica = false;
+ else
+ printf(" ");
+ printf("%ld", d[i]);
+ }
+ printf("\n");
+}