// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/bit_util.h" #include "video_core/gpu.h" #include "video_core/textures/decoders.h" #include "video_core/textures/texture.h" namespace Tegra::Texture { namespace { /** * This table represents the internal swizzle of a gob, * in format 16 bytes x 2 sector packing. * Calculates the offset of an (x, y) position within a swizzled texture. * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188 */ template struct alignas(64) SwizzleTable { static_assert(M * Align == 64, "Swizzle Table does not align to GOB"); constexpr SwizzleTable() { for (u32 y = 0; y < N; ++y) { for (u32 x = 0; x < M; ++x) { const u32 x2 = x * Align; values[y][x] = static_cast(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16)); } } } const std::array& operator[](std::size_t index) const { return values[index]; } std::array, N> values{}; }; constexpr u32 FAST_SWIZZLE_ALIGN = 16; constexpr auto LEGACY_SWIZZLE_TABLE = SwizzleTable(); constexpr auto FAST_SWIZZLE_TABLE = SwizzleTable(); /** * This function manages ALL the GOBs(Group of Bytes) Inside a single block. * Instead of going gob by gob, we map the coordinates inside a block and manage from * those. Block_Width is assumed to be 1. */ void PreciseProcessBlock(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle, const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end, const u32 y_end, const u32 z_end, const u32 tile_offset, const u32 xy_block_size, const u32 layer_z, const u32 stride_x, const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) { std::array data_ptrs; u32 z_address = tile_offset; for (u32 z = z_start; z < z_end; z++) { u32 y_address = z_address; u32 pixel_base = layer_z * z + y_start * stride_x; for (u32 y = y_start; y < y_end; y++) { const auto& table = LEGACY_SWIZZLE_TABLE[y % GOB_SIZE_Y]; for (u32 x = x_start; x < x_end; x++) { const u32 swizzle_offset{y_address + table[x * bytes_per_pixel % GOB_SIZE_X]}; const u32 pixel_index{x * out_bytes_per_pixel + pixel_base}; data_ptrs[unswizzle] = swizzled_data + swizzle_offset; data_ptrs[!unswizzle] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel); } pixel_base += stride_x; if ((y + 1) % GOB_SIZE_Y == 0) y_address += GOB_SIZE; } z_address += xy_block_size; } } /** * This function manages ALL the GOBs(Group of Bytes) Inside a single block. * Instead of going gob by gob, we map the coordinates inside a block and manage from * those. Block_Width is assumed to be 1. */ void FastProcessBlock(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle, const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end, const u32 y_end, const u32 z_end, const u32 tile_offset, const u32 xy_block_size, const u32 layer_z, const u32 stride_x, const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) { std::array data_ptrs; u32 z_address = tile_offset; const u32 x_startb = x_start * bytes_per_pixel; const u32 x_endb = x_end * bytes_per_pixel; for (u32 z = z_start; z < z_end; z++) { u32 y_address = z_address; u32 pixel_base = layer_z * z + y_start * stride_x; for (u32 y = y_start; y < y_end; y++) { const auto& table = FAST_SWIZZLE_TABLE[y % GOB_SIZE_Y]; for (u32 xb = x_startb; xb < x_endb; xb += FAST_SWIZZLE_ALIGN) { const u32 swizzle_offset{y_address + table[(xb / FAST_SWIZZLE_ALIGN) % 4]}; const u32 out_x = xb * out_bytes_per_pixel / bytes_per_pixel; const u32 pixel_index{out_x + pixel_base}; data_ptrs[unswizzle ? 1 : 0] = swizzled_data + swizzle_offset; data_ptrs[unswizzle ? 0 : 1] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], FAST_SWIZZLE_ALIGN); } pixel_base += stride_x; if ((y + 1) % GOB_SIZE_Y == 0) y_address += GOB_SIZE; } z_address += xy_block_size; } } /** * This function unswizzles or swizzles a texture by mapping Linear to BlockLinear Textue. * The body of this function takes care of splitting the swizzled texture into blocks, * and managing the extents of it. Once all the parameters of a single block are obtained, * the function calls 'ProcessBlock' to process that particular Block. * * Documentation for the memory layout and decoding can be found at: * https://envytools.readthedocs.io/en/latest/hw/memory/g80-surface.html#blocklinear-surfaces */ template void SwizzledData(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle, const u32 width, const u32 height, const u32 depth, const u32 bytes_per_pixel, const u32 out_bytes_per_pixel, const u32 block_height, const u32 block_depth, const u32 width_spacing) { auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); }; const u32 stride_x = width * out_bytes_per_pixel; const u32 layer_z = height * stride_x; const u32 gob_elements_x = GOB_SIZE_X / bytes_per_pixel; constexpr u32 gob_elements_y = GOB_SIZE_Y; constexpr u32 gob_elements_z = GOB_SIZE_Z; const u32 block_x_elements = gob_elements_x; const u32 block_y_elements = gob_elements_y * block_height; const u32 block_z_elements = gob_elements_z * block_depth; const u32 aligned_width = Common::AlignUp(width, gob_elements_x * width_spacing); const u32 blocks_on_x = div_ceil(aligned_width, block_x_elements); const u32 blocks_on_y = div_ceil(height, block_y_elements); const u32 blocks_on_z = div_ceil(depth, block_z_elements); const u32 xy_block_size = GOB_SIZE * block_height; const u32 block_size = xy_block_size * block_depth; u32 tile_offset = 0; for (u32 zb = 0; zb < blocks_on_z; zb++) { const u32 z_start = zb * block_z_elements; const u32 z_end = std::min(depth, z_start + block_z_elements); for (u32 yb = 0; yb < blocks_on_y; yb++) { const u32 y_start = yb * block_y_elements; const u32 y_end = std::min(height, y_start + block_y_elements); for (u32 xb = 0; xb < blocks_on_x; xb++) { const u32 x_start = xb * block_x_elements; const u32 x_end = std::min(width, x_start + block_x_elements); if constexpr (fast) { FastProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start, z_start, x_end, y_end, z_end, tile_offset, xy_block_size, layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel); } else { PreciseProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start, z_start, x_end, y_end, z_end, tile_offset, xy_block_size, layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel); } tile_offset += block_size; } } } } } // Anonymous namespace void CopySwizzledData(u32 width, u32 height, u32 depth, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u8* const swizzled_data, u8* const unswizzled_data, bool unswizzle, u32 block_height, u32 block_depth, u32 width_spacing) { const u32 block_height_size{1U << block_height}; const u32 block_depth_size{1U << block_depth}; if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % FAST_SWIZZLE_ALIGN == 0) { SwizzledData(swizzled_data, unswizzled_data, unswizzle, width, height, depth, bytes_per_pixel, out_bytes_per_pixel, block_height_size, block_depth_size, width_spacing); } else { SwizzledData(swizzled_data, unswizzled_data, unswizzle, width, height, depth, bytes_per_pixel, out_bytes_per_pixel, block_height_size, block_depth_size, width_spacing); } } void UnswizzleTexture(u8* const unswizzled_data, u8* address, u32 tile_size_x, u32 tile_size_y, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 width_spacing) { CopySwizzledData((width + tile_size_x - 1) / tile_size_x, (height + tile_size_y - 1) / tile_size_y, depth, bytes_per_pixel, bytes_per_pixel, address, unswizzled_data, true, block_height, block_depth, width_spacing); } std::vector UnswizzleTexture(u8* address, u32 tile_size_x, u32 tile_size_y, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 width_spacing) { std::vector unswizzled_data(width * height * depth * bytes_per_pixel); UnswizzleTexture(unswizzled_data.data(), address, tile_size_x, tile_size_y, bytes_per_pixel, width, height, depth, block_height, block_depth, width_spacing); return unswizzled_data; } void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width, u32 bytes_per_pixel, u8* swizzled_data, const u8* unswizzled_data, u32 block_height_bit, u32 offset_x, u32 offset_y) { const u32 block_height = 1U << block_height_bit; const u32 image_width_in_gobs = (swizzled_width * bytes_per_pixel + (GOB_SIZE_X - 1)) / GOB_SIZE_X; for (u32 line = 0; line < subrect_height; ++line) { const u32 dst_y = line + offset_y; const u32 gob_address_y = (dst_y / (GOB_SIZE_Y * block_height)) * GOB_SIZE * block_height * image_width_in_gobs + ((dst_y % (GOB_SIZE_Y * block_height)) / GOB_SIZE_Y) * GOB_SIZE; const auto& table = LEGACY_SWIZZLE_TABLE[dst_y % GOB_SIZE_Y]; for (u32 x = 0; x < subrect_width; ++x) { const u32 dst_x = x + offset_x; const u32 gob_address = gob_address_y + (dst_x * bytes_per_pixel / GOB_SIZE_X) * GOB_SIZE * block_height; const u32 swizzled_offset = gob_address + table[(dst_x * bytes_per_pixel) % GOB_SIZE_X]; const u32 unswizzled_offset = line * source_pitch + x * bytes_per_pixel; const u8* const source_line = unswizzled_data + unswizzled_offset; u8* const dest_addr = swizzled_data + swizzled_offset; std::memcpy(dest_addr, source_line, bytes_per_pixel); } } } void UnswizzleSubrect(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 bytes_per_pixel, u32 block_height, u32 origin_x, u32 origin_y, u8* output, const u8* input) { const u32 stride = width * bytes_per_pixel; const u32 gobs_in_x = (stride + GOB_SIZE_X - 1) / GOB_SIZE_X; const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height); const u32 block_height_mask = (1U << block_height) - 1; const u32 x_shift = static_cast(GOB_SIZE_SHIFT) + block_height; for (u32 line = 0; line < line_count; ++line) { const u32 src_y = line + origin_y; const auto& table = LEGACY_SWIZZLE_TABLE[src_y % GOB_SIZE_Y]; const u32 block_y = src_y >> GOB_SIZE_Y_SHIFT; const u32 src_offset_y = (block_y >> block_height) * block_size + ((block_y & block_height_mask) << GOB_SIZE_SHIFT); for (u32 column = 0; column < line_length_in; ++column) { const u32 src_x = (column + origin_x) * bytes_per_pixel; const u32 src_offset_x = (src_x >> GOB_SIZE_X_SHIFT) << x_shift; const u32 swizzled_offset = src_offset_y + src_offset_x + table[src_x % GOB_SIZE_X]; const u32 unswizzled_offset = line * pitch + column * bytes_per_pixel; std::memcpy(output + unswizzled_offset, input + swizzled_offset, bytes_per_pixel); } } } void SwizzleSliceToVoxel(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 height, u32 bytes_per_pixel, u32 block_height, u32 block_depth, u32 origin_x, u32 origin_y, u8* output, const u8* input) { UNIMPLEMENTED_IF(origin_x > 0); UNIMPLEMENTED_IF(origin_y > 0); const u32 stride = width * bytes_per_pixel; const u32 gobs_in_x = (stride + GOB_SIZE_X - 1) / GOB_SIZE_X; const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height + block_depth); const u32 block_height_mask = (1U << block_height) - 1; const u32 x_shift = static_cast(GOB_SIZE_SHIFT) + block_height + block_depth; for (u32 line = 0; line < line_count; ++line) { const auto& table = LEGACY_SWIZZLE_TABLE[line % GOB_SIZE_Y]; const u32 block_y = line / GOB_SIZE_Y; const u32 dst_offset_y = (block_y >> block_height) * block_size + (block_y & block_height_mask) * GOB_SIZE; for (u32 x = 0; x < line_length_in; ++x) { const u32 dst_offset = ((x / GOB_SIZE_X) << x_shift) + dst_offset_y + table[x % GOB_SIZE_X]; const u32 src_offset = x * bytes_per_pixel + line * pitch; std::memcpy(output + dst_offset, input + src_offset, bytes_per_pixel); } } } void SwizzleKepler(const u32 width, const u32 height, const u32 dst_x, const u32 dst_y, const u32 block_height_bit, const std::size_t copy_size, const u8* source_data, u8* swizzle_data) { const u32 block_height = 1U << block_height_bit; const u32 image_width_in_gobs{(width + GOB_SIZE_X - 1) / GOB_SIZE_X}; std::size_t count = 0; for (std::size_t y = dst_y; y < height && count < copy_size; ++y) { const std::size_t gob_address_y = (y / (GOB_SIZE_Y * block_height)) * GOB_SIZE * block_height * image_width_in_gobs + ((y % (GOB_SIZE_Y * block_height)) / GOB_SIZE_Y) * GOB_SIZE; const auto& table = LEGACY_SWIZZLE_TABLE[y % GOB_SIZE_Y]; for (std::size_t x = dst_x; x < width && count < copy_size; ++x) { const std::size_t gob_address = gob_address_y + (x / GOB_SIZE_X) * GOB_SIZE * block_height; const std::size_t swizzled_offset = gob_address + table[x % GOB_SIZE_X]; const u8* source_line = source_data + count; u8* dest_addr = swizzle_data + swizzled_offset; count++; std::memcpy(dest_addr, source_line, 1); } } } std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth) { if (tiled) { const u32 aligned_width = Common::AlignBits(width * bytes_per_pixel, GOB_SIZE_X_SHIFT); const u32 aligned_height = Common::AlignBits(height, GOB_SIZE_Y_SHIFT + block_height); const u32 aligned_depth = Common::AlignBits(depth, GOB_SIZE_Z_SHIFT + block_depth); return aligned_width * aligned_height * aligned_depth; } else { return width * height * depth * bytes_per_pixel; } } u64 GetGOBOffset(u32 width, u32 height, u32 dst_x, u32 dst_y, u32 block_height, u32 bytes_per_pixel) { auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); }; const u32 gobs_in_block = 1 << block_height; const u32 y_blocks = GOB_SIZE_Y << block_height; const u32 x_per_gob = GOB_SIZE_X / bytes_per_pixel; const u32 x_blocks = div_ceil(width, x_per_gob); const u32 block_size = GOB_SIZE * gobs_in_block; const u32 stride = block_size * x_blocks; const u32 base = (dst_y / y_blocks) * stride + (dst_x / x_per_gob) * block_size; const u32 relative_y = dst_y % y_blocks; return base + (relative_y / GOB_SIZE_Y) * GOB_SIZE; } } // namespace Tegra::Texture