// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/alignment.h" #include "common/assert.h" #include "video_core/gpu.h" #include "video_core/textures/decoders.h" #include "video_core/textures/texture.h" namespace Tegra::Texture { /** * This table represents the internal swizzle of a gob, * in format 16 bytes x 2 sector packing. * Calculates the offset of an (x, y) position within a swizzled texture. * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188 */ template struct alignas(64) SwizzleTable { static_assert(M * Align == 64, "Swizzle Table does not align to GOB"); constexpr SwizzleTable() { for (u32 y = 0; y < N; ++y) { for (u32 x = 0; x < M; ++x) { const u32 x2 = x * Align; values[y][x] = static_cast(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16)); } } } const std::array& operator[](std::size_t index) const { return values[index]; } std::array, N> values{}; }; constexpr u32 gob_size_x = 64; constexpr u32 gob_size_y = 8; constexpr u32 gob_size_z = 1; constexpr u32 gob_size = gob_size_x * gob_size_y * gob_size_z; constexpr u32 fast_swizzle_align = 16; constexpr auto legacy_swizzle_table = SwizzleTable(); constexpr auto fast_swizzle_table = SwizzleTable(); /** * This function manages ALL the GOBs(Group of Bytes) Inside a single block. * Instead of going gob by gob, we map the coordinates inside a block and manage from * those. Block_Width is assumed to be 1. */ void PreciseProcessBlock(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle, const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end, const u32 y_end, const u32 z_end, const u32 tile_offset, const u32 xy_block_size, const u32 layer_z, const u32 stride_x, const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) { std::array data_ptrs; u32 z_address = tile_offset; for (u32 z = z_start; z < z_end; z++) { u32 y_address = z_address; u32 pixel_base = layer_z * z + y_start * stride_x; for (u32 y = y_start; y < y_end; y++) { const auto& table = legacy_swizzle_table[y % gob_size_y]; for (u32 x = x_start; x < x_end; x++) { const u32 swizzle_offset{y_address + table[x * bytes_per_pixel % gob_size_x]}; const u32 pixel_index{x * out_bytes_per_pixel + pixel_base}; data_ptrs[unswizzle] = swizzled_data + swizzle_offset; data_ptrs[!unswizzle] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel); } pixel_base += stride_x; if ((y + 1) % gob_size_y == 0) y_address += gob_size; } z_address += xy_block_size; } } /** * This function manages ALL the GOBs(Group of Bytes) Inside a single block. * Instead of going gob by gob, we map the coordinates inside a block and manage from * those. Block_Width is assumed to be 1. */ void FastProcessBlock(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle, const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end, const u32 y_end, const u32 z_end, const u32 tile_offset, const u32 xy_block_size, const u32 layer_z, const u32 stride_x, const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) { std::array data_ptrs; u32 z_address = tile_offset; const u32 x_startb = x_start * bytes_per_pixel; const u32 x_endb = x_end * bytes_per_pixel; for (u32 z = z_start; z < z_end; z++) { u32 y_address = z_address; u32 pixel_base = layer_z * z + y_start * stride_x; for (u32 y = y_start; y < y_end; y++) { const auto& table = fast_swizzle_table[y % gob_size_y]; for (u32 xb = x_startb; xb < x_endb; xb += fast_swizzle_align) { const u32 swizzle_offset{y_address + table[(xb / fast_swizzle_align) % 4]}; const u32 out_x = xb * out_bytes_per_pixel / bytes_per_pixel; const u32 pixel_index{out_x + pixel_base}; data_ptrs[unswizzle ? 1 : 0] = swizzled_data + swizzle_offset; data_ptrs[unswizzle ? 0 : 1] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], fast_swizzle_align); } pixel_base += stride_x; if ((y + 1) % gob_size_y == 0) y_address += gob_size; } z_address += xy_block_size; } } /** * This function unswizzles or swizzles a texture by mapping Linear to BlockLinear Textue. * The body of this function takes care of splitting the swizzled texture into blocks, * and managing the extents of it. Once all the parameters of a single block are obtained, * the function calls 'ProcessBlock' to process that particular Block. * * Documentation for the memory layout and decoding can be found at: * https://envytools.readthedocs.io/en/latest/hw/memory/g80-surface.html#blocklinear-surfaces */ template void SwizzledData(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle, const u32 width, const u32 height, const u32 depth, const u32 bytes_per_pixel, const u32 out_bytes_per_pixel, const u32 block_height, const u32 block_depth, const u32 width_spacing) { auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); }; const u32 stride_x = width * out_bytes_per_pixel; const u32 layer_z = height * stride_x; const u32 gob_elements_x = gob_size_x / bytes_per_pixel; constexpr u32 gob_elements_y = gob_size_y; constexpr u32 gob_elements_z = gob_size_z; const u32 block_x_elements = gob_elements_x; const u32 block_y_elements = gob_elements_y * block_height; const u32 block_z_elements = gob_elements_z * block_depth; const u32 aligned_width = Common::AlignUp(width, gob_elements_x * width_spacing); const u32 blocks_on_x = div_ceil(aligned_width, block_x_elements); const u32 blocks_on_y = div_ceil(height, block_y_elements); const u32 blocks_on_z = div_ceil(depth, block_z_elements); const u32 xy_block_size = gob_size * block_height; const u32 block_size = xy_block_size * block_depth; u32 tile_offset = 0; for (u32 zb = 0; zb < blocks_on_z; zb++) { const u32 z_start = zb * block_z_elements; const u32 z_end = std::min(depth, z_start + block_z_elements); for (u32 yb = 0; yb < blocks_on_y; yb++) { const u32 y_start = yb * block_y_elements; const u32 y_end = std::min(height, y_start + block_y_elements); for (u32 xb = 0; xb < blocks_on_x; xb++) { const u32 x_start = xb * block_x_elements; const u32 x_end = std::min(width, x_start + block_x_elements); if constexpr (fast) { FastProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start, z_start, x_end, y_end, z_end, tile_offset, xy_block_size, layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel); } else { PreciseProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start, z_start, x_end, y_end, z_end, tile_offset, xy_block_size, layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel); } tile_offset += block_size; } } } } void CopySwizzledData(u32 width, u32 height, u32 depth, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u8* const swizzled_data, u8* const unswizzled_data, bool unswizzle, u32 block_height, u32 block_depth, u32 width_spacing) { if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % fast_swizzle_align == 0) { SwizzledData(swizzled_data, unswizzled_data, unswizzle, width, height, depth, bytes_per_pixel, out_bytes_per_pixel, block_height, block_depth, width_spacing); } else { SwizzledData(swizzled_data, unswizzled_data, unswizzle, width, height, depth, bytes_per_pixel, out_bytes_per_pixel, block_height, block_depth, width_spacing); } } u32 BytesPerPixel(TextureFormat format) { switch (format) { case TextureFormat::DXT1: case TextureFormat::DXN1: // In this case a 'pixel' actually refers to a 4x4 tile. return 8; case TextureFormat::DXT23: case TextureFormat::DXT45: case TextureFormat::DXN2: case TextureFormat::BC7U: case TextureFormat::BC6H_UF16: case TextureFormat::BC6H_SF16: // In this case a 'pixel' actually refers to a 4x4 tile. return 16; case TextureFormat::R32_G32_B32: return 12; case TextureFormat::ASTC_2D_4X4: case TextureFormat::ASTC_2D_5X4: case TextureFormat::ASTC_2D_8X8: case TextureFormat::ASTC_2D_8X5: case TextureFormat::ASTC_2D_10X8: case TextureFormat::ASTC_2D_5X5: case TextureFormat::A8R8G8B8: case TextureFormat::A2B10G10R10: case TextureFormat::BF10GF11RF11: case TextureFormat::R32: case TextureFormat::R16_G16: return 4; case TextureFormat::A1B5G5R5: case TextureFormat::B5G6R5: case TextureFormat::G8R8: case TextureFormat::R16: return 2; case TextureFormat::R8: return 1; case TextureFormat::R16_G16_B16_A16: return 8; case TextureFormat::R32_G32_B32_A32: return 16; case TextureFormat::R32_G32: return 8; default: UNIMPLEMENTED_MSG("Format not implemented"); return 1; } } void UnswizzleTexture(u8* const unswizzled_data, u8* address, u32 tile_size_x, u32 tile_size_y, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 width_spacing) { CopySwizzledData((width + tile_size_x - 1) / tile_size_x, (height + tile_size_y - 1) / tile_size_y, depth, bytes_per_pixel, bytes_per_pixel, address, unswizzled_data, true, block_height, block_depth, width_spacing); } std::vector UnswizzleTexture(u8* address, u32 tile_size_x, u32 tile_size_y, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 width_spacing) { std::vector unswizzled_data(width * height * depth * bytes_per_pixel); UnswizzleTexture(unswizzled_data.data(), address, tile_size_x, tile_size_y, bytes_per_pixel, width, height, depth, block_height, block_depth, width_spacing); return unswizzled_data; } void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width, u32 bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, u32 block_height) { const u32 image_width_in_gobs{(swizzled_width * bytes_per_pixel + (gob_size_x - 1)) / gob_size_x}; for (u32 line = 0; line < subrect_height; ++line) { const u32 gob_address_y = (line / (gob_size_y * block_height)) * gob_size * block_height * image_width_in_gobs + ((line % (gob_size_y * block_height)) / gob_size_y) * gob_size; const auto& table = legacy_swizzle_table[line % gob_size_y]; for (u32 x = 0; x < subrect_width; ++x) { const u32 gob_address = gob_address_y + (x * bytes_per_pixel / gob_size_x) * gob_size * block_height; const u32 swizzled_offset = gob_address + table[(x * bytes_per_pixel) % gob_size_x]; u8* source_line = unswizzled_data + line * source_pitch + x * bytes_per_pixel; u8* dest_addr = swizzled_data + swizzled_offset; std::memcpy(dest_addr, source_line, bytes_per_pixel); } } } void UnswizzleSubrect(u32 subrect_width, u32 subrect_height, u32 dest_pitch, u32 swizzled_width, u32 bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, u32 block_height, u32 offset_x, u32 offset_y) { for (u32 line = 0; line < subrect_height; ++line) { const u32 y2 = line + offset_y; const u32 gob_address_y = (y2 / (gob_size_y * block_height)) * gob_size * block_height + ((y2 % (gob_size_y * block_height)) / gob_size_y) * gob_size; const auto& table = legacy_swizzle_table[y2 % gob_size_y]; for (u32 x = 0; x < subrect_width; ++x) { const u32 x2 = (x + offset_x) * bytes_per_pixel; const u32 gob_address = gob_address_y + (x2 / gob_size_x) * gob_size * block_height; const u32 swizzled_offset = gob_address + table[x2 % gob_size_x]; u8* dest_line = unswizzled_data + line * dest_pitch + x * bytes_per_pixel; u8* source_addr = swizzled_data + swizzled_offset; std::memcpy(dest_line, source_addr, bytes_per_pixel); } } } void SwizzleKepler(u32 width, u32 height, u32 dst_x, u32 dst_y, u32 block_height, std::size_t copy_size, u8* source_data, u8* swizzle_data) { const u32 image_width_in_gobs{(width + gob_size_x - 1) / gob_size_x}; std::size_t count = 0; for (u32 y = dst_y; y < height && count < copy_size; ++y) { const u32 gob_address_y = (y / (gob_size_y * block_height)) * gob_size * block_height * image_width_in_gobs + ((y % (gob_size_y * block_height)) / gob_size_y) * gob_size; const auto& table = legacy_swizzle_table[y % gob_size_y]; for (u32 x = dst_x; x < width && count < copy_size; ++x) { const u32 gob_address = gob_address_y + (x / gob_size_x) * gob_size * block_height; const u32 swizzled_offset = gob_address + table[x % gob_size_x]; const u8* source_line = source_data + count; u8* dest_addr = swizzle_data + swizzled_offset; count++; std::memcpy(dest_addr, source_line, 1); } } } std::vector DecodeTexture(const std::vector& texture_data, TextureFormat format, u32 width, u32 height) { std::vector rgba_data; // TODO(Subv): Implement. switch (format) { case TextureFormat::DXT1: case TextureFormat::DXT23: case TextureFormat::DXT45: case TextureFormat::DXN1: case TextureFormat::DXN2: case TextureFormat::BC7U: case TextureFormat::BC6H_UF16: case TextureFormat::BC6H_SF16: case TextureFormat::ASTC_2D_4X4: case TextureFormat::ASTC_2D_8X8: case TextureFormat::ASTC_2D_5X5: case TextureFormat::ASTC_2D_10X8: case TextureFormat::A8R8G8B8: case TextureFormat::A2B10G10R10: case TextureFormat::A1B5G5R5: case TextureFormat::B5G6R5: case TextureFormat::R8: case TextureFormat::G8R8: case TextureFormat::BF10GF11RF11: case TextureFormat::R32_G32_B32_A32: case TextureFormat::R32_G32: case TextureFormat::R32: case TextureFormat::R16: case TextureFormat::R16_G16: case TextureFormat::R32_G32_B32: // TODO(Subv): For the time being just forward the same data without any decoding. rgba_data = texture_data; break; default: UNIMPLEMENTED_MSG("Format not implemented"); break; } return rgba_data; } std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth) { if (tiled) { const u32 aligned_width = Common::AlignUp(width * bytes_per_pixel, gob_size_x); const u32 aligned_height = Common::AlignUp(height, gob_size_y * block_height); const u32 aligned_depth = Common::AlignUp(depth, gob_size_z * block_depth); return aligned_width * aligned_height * aligned_depth; } else { return width * height * depth * bytes_per_pixel; } } } // namespace Tegra::Texture