// Copyright 2017 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/math_util.h" #include "video_core/swrasterizer/fragment_lighting.h" namespace Pica { static float LookupLightingLut(const Pica::State::Lighting& lighting, size_t lut_index, u8 index, float delta) { ASSERT_MSG(lut_index < lighting.luts.size(), "Out of range lut"); ASSERT_MSG(index < lighting.luts[lut_index].size(), "Out of range index"); const auto& lut = lighting.luts[lut_index][index]; float lut_value = lut.ToFloat(); float lut_diff = lut.DiffToFloat(); return lut_value + lut_diff * delta; } std::tuple, Math::Vec4> ComputeFragmentsColors( const Pica::LightingRegs& lighting, const Pica::State::Lighting& lighting_state, const Math::Quaternion& normquat, const Math::Vec3& view) { // TODO(Subv): Bump mapping Math::Vec3 surface_normal = {0.0f, 0.0f, 1.0f}; if (lighting.config0.bump_mode != LightingRegs::LightingBumpMode::None) { LOG_CRITICAL(HW_GPU, "unimplemented bump mapping"); UNIMPLEMENTED(); } // Use the normalized the quaternion when performing the rotation auto normal = Math::QuaternionRotate(normquat, surface_normal); Math::Vec4 diffuse_sum = {0.0f, 0.0f, 0.0f, 1.0f}; Math::Vec4 specular_sum = {0.0f, 0.0f, 0.0f, 1.0f}; for (unsigned light_index = 0; light_index <= lighting.max_light_index; ++light_index) { unsigned num = lighting.light_enable.GetNum(light_index); const auto& light_config = lighting.light[num]; Math::Vec3 refl_value = {}; Math::Vec3 position = {float16::FromRaw(light_config.x).ToFloat32(), float16::FromRaw(light_config.y).ToFloat32(), float16::FromRaw(light_config.z).ToFloat32()}; Math::Vec3 light_vector; if (light_config.config.directional) light_vector = position; else light_vector = position + view; light_vector.Normalize(); float dist_atten = 1.0f; if (!lighting.IsDistAttenDisabled(num)) { auto distance = (-view - position).Length(); float scale = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32(); float bias = Pica::float20::FromRaw(light_config.dist_atten_bias).ToFloat32(); size_t lut = static_cast(LightingRegs::LightingSampler::DistanceAttenuation) + num; float sample_loc = MathUtil::Clamp(scale * distance + bias, 0.0f, 1.0f); u8 lutindex = static_cast(MathUtil::Clamp(std::floor(sample_loc * 256.0f), 0.0f, 255.0f)); float delta = sample_loc * 256 - lutindex; dist_atten = LookupLightingLut(lighting_state, lut, lutindex, delta); } auto GetLutValue = [&](LightingRegs::LightingLutInput input, bool abs, LightingRegs::LightingScale scale_enum, LightingRegs::LightingSampler sampler) { Math::Vec3 norm_view = view.Normalized(); Math::Vec3 half_angle = (norm_view + light_vector).Normalized(); float result = 0.0f; switch (input) { case LightingRegs::LightingLutInput::NH: result = Math::Dot(normal, half_angle); break; case LightingRegs::LightingLutInput::VH: result = Math::Dot(norm_view, half_angle); break; case LightingRegs::LightingLutInput::NV: result = Math::Dot(normal, norm_view); break; case LightingRegs::LightingLutInput::LN: result = Math::Dot(light_vector, normal); break; default: LOG_CRITICAL(HW_GPU, "Unknown lighting LUT input %u\n", static_cast(input)); UNIMPLEMENTED(); result = 0.0f; } u8 index; float delta; if (abs) { if (light_config.config.two_sided_diffuse) result = std::abs(result); else result = std::max(result, 0.0f); float flr = std::floor(result * 256.0f); index = static_cast(MathUtil::Clamp(flr, 0.0f, 255.0f)); delta = result * 256 - index; } else { float flr = std::floor(result * 128.0f); s8 signed_index = static_cast(MathUtil::Clamp(flr, -128.0f, 127.0f)); delta = result * 128.0f - signed_index; index = static_cast(signed_index); } float scale = lighting.lut_scale.GetScale(scale_enum); return scale * LookupLightingLut(lighting_state, static_cast(sampler), index, delta); }; // Specular 0 component float d0_lut_value = 1.0f; if (lighting.config1.disable_lut_d0 == 0 && LightingRegs::IsLightingSamplerSupported( lighting.config0.config, LightingRegs::LightingSampler::Distribution0)) { d0_lut_value = GetLutValue(lighting.lut_input.d0, lighting.abs_lut_input.disable_d0 == 0, lighting.lut_scale.d0, LightingRegs::LightingSampler::Distribution0); } Math::Vec3 specular_0 = d0_lut_value * light_config.specular_0.ToVec3f(); // If enabled, lookup ReflectRed value, otherwise, 1.0 is used if (lighting.config1.disable_lut_rr == 0 && LightingRegs::IsLightingSamplerSupported(lighting.config0.config, LightingRegs::LightingSampler::ReflectRed)) { refl_value.x = GetLutValue(lighting.lut_input.rr, lighting.abs_lut_input.disable_rr == 0, lighting.lut_scale.rr, LightingRegs::LightingSampler::ReflectRed); } else { refl_value.x = 1.0f; } // If enabled, lookup ReflectGreen value, otherwise, ReflectRed value is used if (lighting.config1.disable_lut_rg == 0 && LightingRegs::IsLightingSamplerSupported(lighting.config0.config, LightingRegs::LightingSampler::ReflectGreen)) { refl_value.y = GetLutValue(lighting.lut_input.rg, lighting.abs_lut_input.disable_rg == 0, lighting.lut_scale.rg, LightingRegs::LightingSampler::ReflectGreen); } else { refl_value.y = refl_value.x; } // If enabled, lookup ReflectBlue value, otherwise, ReflectRed value is used if (lighting.config1.disable_lut_rb == 0 && LightingRegs::IsLightingSamplerSupported(lighting.config0.config, LightingRegs::LightingSampler::ReflectBlue)) { refl_value.z = GetLutValue(lighting.lut_input.rb, lighting.abs_lut_input.disable_rb == 0, lighting.lut_scale.rb, LightingRegs::LightingSampler::ReflectBlue); } else { refl_value.z = refl_value.x; } // Specular 1 component float d1_lut_value = 1.0f; if (lighting.config1.disable_lut_d1 == 0 && LightingRegs::IsLightingSamplerSupported( lighting.config0.config, LightingRegs::LightingSampler::Distribution1)) { d1_lut_value = GetLutValue(lighting.lut_input.d1, lighting.abs_lut_input.disable_d1 == 0, lighting.lut_scale.d1, LightingRegs::LightingSampler::Distribution1); } Math::Vec3 specular_1 = d1_lut_value * refl_value * light_config.specular_1.ToVec3f(); // Fresnel if (lighting.config1.disable_lut_fr == 0 && LightingRegs::IsLightingSamplerSupported(lighting.config0.config, LightingRegs::LightingSampler::Fresnel)) { float lut_value = GetLutValue(lighting.lut_input.fr, lighting.abs_lut_input.disable_fr == 0, lighting.lut_scale.fr, LightingRegs::LightingSampler::Fresnel); // Enabled for diffuse lighting alpha component if (lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::PrimaryAlpha || lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) { diffuse_sum.a() *= lut_value; } // Enabled for the specular lighting alpha component if (lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::SecondaryAlpha || lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) { specular_sum.a() *= lut_value; } } auto dot_product = Math::Dot(light_vector, normal); // Calculate clamp highlights before applying the two-sided diffuse configuration to the dot // product. float clamp_highlights = 1.0f; if (lighting.config0.clamp_highlights) { if (dot_product <= 0.0f) clamp_highlights = 0.0f; else clamp_highlights = 1.0f; } if (light_config.config.two_sided_diffuse) dot_product = std::abs(dot_product); else dot_product = std::max(dot_product, 0.0f); auto diffuse = light_config.diffuse.ToVec3f() * dot_product + light_config.ambient.ToVec3f(); diffuse_sum += Math::MakeVec(diffuse * dist_atten, 0.0f); specular_sum += Math::MakeVec((specular_0 + specular_1) * clamp_highlights * dist_atten, 0.0f); } diffuse_sum += Math::MakeVec(lighting.global_ambient.ToVec3f(), 0.0f); auto diffuse = Math::MakeVec(MathUtil::Clamp(diffuse_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.z, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.w, 0.0f, 1.0f) * 255) .Cast(); auto specular = Math::MakeVec(MathUtil::Clamp(specular_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.z, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.w, 0.0f, 1.0f) * 255) .Cast(); return {diffuse, specular}; } } // namespace Pica