// Copyright 2019 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/common_types.h" #include "common/logging/log.h" #include "video_core/engines/shader_bytecode.h" #include "video_core/shader/shader_ir.h" namespace VideoCommon::Shader { using Tegra::Shader::Instruction; using Tegra::Shader::OpCode; using Tegra::Shader::Register; using Tegra::Shader::TextureMiscMode; using Tegra::Shader::TextureProcessMode; using Tegra::Shader::TextureType; static std::size_t GetCoordCount(TextureType texture_type) { switch (texture_type) { case TextureType::Texture1D: return 1; case TextureType::Texture2D: return 2; case TextureType::Texture3D: case TextureType::TextureCube: return 3; default: UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast(texture_type)); return 0; } } u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) { const Instruction instr = {program_code[pc]}; const auto opcode = OpCode::Decode(instr); bool is_bindless = false; switch (opcode->get().GetId()) { case OpCode::Id::TEX: { if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete"); } const TextureType texture_type{instr.tex.texture_type}; const bool is_array = instr.tex.array != 0; const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI); const bool depth_compare = instr.tex.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.tex.GetTextureProcessMode(); WriteTexInstructionFloat( bb, instr, GetTexCode(instr, texture_type, process_mode, depth_compare, is_array, is_aoffi, {})); break; } case OpCode::Id::TEX_B: { UNIMPLEMENTED_IF_MSG(instr.tex.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete"); } const TextureType texture_type{instr.tex_b.texture_type}; const bool is_array = instr.tex_b.array != 0; const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI); const bool depth_compare = instr.tex_b.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.tex_b.GetTextureProcessMode(); WriteTexInstructionFloat(bb, instr, GetTexCode(instr, texture_type, process_mode, depth_compare, is_array, is_aoffi, {instr.gpr20})); break; } case OpCode::Id::TEXS: { const TextureType texture_type{instr.texs.GetTextureType()}; const bool is_array{instr.texs.IsArrayTexture()}; const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.texs.GetTextureProcessMode(); if (instr.texs.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TEXS.NODEP implementation is incomplete"); } const Node4 components = GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array); if (instr.texs.fp32_flag) { WriteTexsInstructionFloat(bb, instr, components); } else { WriteTexsInstructionHalfFloat(bb, instr, components); } break; } case OpCode::Id::TLD4: { ASSERT(instr.tld4.array == 0); UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::NDV), "NDV is not implemented"); UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::PTP), "PTP is not implemented"); if (instr.tld4.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TLD4.NODEP implementation is incomplete"); } const auto texture_type = instr.tld4.texture_type.Value(); const bool depth_compare = instr.tld4.UsesMiscMode(TextureMiscMode::DC); const bool is_array = instr.tld4.array != 0; const bool is_aoffi = instr.tld4.UsesMiscMode(TextureMiscMode::AOFFI); WriteTexInstructionFloat( bb, instr, GetTld4Code(instr, texture_type, depth_compare, is_array, is_aoffi)); break; } case OpCode::Id::TLD4S: { UNIMPLEMENTED_IF_MSG(instr.tld4s.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); if (instr.tld4s.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TLD4S.NODEP implementation is incomplete"); } const bool depth_compare = instr.tld4s.UsesMiscMode(TextureMiscMode::DC); const Node op_a = GetRegister(instr.gpr8); const Node op_b = GetRegister(instr.gpr20); // TODO(Subv): Figure out how the sampler type is encoded in the TLD4S instruction. std::vector coords; if (depth_compare) { // Note: TLD4S coordinate encoding works just like TEXS's const Node op_y = GetRegister(instr.gpr8.Value() + 1); coords.push_back(op_a); coords.push_back(op_y); coords.push_back(op_b); } else { coords.push_back(op_a); coords.push_back(op_b); } const Node component = Immediate(static_cast(instr.tld4s.component)); const auto& sampler = GetSampler(instr.sampler, TextureType::Texture2D, false, depth_compare); Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto coords_copy = coords; MetaTexture meta{sampler, {}, {}, {}, {}, {}, component, element}; values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy)); } WriteTexsInstructionFloat(bb, instr, values); break; } case OpCode::Id::TXQ_B: is_bindless = true; [[fallthrough]]; case OpCode::Id::TXQ: { if (instr.txq.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TXQ.NODEP implementation is incomplete"); } // TODO: The new commits on the texture refactor, change the way samplers work. // Sadly, not all texture instructions specify the type of texture their sampler // uses. This must be fixed at a later instance. const auto& sampler = is_bindless ? GetBindlessSampler(instr.gpr8, Tegra::Shader::TextureType::Texture2D, false, false) : GetSampler(instr.sampler, Tegra::Shader::TextureType::Texture2D, false, false); u32 indexer = 0; switch (instr.txq.query_type) { case Tegra::Shader::TextureQueryType::Dimension: { for (u32 element = 0; element < 4; ++element) { if (!instr.txq.IsComponentEnabled(element)) { continue; } MetaTexture meta{sampler, {}, {}, {}, {}, {}, {}, element}; const Node value = Operation(OperationCode::TextureQueryDimensions, meta, GetRegister(instr.gpr8.Value() + (is_bindless ? 1 : 0))); SetTemporal(bb, indexer++, value); } for (u32 i = 0; i < indexer; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i)); } break; } default: UNIMPLEMENTED_MSG("Unhandled texture query type: {}", static_cast(instr.txq.query_type.Value())); } break; } case OpCode::Id::TMML_B: is_bindless = true; [[fallthrough]]; case OpCode::Id::TMML: { UNIMPLEMENTED_IF_MSG(instr.tmml.UsesMiscMode(Tegra::Shader::TextureMiscMode::NDV), "NDV is not implemented"); if (instr.tmml.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TMML.NODEP implementation is incomplete"); } auto texture_type = instr.tmml.texture_type.Value(); const bool is_array = instr.tmml.array != 0; const auto& sampler = is_bindless ? GetBindlessSampler(instr.gpr20, texture_type, is_array, false) : GetSampler(instr.sampler, texture_type, is_array, false); std::vector coords; // TODO: Add coordinates for different samplers once other texture types are implemented. switch (texture_type) { case TextureType::Texture1D: coords.push_back(GetRegister(instr.gpr8)); break; case TextureType::Texture2D: coords.push_back(GetRegister(instr.gpr8.Value() + 0)); coords.push_back(GetRegister(instr.gpr8.Value() + 1)); break; default: UNIMPLEMENTED_MSG("Unhandled texture type {}", static_cast(texture_type)); // Fallback to interpreting as a 2D texture for now coords.push_back(GetRegister(instr.gpr8.Value() + 0)); coords.push_back(GetRegister(instr.gpr8.Value() + 1)); texture_type = TextureType::Texture2D; } u32 indexer = 0; for (u32 element = 0; element < 2; ++element) { if (!instr.tmml.IsComponentEnabled(element)) { continue; } auto params = coords; MetaTexture meta{sampler, {}, {}, {}, {}, {}, {}, element}; const Node value = Operation(OperationCode::TextureQueryLod, meta, std::move(params)); SetTemporal(bb, indexer++, value); } for (u32 i = 0; i < indexer; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i)); } break; } case OpCode::Id::TLDS: { const Tegra::Shader::TextureType texture_type{instr.tlds.GetTextureType()}; const bool is_array{instr.tlds.IsArrayTexture()}; UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::MZ), "MZ is not implemented"); if (instr.tlds.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TLDS.NODEP implementation is incomplete"); } WriteTexsInstructionFloat(bb, instr, GetTldsCode(instr, texture_type, is_array)); break; } default: UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName()); } return pc; } const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, TextureType type, bool is_array, bool is_shadow) { const auto offset = static_cast(sampler.index.Value()); // If this sampler has already been used, return the existing mapping. const auto itr = std::find_if(used_samplers.begin(), used_samplers.end(), [&](const Sampler& entry) { return entry.GetOffset() == offset; }); if (itr != used_samplers.end()) { ASSERT(itr->GetType() == type && itr->IsArray() == is_array && itr->IsShadow() == is_shadow); return *itr; } // Otherwise create a new mapping for this sampler const std::size_t next_index = used_samplers.size(); const Sampler entry{offset, next_index, type, is_array, is_shadow}; return *used_samplers.emplace(entry).first; } const Sampler& ShaderIR::GetBindlessSampler(const Tegra::Shader::Register& reg, TextureType type, bool is_array, bool is_shadow) { const Node sampler_register = GetRegister(reg); const Node base_sampler = TrackCbuf(sampler_register, global_code, static_cast(global_code.size())); const auto cbuf = std::get_if(base_sampler); const auto cbuf_offset_imm = std::get_if(cbuf->GetOffset()); ASSERT(cbuf_offset_imm != nullptr); const auto cbuf_offset = cbuf_offset_imm->GetValue(); const auto cbuf_index = cbuf->GetIndex(); const auto cbuf_key = (static_cast(cbuf_index) << 32) | static_cast(cbuf_offset); // If this sampler has already been used, return the existing mapping. const auto itr = std::find_if(used_samplers.begin(), used_samplers.end(), [&](const Sampler& entry) { return entry.GetOffset() == cbuf_key; }); if (itr != used_samplers.end()) { ASSERT(itr->GetType() == type && itr->IsArray() == is_array && itr->IsShadow() == is_shadow); return *itr; } // Otherwise create a new mapping for this sampler const std::size_t next_index = used_samplers.size(); const Sampler entry{cbuf_index, cbuf_offset, next_index, type, is_array, is_shadow}; return *used_samplers.emplace(entry).first; } void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) { u32 dest_elem = 0; for (u32 elem = 0; elem < 4; ++elem) { if (!instr.tex.IsComponentEnabled(elem)) { // Skip disabled components continue; } SetTemporal(bb, dest_elem++, components[elem]); } // After writing values in temporals, move them to the real registers for (u32 i = 0; i < dest_elem; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i)); } } void ShaderIR::WriteTexsInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) { // TEXS has two destination registers and a swizzle. The first two elements in the swizzle // go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1 u32 dest_elem = 0; for (u32 component = 0; component < 4; ++component) { if (!instr.texs.IsComponentEnabled(component)) continue; SetTemporal(bb, dest_elem++, components[component]); } for (u32 i = 0; i < dest_elem; ++i) { if (i < 2) { // Write the first two swizzle components to gpr0 and gpr0+1 SetRegister(bb, instr.gpr0.Value() + i % 2, GetTemporal(i)); } else { ASSERT(instr.texs.HasTwoDestinations()); // Write the rest of the swizzle components to gpr28 and gpr28+1 SetRegister(bb, instr.gpr28.Value() + i % 2, GetTemporal(i)); } } } void ShaderIR::WriteTexsInstructionHalfFloat(NodeBlock& bb, Instruction instr, const Node4& components) { // TEXS.F16 destionation registers are packed in two registers in pairs (just like any half // float instruction). Node4 values; u32 dest_elem = 0; for (u32 component = 0; component < 4; ++component) { if (!instr.texs.IsComponentEnabled(component)) continue; values[dest_elem++] = components[component]; } if (dest_elem == 0) return; std::generate(values.begin() + dest_elem, values.end(), [&]() { return Immediate(0); }); const Node first_value = Operation(OperationCode::HPack2, values[0], values[1]); if (dest_elem <= 2) { SetRegister(bb, instr.gpr0, first_value); return; } SetTemporal(bb, 0, first_value); SetTemporal(bb, 1, Operation(OperationCode::HPack2, values[2], values[3])); SetRegister(bb, instr.gpr0, GetTemporal(0)); SetRegister(bb, instr.gpr28, GetTemporal(1)); } Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, std::vector coords, Node array, Node depth_compare, u32 bias_offset, std::vector aoffi, std::optional bindless_reg) { const bool is_array = array; const bool is_shadow = depth_compare; const bool is_bindless = bindless_reg.has_value(); UNIMPLEMENTED_IF_MSG((texture_type == TextureType::Texture3D && (is_array || is_shadow)) || (texture_type == TextureType::TextureCube && is_array && is_shadow), "This method is not supported."); const auto& sampler = is_bindless ? GetBindlessSampler(*bindless_reg, texture_type, is_array, is_shadow) : GetSampler(instr.sampler, texture_type, is_array, is_shadow); const bool lod_needed = process_mode == TextureProcessMode::LZ || process_mode == TextureProcessMode::LL || process_mode == TextureProcessMode::LLA; // LOD selection (either via bias or explicit textureLod) not // supported in GL for sampler2DArrayShadow and // samplerCubeArrayShadow. const bool gl_lod_supported = !((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && is_shadow) || (texture_type == Tegra::Shader::TextureType::TextureCube && is_array && is_shadow)); const OperationCode read_method = (lod_needed && gl_lod_supported) ? OperationCode::TextureLod : OperationCode::Texture; UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported); Node bias = {}; Node lod = {}; if (process_mode != TextureProcessMode::None && gl_lod_supported) { switch (process_mode) { case TextureProcessMode::LZ: lod = Immediate(0.0f); break; case TextureProcessMode::LB: // If present, lod or bias are always stored in the register // indexed by the gpr20 field with an offset depending on the // usage of the other registers bias = GetRegister(instr.gpr20.Value() + bias_offset); break; case TextureProcessMode::LL: lod = GetRegister(instr.gpr20.Value() + bias_offset); break; default: UNIMPLEMENTED_MSG("Unimplemented process mode={}", static_cast(process_mode)); break; } } Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto copy_coords = coords; MetaTexture meta{sampler, array, depth_compare, aoffi, bias, lod, {}, element}; values[element] = Operation(read_method, meta, std::move(copy_coords)); } return values; } Node4 ShaderIR::GetTexCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array, bool is_aoffi, std::optional bindless_reg) { const bool lod_bias_enabled{ (process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ)}; const bool is_bindless = bindless_reg.has_value(); u64 parameter_register = instr.gpr20.Value(); if (is_bindless) { ++parameter_register; } const u32 bias_lod_offset = (is_bindless ? 1 : 0); if (lod_bias_enabled) { ++parameter_register; } const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement( texture_type, depth_compare, is_array, lod_bias_enabled, 4, 5); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is the gpr8 or gpr8 + 1 when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { coords.push_back(GetRegister(coord_register + i)); } // 1D.DC in OpenGL the 2nd component is ignored. if (depth_compare && !is_array && texture_type == TextureType::Texture1D) { coords.push_back(Immediate(0.0f)); } const Node array = is_array ? GetRegister(array_register) : nullptr; std::vector aoffi; if (is_aoffi) { aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, false); } Node dc{}; if (depth_compare) { // Depth is always stored in the register signaled by gpr20 or in the next register if lod // or bias are used dc = GetRegister(parameter_register++); } return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_lod_offset, aoffi, bindless_reg); } Node4 ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array) { const bool lod_bias_enabled = (process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ); const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement( texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); const u64 last_coord_register = (is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2)) ? static_cast(instr.gpr20.Value()) : coord_register + 1; const u32 bias_offset = coord_count > 2 ? 1 : 0; std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { const bool last = (i == (coord_count - 1)) && (coord_count > 1); coords.push_back(GetRegister(last ? last_coord_register : coord_register + i)); } const Node array = is_array ? GetRegister(array_register) : nullptr; Node dc{}; if (depth_compare) { // Depth is always stored in the register signaled by gpr20 or in the next register if lod // or bias are used const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0); dc = GetRegister(depth_register); } return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_offset, {}, {}); } Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool depth_compare, bool is_array, bool is_aoffi) { const std::size_t coord_count = GetCoordCount(texture_type); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is the gpr8 or gpr8 + 1 when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { coords.push_back(GetRegister(coord_register + i)); } u64 parameter_register = instr.gpr20.Value(); std::vector aoffi; if (is_aoffi) { aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, true); } Node dc{}; if (depth_compare) { dc = GetRegister(parameter_register++); } const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare); Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto coords_copy = coords; MetaTexture meta{sampler, GetRegister(array_register), dc, aoffi, {}, {}, {}, element}; values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy)); } return values; } Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) { const std::size_t type_coord_count = GetCoordCount(texture_type); const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL; // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // if is array gpr20 is used const u64 coord_register = is_array ? instr.gpr20.Value() : instr.gpr8.Value(); const u64 last_coord_register = ((type_coord_count > 2) || (type_coord_count == 2 && !lod_enabled)) && !is_array ? static_cast(instr.gpr20.Value()) : coord_register + 1; std::vector coords; for (std::size_t i = 0; i < type_coord_count; ++i) { const bool last = (i == (type_coord_count - 1)) && (type_coord_count > 1); coords.push_back(GetRegister(last ? last_coord_register : coord_register + i)); } const Node array = is_array ? GetRegister(array_register) : nullptr; // When lod is used always is in gpr20 const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0); const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false); Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto coords_copy = coords; MetaTexture meta{sampler, array, {}, {}, {}, lod, {}, element}; values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy)); } return values; } std::tuple ShaderIR::ValidateAndGetCoordinateElement( TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled, std::size_t max_coords, std::size_t max_inputs) { const std::size_t coord_count = GetCoordCount(texture_type); std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0); const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0); if (total_coord_count > max_coords || total_reg_count > max_inputs) { UNIMPLEMENTED_MSG("Unsupported Texture operation"); total_coord_count = std::min(total_coord_count, max_coords); } // 1D.DC OpenGL is using a vec3 but 2nd component is ignored later. total_coord_count += (depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0; return {coord_count, total_coord_count}; } std::vector ShaderIR::GetAoffiCoordinates(Node aoffi_reg, std::size_t coord_count, bool is_tld4) { const auto [coord_offsets, size, wrap_value, diff_value] = [is_tld4]() -> std::tuple, u32, s32, s32> { if (is_tld4) { return {{0, 8, 16}, 6, 32, 64}; } else { return {{0, 4, 8}, 4, 8, 16}; } }(); const u32 mask = (1U << size) - 1; std::vector aoffi; aoffi.reserve(coord_count); const auto aoffi_immediate{ TrackImmediate(aoffi_reg, global_code, static_cast(global_code.size()))}; if (!aoffi_immediate) { // Variable access, not supported on AMD. LOG_WARNING(HW_GPU, "AOFFI constant folding failed, some hardware might have graphical issues"); for (std::size_t coord = 0; coord < coord_count; ++coord) { const Node value = BitfieldExtract(aoffi_reg, coord_offsets.at(coord), size); const Node condition = Operation(OperationCode::LogicalIGreaterEqual, value, Immediate(wrap_value)); const Node negative = Operation(OperationCode::IAdd, value, Immediate(-diff_value)); aoffi.push_back(Operation(OperationCode::Select, condition, negative, value)); } return aoffi; } for (std::size_t coord = 0; coord < coord_count; ++coord) { s32 value = (*aoffi_immediate >> coord_offsets.at(coord)) & mask; if (value >= wrap_value) { value -= diff_value; } aoffi.push_back(Immediate(value)); } return aoffi; } } // namespace VideoCommon::Shader