// Copyright 2019 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/common_types.h" #include "common/logging/log.h" #include "video_core/engines/shader_bytecode.h" #include "video_core/shader/node_helper.h" #include "video_core/shader/registry.h" #include "video_core/shader/shader_ir.h" namespace VideoCommon::Shader { using Tegra::Shader::Instruction; using Tegra::Shader::OpCode; using Tegra::Shader::Register; using Tegra::Shader::TextureMiscMode; using Tegra::Shader::TextureProcessMode; using Tegra::Shader::TextureType; static std::size_t GetCoordCount(TextureType texture_type) { switch (texture_type) { case TextureType::Texture1D: return 1; case TextureType::Texture2D: return 2; case TextureType::Texture3D: case TextureType::TextureCube: return 3; default: UNIMPLEMENTED_MSG("Unhandled texture type: {}", texture_type); return 0; } } u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) { const Instruction instr = {program_code[pc]}; const auto opcode = OpCode::Decode(instr); bool is_bindless = false; switch (opcode->get().GetId()) { case OpCode::Id::TEX: { const TextureType texture_type{instr.tex.texture_type}; const bool is_array = instr.tex.array != 0; const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI); const bool depth_compare = instr.tex.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.tex.GetTextureProcessMode(); WriteTexInstructionFloat( bb, instr, GetTexCode(instr, texture_type, process_mode, depth_compare, is_array, is_aoffi, {})); break; } case OpCode::Id::TEX_B: { UNIMPLEMENTED_IF_MSG(instr.tex.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); const TextureType texture_type{instr.tex_b.texture_type}; const bool is_array = instr.tex_b.array != 0; const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI); const bool depth_compare = instr.tex_b.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.tex_b.GetTextureProcessMode(); WriteTexInstructionFloat(bb, instr, GetTexCode(instr, texture_type, process_mode, depth_compare, is_array, is_aoffi, {instr.gpr20})); break; } case OpCode::Id::TEXS: { const TextureType texture_type{instr.texs.GetTextureType()}; const bool is_array{instr.texs.IsArrayTexture()}; const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.texs.GetTextureProcessMode(); const Node4 components = GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array); if (instr.texs.fp32_flag) { WriteTexsInstructionFloat(bb, instr, components); } else { WriteTexsInstructionHalfFloat(bb, instr, components); } break; } case OpCode::Id::TLD4_B: { is_bindless = true; [[fallthrough]]; } case OpCode::Id::TLD4: { UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::NDV), "NDV is not implemented"); const auto texture_type = instr.tld4.texture_type.Value(); const bool depth_compare = is_bindless ? instr.tld4_b.UsesMiscMode(TextureMiscMode::DC) : instr.tld4.UsesMiscMode(TextureMiscMode::DC); const bool is_array = instr.tld4.array != 0; const bool is_aoffi = is_bindless ? instr.tld4_b.UsesMiscMode(TextureMiscMode::AOFFI) : instr.tld4.UsesMiscMode(TextureMiscMode::AOFFI); const bool is_ptp = is_bindless ? instr.tld4_b.UsesMiscMode(TextureMiscMode::PTP) : instr.tld4.UsesMiscMode(TextureMiscMode::PTP); WriteTexInstructionFloat(bb, instr, GetTld4Code(instr, texture_type, depth_compare, is_array, is_aoffi, is_ptp, is_bindless)); break; } case OpCode::Id::TLD4S: { constexpr std::size_t num_coords = 2; const bool is_aoffi = instr.tld4s.UsesMiscMode(TextureMiscMode::AOFFI); const bool is_depth_compare = instr.tld4s.UsesMiscMode(TextureMiscMode::DC); const Node op_a = GetRegister(instr.gpr8); const Node op_b = GetRegister(instr.gpr20); // TODO(Subv): Figure out how the sampler type is encoded in the TLD4S instruction. std::vector coords; std::vector aoffi; Node depth_compare; if (is_depth_compare) { // Note: TLD4S coordinate encoding works just like TEXS's const Node op_y = GetRegister(instr.gpr8.Value() + 1); coords.push_back(op_a); coords.push_back(op_y); if (is_aoffi) { aoffi = GetAoffiCoordinates(op_b, num_coords, true); depth_compare = GetRegister(instr.gpr20.Value() + 1); } else { depth_compare = op_b; } } else { // There's no depth compare coords.push_back(op_a); if (is_aoffi) { coords.push_back(GetRegister(instr.gpr8.Value() + 1)); aoffi = GetAoffiCoordinates(op_b, num_coords, true); } else { coords.push_back(op_b); } } const Node component = Immediate(static_cast(instr.tld4s.component)); SamplerInfo info; info.is_shadow = is_depth_compare; const std::optional sampler = GetSampler(instr.sampler, info); Node4 values; for (u32 element = 0; element < values.size(); ++element) { MetaTexture meta{*sampler, {}, depth_compare, aoffi, {}, {}, {}, {}, component, element, {}}; values[element] = Operation(OperationCode::TextureGather, meta, coords); } if (instr.tld4s.fp16_flag) { WriteTexsInstructionHalfFloat(bb, instr, values, true); } else { WriteTexsInstructionFloat(bb, instr, values, true); } break; } case OpCode::Id::TXD_B: is_bindless = true; [[fallthrough]]; case OpCode::Id::TXD: { UNIMPLEMENTED_IF_MSG(instr.txd.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); const bool is_array = instr.txd.is_array != 0; const auto derivate_reg = instr.gpr20.Value(); const auto texture_type = instr.txd.texture_type.Value(); const auto coord_count = GetCoordCount(texture_type); u64 base_reg = instr.gpr8.Value(); Node index_var; SamplerInfo info; info.type = texture_type; info.is_array = is_array; const std::optional sampler = is_bindless ? GetBindlessSampler(base_reg, info, index_var) : GetSampler(instr.sampler, info); Node4 values; if (!sampler) { std::generate(values.begin(), values.end(), [this] { return Immediate(0); }); WriteTexInstructionFloat(bb, instr, values); break; } if (is_bindless) { base_reg++; } std::vector coords; std::vector derivates; for (std::size_t i = 0; i < coord_count; ++i) { coords.push_back(GetRegister(base_reg + i)); const std::size_t derivate = i * 2; derivates.push_back(GetRegister(derivate_reg + derivate)); derivates.push_back(GetRegister(derivate_reg + derivate + 1)); } Node array_node = {}; if (is_array) { const Node info_reg = GetRegister(base_reg + coord_count); array_node = BitfieldExtract(info_reg, 0, 16); } for (u32 element = 0; element < values.size(); ++element) { MetaTexture meta{*sampler, array_node, {}, {}, {}, derivates, {}, {}, {}, element, index_var}; values[element] = Operation(OperationCode::TextureGradient, std::move(meta), coords); } WriteTexInstructionFloat(bb, instr, values); break; } case OpCode::Id::TXQ_B: is_bindless = true; [[fallthrough]]; case OpCode::Id::TXQ: { Node index_var; const std::optional sampler = is_bindless ? GetBindlessSampler(instr.gpr8, {}, index_var) : GetSampler(instr.sampler, {}); if (!sampler) { u32 indexer = 0; for (u32 element = 0; element < 4; ++element) { if (!instr.txq.IsComponentEnabled(element)) { continue; } const Node value = Immediate(0); SetTemporary(bb, indexer++, value); } for (u32 i = 0; i < indexer; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i)); } break; } u32 indexer = 0; switch (instr.txq.query_type) { case Tegra::Shader::TextureQueryType::Dimension: { for (u32 element = 0; element < 4; ++element) { if (!instr.txq.IsComponentEnabled(element)) { continue; } MetaTexture meta{*sampler, {}, {}, {}, {}, {}, {}, {}, {}, element, index_var}; const Node value = Operation(OperationCode::TextureQueryDimensions, meta, GetRegister(instr.gpr8.Value() + (is_bindless ? 1 : 0))); SetTemporary(bb, indexer++, value); } for (u32 i = 0; i < indexer; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i)); } break; } default: UNIMPLEMENTED_MSG("Unhandled texture query type: {}", instr.txq.query_type.Value()); } break; } case OpCode::Id::TMML_B: is_bindless = true; [[fallthrough]]; case OpCode::Id::TMML: { UNIMPLEMENTED_IF_MSG(instr.tmml.UsesMiscMode(Tegra::Shader::TextureMiscMode::NDV), "NDV is not implemented"); const auto texture_type = instr.tmml.texture_type.Value(); const bool is_array = instr.tmml.array != 0; SamplerInfo info; info.type = texture_type; info.is_array = is_array; Node index_var; const std::optional sampler = is_bindless ? GetBindlessSampler(instr.gpr20, info, index_var) : GetSampler(instr.sampler, info); if (!sampler) { u32 indexer = 0; for (u32 element = 0; element < 2; ++element) { if (!instr.tmml.IsComponentEnabled(element)) { continue; } const Node value = Immediate(0); SetTemporary(bb, indexer++, value); } for (u32 i = 0; i < indexer; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i)); } break; } const u64 base_index = is_array ? 1 : 0; const u64 num_components = [texture_type] { switch (texture_type) { case TextureType::Texture1D: return 1; case TextureType::Texture2D: return 2; case TextureType::TextureCube: return 3; default: UNIMPLEMENTED_MSG("Unhandled texture type {}", texture_type); return 2; } }(); // TODO: What's the array component used for? std::vector coords; coords.reserve(num_components); for (u64 component = 0; component < num_components; ++component) { coords.push_back(GetRegister(instr.gpr8.Value() + base_index + component)); } u32 indexer = 0; for (u32 element = 0; element < 2; ++element) { if (!instr.tmml.IsComponentEnabled(element)) { continue; } MetaTexture meta{*sampler, {}, {}, {}, {}, {}, {}, {}, {}, element, index_var}; Node value = Operation(OperationCode::TextureQueryLod, meta, coords); SetTemporary(bb, indexer++, std::move(value)); } for (u32 i = 0; i < indexer; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i)); } break; } case OpCode::Id::TLD: { UNIMPLEMENTED_IF_MSG(instr.tld.aoffi, "AOFFI is not implemented"); UNIMPLEMENTED_IF_MSG(instr.tld.ms, "MS is not implemented"); UNIMPLEMENTED_IF_MSG(instr.tld.cl, "CL is not implemented"); WriteTexInstructionFloat(bb, instr, GetTldCode(instr)); break; } case OpCode::Id::TLDS: { const TextureType texture_type{instr.tlds.GetTextureType()}; const bool is_array{instr.tlds.IsArrayTexture()}; UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::MZ), "MZ is not implemented"); const Node4 components = GetTldsCode(instr, texture_type, is_array); if (instr.tlds.fp32_flag) { WriteTexsInstructionFloat(bb, instr, components); } else { WriteTexsInstructionHalfFloat(bb, instr, components); } break; } default: UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName()); } return pc; } ShaderIR::SamplerInfo ShaderIR::GetSamplerInfo( SamplerInfo info, std::optional sampler) { if (info.IsComplete()) { return info; } if (!sampler) { LOG_WARNING(HW_GPU, "Unknown sampler info"); info.type = info.type.value_or(Tegra::Shader::TextureType::Texture2D); info.is_array = info.is_array.value_or(false); info.is_shadow = info.is_shadow.value_or(false); info.is_buffer = info.is_buffer.value_or(false); return info; } info.type = info.type.value_or(sampler->texture_type); info.is_array = info.is_array.value_or(sampler->is_array != 0); info.is_shadow = info.is_shadow.value_or(sampler->is_shadow != 0); info.is_buffer = info.is_buffer.value_or(sampler->is_buffer != 0); return info; } std::optional ShaderIR::GetSampler(Tegra::Shader::Sampler sampler, SamplerInfo sampler_info) { const u32 offset = static_cast(sampler.index.Value()); const auto info = GetSamplerInfo(sampler_info, registry.ObtainBoundSampler(offset)); // If this sampler has already been used, return the existing mapping. const auto it = std::find_if(used_samplers.begin(), used_samplers.end(), [offset](const Sampler& entry) { return entry.offset == offset; }); if (it != used_samplers.end()) { ASSERT(!it->is_bindless && it->type == info.type && it->is_array == info.is_array && it->is_shadow == info.is_shadow && it->is_buffer == info.is_buffer); return *it; } // Otherwise create a new mapping for this sampler const auto next_index = static_cast(used_samplers.size()); return used_samplers.emplace_back(next_index, offset, *info.type, *info.is_array, *info.is_shadow, *info.is_buffer, false); } std::optional ShaderIR::GetBindlessSampler(Tegra::Shader::Register reg, SamplerInfo info, Node& index_var) { const Node sampler_register = GetRegister(reg); const auto [base_node, tracked_sampler_info] = TrackBindlessSampler(sampler_register, global_code, static_cast(global_code.size())); if (!base_node) { UNREACHABLE(); return std::nullopt; } if (const auto sampler_info = std::get_if(&*tracked_sampler_info)) { const u32 buffer = sampler_info->index; const u32 offset = sampler_info->offset; info = GetSamplerInfo(info, registry.ObtainBindlessSampler(buffer, offset)); // If this sampler has already been used, return the existing mapping. const auto it = std::find_if(used_samplers.begin(), used_samplers.end(), [buffer, offset](const Sampler& entry) { return entry.buffer == buffer && entry.offset == offset; }); if (it != used_samplers.end()) { ASSERT(it->is_bindless && it->type == info.type && it->is_array == info.is_array && it->is_shadow == info.is_shadow); return *it; } // Otherwise create a new mapping for this sampler const auto next_index = static_cast(used_samplers.size()); return used_samplers.emplace_back(next_index, offset, buffer, *info.type, *info.is_array, *info.is_shadow, *info.is_buffer, false); } if (const auto sampler_info = std::get_if(&*tracked_sampler_info)) { const std::pair indices = sampler_info->indices; const std::pair offsets = sampler_info->offsets; info = GetSamplerInfo(info, registry.ObtainSeparateSampler(indices, offsets)); // Try to use an already created sampler if it exists const auto it = std::find_if( used_samplers.begin(), used_samplers.end(), [indices, offsets](const Sampler& entry) { return offsets == std::pair{entry.offset, entry.secondary_offset} && indices == std::pair{entry.buffer, entry.secondary_buffer}; }); if (it != used_samplers.end()) { ASSERT(it->is_separated && it->type == info.type && it->is_array == info.is_array && it->is_shadow == info.is_shadow && it->is_buffer == info.is_buffer); return *it; } // Otherwise create a new mapping for this sampler const u32 next_index = static_cast(used_samplers.size()); return used_samplers.emplace_back(next_index, offsets, indices, *info.type, *info.is_array, *info.is_shadow, *info.is_buffer); } if (const auto sampler_info = std::get_if(&*tracked_sampler_info)) { const u32 base_offset = sampler_info->base_offset / 4; index_var = GetCustomVariable(sampler_info->bindless_var); info = GetSamplerInfo(info, registry.ObtainBoundSampler(base_offset)); // If this sampler has already been used, return the existing mapping. const auto it = std::find_if( used_samplers.begin(), used_samplers.end(), [base_offset](const Sampler& entry) { return entry.offset == base_offset; }); if (it != used_samplers.end()) { ASSERT(!it->is_bindless && it->type == info.type && it->is_array == info.is_array && it->is_shadow == info.is_shadow && it->is_buffer == info.is_buffer && it->is_indexed); return *it; } uses_indexed_samplers = true; // Otherwise create a new mapping for this sampler const auto next_index = static_cast(used_samplers.size()); return used_samplers.emplace_back(next_index, base_offset, *info.type, *info.is_array, *info.is_shadow, *info.is_buffer, true); } return std::nullopt; } void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) { u32 dest_elem = 0; for (u32 elem = 0; elem < 4; ++elem) { if (!instr.tex.IsComponentEnabled(elem)) { // Skip disabled components continue; } SetTemporary(bb, dest_elem++, components[elem]); } // After writing values in temporals, move them to the real registers for (u32 i = 0; i < dest_elem; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i)); } } void ShaderIR::WriteTexsInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components, bool ignore_mask) { // TEXS has two destination registers and a swizzle. The first two elements in the swizzle // go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1 u32 dest_elem = 0; for (u32 component = 0; component < 4; ++component) { if (!instr.texs.IsComponentEnabled(component) && !ignore_mask) continue; SetTemporary(bb, dest_elem++, components[component]); } for (u32 i = 0; i < dest_elem; ++i) { if (i < 2) { // Write the first two swizzle components to gpr0 and gpr0+1 SetRegister(bb, instr.gpr0.Value() + i % 2, GetTemporary(i)); } else { ASSERT(instr.texs.HasTwoDestinations()); // Write the rest of the swizzle components to gpr28 and gpr28+1 SetRegister(bb, instr.gpr28.Value() + i % 2, GetTemporary(i)); } } } void ShaderIR::WriteTexsInstructionHalfFloat(NodeBlock& bb, Instruction instr, const Node4& components, bool ignore_mask) { // TEXS.F16 destionation registers are packed in two registers in pairs (just like any half // float instruction). Node4 values; u32 dest_elem = 0; for (u32 component = 0; component < 4; ++component) { if (!instr.texs.IsComponentEnabled(component) && !ignore_mask) continue; values[dest_elem++] = components[component]; } if (dest_elem == 0) return; std::generate(values.begin() + dest_elem, values.end(), [&]() { return Immediate(0); }); const Node first_value = Operation(OperationCode::HPack2, values[0], values[1]); if (dest_elem <= 2) { SetRegister(bb, instr.gpr0, first_value); return; } SetTemporary(bb, 0, first_value); SetTemporary(bb, 1, Operation(OperationCode::HPack2, values[2], values[3])); SetRegister(bb, instr.gpr0, GetTemporary(0)); SetRegister(bb, instr.gpr28, GetTemporary(1)); } Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, std::vector coords, Node array, Node depth_compare, u32 bias_offset, std::vector aoffi, std::optional bindless_reg) { const bool is_array = array != nullptr; const bool is_shadow = depth_compare != nullptr; const bool is_bindless = bindless_reg.has_value(); ASSERT_MSG(texture_type != TextureType::Texture3D || !is_array || !is_shadow, "Illegal texture type"); SamplerInfo info; info.type = texture_type; info.is_array = is_array; info.is_shadow = is_shadow; info.is_buffer = false; Node index_var; const std::optional sampler = is_bindless ? GetBindlessSampler(*bindless_reg, info, index_var) : GetSampler(instr.sampler, info); if (!sampler) { return {Immediate(0), Immediate(0), Immediate(0), Immediate(0)}; } const bool lod_needed = process_mode == TextureProcessMode::LZ || process_mode == TextureProcessMode::LL || process_mode == TextureProcessMode::LLA; const OperationCode opcode = lod_needed ? OperationCode::TextureLod : OperationCode::Texture; Node bias; Node lod; switch (process_mode) { case TextureProcessMode::None: break; case TextureProcessMode::LZ: lod = Immediate(0.0f); break; case TextureProcessMode::LB: // If present, lod or bias are always stored in the register indexed by the gpr20 field with // an offset depending on the usage of the other registers. bias = GetRegister(instr.gpr20.Value() + bias_offset); break; case TextureProcessMode::LL: lod = GetRegister(instr.gpr20.Value() + bias_offset); break; default: UNIMPLEMENTED_MSG("Unimplemented process mode={}", process_mode); break; } Node4 values; for (u32 element = 0; element < values.size(); ++element) { MetaTexture meta{*sampler, array, depth_compare, aoffi, {}, {}, bias, lod, {}, element, index_var}; values[element] = Operation(opcode, meta, coords); } return values; } Node4 ShaderIR::GetTexCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array, bool is_aoffi, std::optional bindless_reg) { const bool lod_bias_enabled{ (process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ)}; const bool is_bindless = bindless_reg.has_value(); u64 parameter_register = instr.gpr20.Value(); if (is_bindless) { ++parameter_register; } const u32 bias_lod_offset = (is_bindless ? 1 : 0); if (lod_bias_enabled) { ++parameter_register; } const auto coord_counts = ValidateAndGetCoordinateElement(texture_type, depth_compare, is_array, lod_bias_enabled, 4, 5); const auto coord_count = std::get<0>(coord_counts); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is the gpr8 or gpr8 + 1 when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { coords.push_back(GetRegister(coord_register + i)); } // 1D.DC in OpenGL the 2nd component is ignored. if (depth_compare && !is_array && texture_type == TextureType::Texture1D) { coords.push_back(Immediate(0.0f)); } const Node array = is_array ? GetRegister(array_register) : nullptr; std::vector aoffi; if (is_aoffi) { aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, false); } Node dc; if (depth_compare) { // Depth is always stored in the register signaled by gpr20 or in the next register if lod // or bias are used dc = GetRegister(parameter_register++); } return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_lod_offset, aoffi, bindless_reg); } Node4 ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array) { const bool lod_bias_enabled = (process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ); const auto coord_counts = ValidateAndGetCoordinateElement(texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4); const auto coord_count = std::get<0>(coord_counts); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); const u64 last_coord_register = (is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2)) ? static_cast(instr.gpr20.Value()) : coord_register + 1; const u32 bias_offset = coord_count > 2 ? 1 : 0; std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { const bool last = (i == (coord_count - 1)) && (coord_count > 1); coords.push_back(GetRegister(last ? last_coord_register : coord_register + i)); } const Node array = is_array ? GetRegister(array_register) : nullptr; Node dc; if (depth_compare) { // Depth is always stored in the register signaled by gpr20 or in the next register if lod // or bias are used const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0); dc = GetRegister(depth_register); } return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_offset, {}, {}); } Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool depth_compare, bool is_array, bool is_aoffi, bool is_ptp, bool is_bindless) { ASSERT_MSG(!(is_aoffi && is_ptp), "AOFFI and PTP can't be enabled at the same time"); const std::size_t coord_count = GetCoordCount(texture_type); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is the gpr8 or gpr8 + 1 when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { coords.push_back(GetRegister(coord_register + i)); } u64 parameter_register = instr.gpr20.Value(); SamplerInfo info; info.type = texture_type; info.is_array = is_array; info.is_shadow = depth_compare; Node index_var; const std::optional sampler = is_bindless ? GetBindlessSampler(parameter_register++, info, index_var) : GetSampler(instr.sampler, info); Node4 values; if (!sampler) { for (u32 element = 0; element < values.size(); ++element) { values[element] = Immediate(0); } return values; } std::vector aoffi, ptp; if (is_aoffi) { aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, true); } else if (is_ptp) { ptp = GetPtpCoordinates( {GetRegister(parameter_register++), GetRegister(parameter_register++)}); } Node dc; if (depth_compare) { dc = GetRegister(parameter_register++); } const Node component = is_bindless ? Immediate(static_cast(instr.tld4_b.component)) : Immediate(static_cast(instr.tld4.component)); for (u32 element = 0; element < values.size(); ++element) { auto coords_copy = coords; MetaTexture meta{ *sampler, GetRegister(array_register), dc, aoffi, ptp, {}, {}, {}, component, element, index_var}; values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy)); } return values; } Node4 ShaderIR::GetTldCode(Tegra::Shader::Instruction instr) { const auto texture_type{instr.tld.texture_type}; const bool is_array{instr.tld.is_array != 0}; const bool lod_enabled{instr.tld.GetTextureProcessMode() == TextureProcessMode::LL}; const std::size_t coord_count{GetCoordCount(texture_type)}; u64 gpr8_cursor{instr.gpr8.Value()}; const Node array_register{is_array ? GetRegister(gpr8_cursor++) : nullptr}; std::vector coords; coords.reserve(coord_count); for (std::size_t i = 0; i < coord_count; ++i) { coords.push_back(GetRegister(gpr8_cursor++)); } u64 gpr20_cursor{instr.gpr20.Value()}; // const Node bindless_register{is_bindless ? GetRegister(gpr20_cursor++) : nullptr}; const Node lod{lod_enabled ? GetRegister(gpr20_cursor++) : Immediate(0u)}; // const Node aoffi_register{is_aoffi ? GetRegister(gpr20_cursor++) : nullptr}; // const Node multisample{is_multisample ? GetRegister(gpr20_cursor++) : nullptr}; const std::optional sampler = GetSampler(instr.sampler, {}); Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto coords_copy = coords; MetaTexture meta{*sampler, array_register, {}, {}, {}, {}, {}, lod, {}, element, {}}; values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy)); } return values; } Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) { SamplerInfo info; info.type = texture_type; info.is_array = is_array; info.is_shadow = false; const std::optional sampler = GetSampler(instr.sampler, info); const std::size_t type_coord_count = GetCoordCount(texture_type); const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL; // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // if is array gpr20 is used const u64 coord_register = is_array ? instr.gpr20.Value() : instr.gpr8.Value(); const u64 last_coord_register = ((type_coord_count > 2) || (type_coord_count == 2 && !lod_enabled)) && !is_array ? static_cast(instr.gpr20.Value()) : coord_register + 1; std::vector coords; for (std::size_t i = 0; i < type_coord_count; ++i) { const bool last = (i == (type_coord_count - 1)) && (type_coord_count > 1); coords.push_back(GetRegister(last ? last_coord_register : coord_register + i)); } const Node array = is_array ? GetRegister(array_register) : nullptr; // When lod is used always is in gpr20 const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0); Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto coords_copy = coords; MetaTexture meta{*sampler, array, {}, {}, {}, {}, {}, lod, {}, element, {}}; values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy)); } return values; } std::tuple ShaderIR::ValidateAndGetCoordinateElement( TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled, std::size_t max_coords, std::size_t max_inputs) { const std::size_t coord_count = GetCoordCount(texture_type); std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0); const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0); if (total_coord_count > max_coords || total_reg_count > max_inputs) { UNIMPLEMENTED_MSG("Unsupported Texture operation"); total_coord_count = std::min(total_coord_count, max_coords); } // 1D.DC OpenGL is using a vec3 but 2nd component is ignored later. total_coord_count += (depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0; return {coord_count, total_coord_count}; } std::vector ShaderIR::GetAoffiCoordinates(Node aoffi_reg, std::size_t coord_count, bool is_tld4) { const std::array coord_offsets = is_tld4 ? std::array{0U, 8U, 16U} : std::array{0U, 4U, 8U}; const u32 size = is_tld4 ? 6 : 4; const s32 wrap_value = is_tld4 ? 32 : 8; const s32 diff_value = is_tld4 ? 64 : 16; const u32 mask = (1U << size) - 1; std::vector aoffi; aoffi.reserve(coord_count); const auto aoffi_immediate{ TrackImmediate(aoffi_reg, global_code, static_cast(global_code.size()))}; if (!aoffi_immediate) { // Variable access, not supported on AMD. LOG_WARNING(HW_GPU, "AOFFI constant folding failed, some hardware might have graphical issues"); for (std::size_t coord = 0; coord < coord_count; ++coord) { const Node value = BitfieldExtract(aoffi_reg, coord_offsets[coord], size); const Node condition = Operation(OperationCode::LogicalIGreaterEqual, value, Immediate(wrap_value)); const Node negative = Operation(OperationCode::IAdd, value, Immediate(-diff_value)); aoffi.push_back(Operation(OperationCode::Select, condition, negative, value)); } return aoffi; } for (std::size_t coord = 0; coord < coord_count; ++coord) { s32 value = (*aoffi_immediate >> coord_offsets[coord]) & mask; if (value >= wrap_value) { value -= diff_value; } aoffi.push_back(Immediate(value)); } return aoffi; } std::vector ShaderIR::GetPtpCoordinates(std::array ptp_regs) { static constexpr u32 num_entries = 8; std::vector ptp; ptp.reserve(num_entries); const auto global_size = static_cast(global_code.size()); const std::optional low = TrackImmediate(ptp_regs[0], global_code, global_size); const std::optional high = TrackImmediate(ptp_regs[1], global_code, global_size); if (!low || !high) { for (u32 entry = 0; entry < num_entries; ++entry) { const u32 reg = entry / 4; const u32 offset = entry % 4; const Node value = BitfieldExtract(ptp_regs[reg], offset * 8, 6); const Node condition = Operation(OperationCode::LogicalIGreaterEqual, value, Immediate(32)); const Node negative = Operation(OperationCode::IAdd, value, Immediate(-64)); ptp.push_back(Operation(OperationCode::Select, condition, negative, value)); } return ptp; } const u64 immediate = (static_cast(*high) << 32) | static_cast(*low); for (u32 entry = 0; entry < num_entries; ++entry) { s32 value = (immediate >> (entry * 8)) & 0b111111; if (value >= 32) { value -= 64; } ptp.push_back(Immediate(value)); } return ptp; } } // namespace VideoCommon::Shader