// Copyright 2019 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/common_types.h" #include "common/logging/log.h" #include "video_core/engines/shader_bytecode.h" #include "video_core/shader/node_helper.h" #include "video_core/shader/shader_ir.h" namespace VideoCommon::Shader { using Tegra::Shader::Instruction; using Tegra::Shader::OpCode; namespace { std::size_t GetImageTypeNumCoordinates(Tegra::Shader::ImageType image_type) { switch (image_type) { case Tegra::Shader::ImageType::Texture1D: case Tegra::Shader::ImageType::TextureBuffer: return 1; case Tegra::Shader::ImageType::Texture1DArray: case Tegra::Shader::ImageType::Texture2D: return 2; case Tegra::Shader::ImageType::Texture2DArray: case Tegra::Shader::ImageType::Texture3D: return 3; } UNREACHABLE(); return 1; } } // Anonymous namespace u32 ShaderIR::DecodeImage(NodeBlock& bb, u32 pc) { const Instruction instr = {program_code[pc]}; const auto opcode = OpCode::Decode(instr); const auto GetCoordinates = [this, instr](Tegra::Shader::ImageType image_type) { std::vector coords; const std::size_t num_coords{GetImageTypeNumCoordinates(image_type)}; coords.reserve(num_coords); for (std::size_t i = 0; i < num_coords; ++i) { coords.push_back(GetRegister(instr.gpr8.Value() + i)); } return coords; }; switch (opcode->get().GetId()) { case OpCode::Id::SULD: { UNIMPLEMENTED_IF(instr.suldst.mode != Tegra::Shader::SurfaceDataMode::P); UNIMPLEMENTED_IF(instr.suldst.out_of_bounds_store != Tegra::Shader::OutOfBoundsStore::Ignore); const auto type{instr.suldst.image_type}; auto& image{instr.suldst.is_immediate ? GetImage(instr.image, type) : GetBindlessImage(instr.gpr39, type)}; image.MarkRead(); u32 indexer = 0; for (u32 element = 0; element < 4; ++element) { if (!instr.suldst.IsComponentEnabled(element)) { continue; } MetaImage meta{image, {}, element}; Node value = Operation(OperationCode::ImageLoad, meta, GetCoordinates(type)); SetTemporary(bb, indexer++, std::move(value)); } for (u32 i = 0; i < indexer; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i)); } break; } case OpCode::Id::SUST: { UNIMPLEMENTED_IF(instr.suldst.mode != Tegra::Shader::SurfaceDataMode::P); UNIMPLEMENTED_IF(instr.suldst.out_of_bounds_store != Tegra::Shader::OutOfBoundsStore::Ignore); UNIMPLEMENTED_IF(instr.suldst.component_mask_selector != 0xf); // Ensure we have RGBA std::vector values; constexpr std::size_t hardcoded_size{4}; for (std::size_t i = 0; i < hardcoded_size; ++i) { values.push_back(GetRegister(instr.gpr0.Value() + i)); } const auto type{instr.suldst.image_type}; auto& image{instr.suldst.is_immediate ? GetImage(instr.image, type) : GetBindlessImage(instr.gpr39, type)}; image.MarkWrite(); MetaImage meta{image, std::move(values)}; bb.push_back(Operation(OperationCode::ImageStore, meta, GetCoordinates(type))); break; } case OpCode::Id::SUATOM: { UNIMPLEMENTED_IF(instr.suatom_d.is_ba != 0); const OperationCode operation_code = [instr] { switch (instr.suatom_d.operation_type) { case Tegra::Shader::ImageAtomicOperationType::S32: case Tegra::Shader::ImageAtomicOperationType::U32: switch (instr.suatom_d.operation) { case Tegra::Shader::ImageAtomicOperation::Add: return OperationCode::AtomicImageAdd; case Tegra::Shader::ImageAtomicOperation::And: return OperationCode::AtomicImageAnd; case Tegra::Shader::ImageAtomicOperation::Or: return OperationCode::AtomicImageOr; case Tegra::Shader::ImageAtomicOperation::Xor: return OperationCode::AtomicImageXor; case Tegra::Shader::ImageAtomicOperation::Exch: return OperationCode::AtomicImageExchange; } default: break; } UNIMPLEMENTED_MSG("Unimplemented operation={} type={}", static_cast(instr.suatom_d.operation.Value()), static_cast(instr.suatom_d.operation_type.Value())); return OperationCode::AtomicImageAdd; }(); Node value = GetRegister(instr.gpr0); const auto type = instr.suatom_d.image_type; auto& image = GetImage(instr.image, type); image.MarkAtomic(); MetaImage meta{image, {std::move(value)}}; SetRegister(bb, instr.gpr0, Operation(operation_code, meta, GetCoordinates(type))); break; } default: UNIMPLEMENTED_MSG("Unhandled image instruction: {}", opcode->get().GetName()); } return pc; } Image& ShaderIR::GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type) { const auto offset{static_cast(image.index.Value())}; if (const auto existing_image = TryUseExistingImage(offset, type)) { return *existing_image; } const std::size_t next_index{used_images.size()}; return used_images.emplace(offset, Image{offset, next_index, type}).first->second; } Image& ShaderIR::GetBindlessImage(Tegra::Shader::Register reg, Tegra::Shader::ImageType type) { const Node image_register{GetRegister(reg)}; const auto [base_image, cbuf_index, cbuf_offset]{ TrackCbuf(image_register, global_code, static_cast(global_code.size()))}; const auto cbuf_key{(static_cast(cbuf_index) << 32) | static_cast(cbuf_offset)}; if (const auto image = TryUseExistingImage(cbuf_key, type)) { return *image; } const std::size_t next_index{used_images.size()}; return used_images.emplace(cbuf_key, Image{cbuf_index, cbuf_offset, next_index, type}) .first->second; } Image* ShaderIR::TryUseExistingImage(u64 offset, Tegra::Shader::ImageType type) { auto it = used_images.find(offset); if (it == used_images.end()) { return nullptr; } auto& image = it->second; ASSERT(image.GetType() == type); return ℑ } } // namespace VideoCommon::Shader