// Copyright 2019 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "core/core.h" #include "core/memory.h" #include "core/settings.h" #include "video_core/engines/kepler_compute.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/renderer_vulkan/fixed_pipeline_state.h" #include "video_core/renderer_vulkan/maxwell_to_vk.h" #include "video_core/renderer_vulkan/renderer_vulkan.h" #include "video_core/renderer_vulkan/vk_buffer_cache.h" #include "video_core/renderer_vulkan/vk_compute_pass.h" #include "video_core/renderer_vulkan/vk_compute_pipeline.h" #include "video_core/renderer_vulkan/vk_descriptor_pool.h" #include "video_core/renderer_vulkan/vk_device.h" #include "video_core/renderer_vulkan/vk_graphics_pipeline.h" #include "video_core/renderer_vulkan/vk_pipeline_cache.h" #include "video_core/renderer_vulkan/vk_rasterizer.h" #include "video_core/renderer_vulkan/vk_renderpass_cache.h" #include "video_core/renderer_vulkan/vk_resource_manager.h" #include "video_core/renderer_vulkan/vk_sampler_cache.h" #include "video_core/renderer_vulkan/vk_scheduler.h" #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h" #include "video_core/renderer_vulkan/vk_state_tracker.h" #include "video_core/renderer_vulkan/vk_texture_cache.h" #include "video_core/renderer_vulkan/vk_update_descriptor.h" #include "video_core/renderer_vulkan/wrapper.h" namespace Vulkan { using Maxwell = Tegra::Engines::Maxwell3D::Regs; MICROPROFILE_DEFINE(Vulkan_WaitForWorker, "Vulkan", "Wait for worker", MP_RGB(255, 192, 192)); MICROPROFILE_DEFINE(Vulkan_Drawing, "Vulkan", "Record drawing", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_Compute, "Vulkan", "Record compute", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_Clearing, "Vulkan", "Record clearing", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_Geometry, "Vulkan", "Setup geometry", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_ConstBuffers, "Vulkan", "Setup constant buffers", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_GlobalBuffers, "Vulkan", "Setup global buffers", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_RenderTargets, "Vulkan", "Setup render targets", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_Textures, "Vulkan", "Setup textures", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_Images, "Vulkan", "Setup images", MP_RGB(192, 128, 128)); MICROPROFILE_DEFINE(Vulkan_PipelineCache, "Vulkan", "Pipeline cache", MP_RGB(192, 128, 128)); namespace { constexpr auto ComputeShaderIndex = static_cast(Tegra::Engines::ShaderType::Compute); VkViewport GetViewportState(const VKDevice& device, const Maxwell& regs, std::size_t index) { const auto& src = regs.viewport_transform[index]; const float width = src.scale_x * 2.0f; const float height = src.scale_y * 2.0f; VkViewport viewport; viewport.x = src.translate_x - src.scale_x; viewport.y = src.translate_y - src.scale_y; viewport.width = width != 0.0f ? width : 1.0f; viewport.height = height != 0.0f ? height : 1.0f; const float reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne ? 1.0f : 0.0f; viewport.minDepth = src.translate_z - src.scale_z * reduce_z; viewport.maxDepth = src.translate_z + src.scale_z; if (!device.IsExtDepthRangeUnrestrictedSupported()) { viewport.minDepth = std::clamp(viewport.minDepth, 0.0f, 1.0f); viewport.maxDepth = std::clamp(viewport.maxDepth, 0.0f, 1.0f); } return viewport; } VkRect2D GetScissorState(const Maxwell& regs, std::size_t index) { const auto& src = regs.scissor_test[index]; VkRect2D scissor; if (src.enable) { scissor.offset.x = static_cast(src.min_x); scissor.offset.y = static_cast(src.min_y); scissor.extent.width = src.max_x - src.min_x; scissor.extent.height = src.max_y - src.min_y; } else { scissor.offset.x = 0; scissor.offset.y = 0; scissor.extent.width = std::numeric_limits::max(); scissor.extent.height = std::numeric_limits::max(); } return scissor; } std::array GetShaderAddresses( const std::array& shaders) { std::array addresses; for (std::size_t i = 0; i < std::size(addresses); ++i) { addresses[i] = shaders[i] ? shaders[i]->GetGpuAddr() : 0; } return addresses; } void TransitionImages(const std::vector& views, VkPipelineStageFlags pipeline_stage, VkAccessFlags access) { for (auto& [view, layout] : views) { view->Transition(*layout, pipeline_stage, access); } } template Tegra::Texture::FullTextureInfo GetTextureInfo(const Engine& engine, const Entry& entry, std::size_t stage, std::size_t index = 0) { const auto stage_type = static_cast(stage); if (entry.IsBindless()) { const Tegra::Texture::TextureHandle tex_handle = engine.AccessConstBuffer32(stage_type, entry.GetBuffer(), entry.GetOffset()); return engine.GetTextureInfo(tex_handle); } const auto& gpu_profile = engine.AccessGuestDriverProfile(); const u32 entry_offset = static_cast(index * gpu_profile.GetTextureHandlerSize()); const u32 offset = entry.GetOffset() + entry_offset; if constexpr (std::is_same_v) { return engine.GetStageTexture(stage_type, offset); } else { return engine.GetTexture(offset); } } } // Anonymous namespace class BufferBindings final { public: void AddVertexBinding(VkBuffer buffer, VkDeviceSize offset) { vertex.buffers[vertex.num_buffers] = buffer; vertex.offsets[vertex.num_buffers] = offset; ++vertex.num_buffers; } void SetIndexBinding(VkBuffer buffer, VkDeviceSize offset, VkIndexType type) { index.buffer = buffer; index.offset = offset; index.type = type; } void Bind(VKScheduler& scheduler) const { // Use this large switch case to avoid dispatching more memory in the record lambda than // what we need. It looks horrible, but it's the best we can do on standard C++. switch (vertex.num_buffers) { case 0: return BindStatic<0>(scheduler); case 1: return BindStatic<1>(scheduler); case 2: return BindStatic<2>(scheduler); case 3: return BindStatic<3>(scheduler); case 4: return BindStatic<4>(scheduler); case 5: return BindStatic<5>(scheduler); case 6: return BindStatic<6>(scheduler); case 7: return BindStatic<7>(scheduler); case 8: return BindStatic<8>(scheduler); case 9: return BindStatic<9>(scheduler); case 10: return BindStatic<10>(scheduler); case 11: return BindStatic<11>(scheduler); case 12: return BindStatic<12>(scheduler); case 13: return BindStatic<13>(scheduler); case 14: return BindStatic<14>(scheduler); case 15: return BindStatic<15>(scheduler); case 16: return BindStatic<16>(scheduler); case 17: return BindStatic<17>(scheduler); case 18: return BindStatic<18>(scheduler); case 19: return BindStatic<19>(scheduler); case 20: return BindStatic<20>(scheduler); case 21: return BindStatic<21>(scheduler); case 22: return BindStatic<22>(scheduler); case 23: return BindStatic<23>(scheduler); case 24: return BindStatic<24>(scheduler); case 25: return BindStatic<25>(scheduler); case 26: return BindStatic<26>(scheduler); case 27: return BindStatic<27>(scheduler); case 28: return BindStatic<28>(scheduler); case 29: return BindStatic<29>(scheduler); case 30: return BindStatic<30>(scheduler); case 31: return BindStatic<31>(scheduler); case 32: return BindStatic<32>(scheduler); } UNREACHABLE(); } private: // Some of these fields are intentionally left uninitialized to avoid initializing them twice. struct { std::size_t num_buffers = 0; std::array buffers; std::array offsets; } vertex; struct { VkBuffer buffer = nullptr; VkDeviceSize offset; VkIndexType type; } index; template void BindStatic(VKScheduler& scheduler) const { if (index.buffer) { BindStatic(scheduler); } else { BindStatic(scheduler); } } template void BindStatic(VKScheduler& scheduler) const { static_assert(N <= Maxwell::NumVertexArrays); if constexpr (N == 0) { return; } std::array buffers; std::array offsets; std::copy(vertex.buffers.begin(), vertex.buffers.begin() + N, buffers.begin()); std::copy(vertex.offsets.begin(), vertex.offsets.begin() + N, offsets.begin()); if constexpr (is_indexed) { // Indexed draw scheduler.Record([buffers, offsets, index = index](vk::CommandBuffer cmdbuf) { cmdbuf.BindIndexBuffer(index.buffer, index.offset, index.type); cmdbuf.BindVertexBuffers(0, static_cast(N), buffers.data(), offsets.data()); }); } else { // Array draw scheduler.Record([buffers, offsets](vk::CommandBuffer cmdbuf) { cmdbuf.BindVertexBuffers(0, static_cast(N), buffers.data(), offsets.data()); }); } } }; void RasterizerVulkan::DrawParameters::Draw(vk::CommandBuffer cmdbuf) const { if (is_indexed) { cmdbuf.DrawIndexed(num_vertices, num_instances, 0, base_vertex, base_instance); } else { cmdbuf.Draw(num_vertices, num_instances, base_vertex, base_instance); } } RasterizerVulkan::RasterizerVulkan(Core::System& system, Core::Frontend::EmuWindow& renderer, VKScreenInfo& screen_info, const VKDevice& device, VKResourceManager& resource_manager, VKMemoryManager& memory_manager, StateTracker& state_tracker, VKScheduler& scheduler) : RasterizerAccelerated{system.Memory()}, system{system}, render_window{renderer}, screen_info{screen_info}, device{device}, resource_manager{resource_manager}, memory_manager{memory_manager}, state_tracker{state_tracker}, scheduler{scheduler}, staging_pool(device, memory_manager, scheduler), descriptor_pool(device), update_descriptor_queue(device, scheduler), renderpass_cache(device), quad_array_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue), quad_indexed_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue), uint8_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue), texture_cache(system, *this, device, resource_manager, memory_manager, scheduler, staging_pool), pipeline_cache(system, *this, device, scheduler, descriptor_pool, update_descriptor_queue, renderpass_cache), buffer_cache(*this, system, device, memory_manager, scheduler, staging_pool), sampler_cache(device), fence_manager(system, *this, device, scheduler, texture_cache, buffer_cache, query_cache), query_cache(system, *this, device, scheduler), wfi_event{device.GetLogical().CreateEvent()} { scheduler.SetQueryCache(query_cache); } RasterizerVulkan::~RasterizerVulkan() = default; void RasterizerVulkan::Draw(bool is_indexed, bool is_instanced) { MICROPROFILE_SCOPE(Vulkan_Drawing); FlushWork(); query_cache.UpdateCounters(); const auto& gpu = system.GPU().Maxwell3D(); GraphicsPipelineCacheKey key; key.fixed_state.Fill(gpu.regs); buffer_cache.Map(CalculateGraphicsStreamBufferSize(is_indexed)); BufferBindings buffer_bindings; const DrawParameters draw_params = SetupGeometry(key.fixed_state, buffer_bindings, is_indexed, is_instanced); update_descriptor_queue.Acquire(); sampled_views.clear(); image_views.clear(); const auto shaders = pipeline_cache.GetShaders(); key.shaders = GetShaderAddresses(shaders); SetupShaderDescriptors(shaders); buffer_cache.Unmap(); const Texceptions texceptions = UpdateAttachments(); SetupImageTransitions(texceptions, color_attachments, zeta_attachment); key.renderpass_params = GetRenderPassParams(texceptions); key.padding = 0; auto& pipeline = pipeline_cache.GetGraphicsPipeline(key); scheduler.BindGraphicsPipeline(pipeline.GetHandle()); const auto renderpass = pipeline.GetRenderPass(); const auto [framebuffer, render_area] = ConfigureFramebuffers(renderpass); scheduler.RequestRenderpass(renderpass, framebuffer, render_area); UpdateDynamicStates(); buffer_bindings.Bind(scheduler); BeginTransformFeedback(); const auto pipeline_layout = pipeline.GetLayout(); const auto descriptor_set = pipeline.CommitDescriptorSet(); scheduler.Record([pipeline_layout, descriptor_set, draw_params](vk::CommandBuffer cmdbuf) { if (descriptor_set) { cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, DESCRIPTOR_SET, descriptor_set, {}); } draw_params.Draw(cmdbuf); }); EndTransformFeedback(); system.GPU().TickWork(); } void RasterizerVulkan::Clear() { MICROPROFILE_SCOPE(Vulkan_Clearing); const auto& gpu = system.GPU().Maxwell3D(); if (!system.GPU().Maxwell3D().ShouldExecute()) { return; } sampled_views.clear(); image_views.clear(); query_cache.UpdateCounters(); const auto& regs = gpu.regs; const bool use_color = regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B || regs.clear_buffers.A; const bool use_depth = regs.clear_buffers.Z; const bool use_stencil = regs.clear_buffers.S; if (!use_color && !use_depth && !use_stencil) { return; } [[maybe_unused]] const auto texceptions = UpdateAttachments(); DEBUG_ASSERT(texceptions.none()); SetupImageTransitions(0, color_attachments, zeta_attachment); const VkRenderPass renderpass = renderpass_cache.GetRenderPass(GetRenderPassParams(0)); const auto [framebuffer, render_area] = ConfigureFramebuffers(renderpass); scheduler.RequestRenderpass(renderpass, framebuffer, render_area); VkClearRect clear_rect; clear_rect.baseArrayLayer = regs.clear_buffers.layer; clear_rect.layerCount = 1; clear_rect.rect = GetScissorState(regs, 0); clear_rect.rect.extent.width = std::min(clear_rect.rect.extent.width, render_area.width); clear_rect.rect.extent.height = std::min(clear_rect.rect.extent.height, render_area.height); if (use_color) { VkClearValue clear_value; std::memcpy(clear_value.color.float32, regs.clear_color, sizeof(regs.clear_color)); const u32 color_attachment = regs.clear_buffers.RT; scheduler.Record([color_attachment, clear_value, clear_rect](vk::CommandBuffer cmdbuf) { VkClearAttachment attachment; attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; attachment.colorAttachment = color_attachment; attachment.clearValue = clear_value; cmdbuf.ClearAttachments(attachment, clear_rect); }); } if (!use_depth && !use_stencil) { return; } VkImageAspectFlags aspect_flags = 0; if (use_depth) { aspect_flags |= VK_IMAGE_ASPECT_DEPTH_BIT; } if (use_stencil) { aspect_flags |= VK_IMAGE_ASPECT_STENCIL_BIT; } scheduler.Record([clear_depth = regs.clear_depth, clear_stencil = regs.clear_stencil, clear_rect, aspect_flags](vk::CommandBuffer cmdbuf) { VkClearValue clear_value; clear_value.depthStencil.depth = clear_depth; clear_value.depthStencil.stencil = clear_stencil; VkClearAttachment attachment; attachment.aspectMask = aspect_flags; attachment.colorAttachment = 0; attachment.clearValue.depthStencil.depth = clear_depth; attachment.clearValue.depthStencil.stencil = clear_stencil; cmdbuf.ClearAttachments(attachment, clear_rect); }); } void RasterizerVulkan::DispatchCompute(GPUVAddr code_addr) { MICROPROFILE_SCOPE(Vulkan_Compute); update_descriptor_queue.Acquire(); sampled_views.clear(); image_views.clear(); query_cache.UpdateCounters(); const auto& launch_desc = system.GPU().KeplerCompute().launch_description; ComputePipelineCacheKey key; key.shader = code_addr; key.shared_memory_size = launch_desc.shared_alloc; key.workgroup_size = {launch_desc.block_dim_x, launch_desc.block_dim_y, launch_desc.block_dim_z}; auto& pipeline = pipeline_cache.GetComputePipeline(key); // Compute dispatches can't be executed inside a renderpass scheduler.RequestOutsideRenderPassOperationContext(); buffer_cache.Map(CalculateComputeStreamBufferSize()); const auto& entries = pipeline.GetEntries(); SetupComputeConstBuffers(entries); SetupComputeGlobalBuffers(entries); SetupComputeTexelBuffers(entries); SetupComputeTextures(entries); SetupComputeImages(entries); buffer_cache.Unmap(); TransitionImages(sampled_views, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_ACCESS_SHADER_READ_BIT); TransitionImages(image_views, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT); scheduler.Record([grid_x = launch_desc.grid_dim_x, grid_y = launch_desc.grid_dim_y, grid_z = launch_desc.grid_dim_z, pipeline_handle = pipeline.GetHandle(), layout = pipeline.GetLayout(), descriptor_set = pipeline.CommitDescriptorSet()](vk::CommandBuffer cmdbuf) { cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, pipeline_handle); cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, layout, DESCRIPTOR_SET, descriptor_set, {}); cmdbuf.Dispatch(grid_x, grid_y, grid_z); }); } void RasterizerVulkan::ResetCounter(VideoCore::QueryType type) { query_cache.ResetCounter(type); } void RasterizerVulkan::Query(GPUVAddr gpu_addr, VideoCore::QueryType type, std::optional timestamp) { query_cache.Query(gpu_addr, type, timestamp); } void RasterizerVulkan::FlushAll() {} void RasterizerVulkan::FlushRegion(VAddr addr, u64 size) { if (addr == 0 || size == 0) { return; } texture_cache.FlushRegion(addr, size); buffer_cache.FlushRegion(addr, size); query_cache.FlushRegion(addr, size); } bool RasterizerVulkan::MustFlushRegion(VAddr addr, u64 size) { if (!Settings::IsGPULevelHigh()) { return buffer_cache.MustFlushRegion(addr, size); } return texture_cache.MustFlushRegion(addr, size) || buffer_cache.MustFlushRegion(addr, size); } void RasterizerVulkan::InvalidateRegion(VAddr addr, u64 size) { if (addr == 0 || size == 0) { return; } texture_cache.InvalidateRegion(addr, size); pipeline_cache.InvalidateRegion(addr, size); buffer_cache.InvalidateRegion(addr, size); query_cache.InvalidateRegion(addr, size); } void RasterizerVulkan::OnCPUWrite(VAddr addr, u64 size) { if (addr == 0 || size == 0) { return; } texture_cache.OnCPUWrite(addr, size); pipeline_cache.InvalidateRegion(addr, size); buffer_cache.OnCPUWrite(addr, size); query_cache.InvalidateRegion(addr, size); } void RasterizerVulkan::SyncGuestHost() { texture_cache.SyncGuestHost(); buffer_cache.SyncGuestHost(); } void RasterizerVulkan::SignalSemaphore(GPUVAddr addr, u32 value) { auto& gpu{system.GPU()}; if (!gpu.IsAsync()) { gpu.MemoryManager().Write(addr, value); return; } fence_manager.SignalSemaphore(addr, value); } void RasterizerVulkan::SignalSyncPoint(u32 value) { auto& gpu{system.GPU()}; if (!gpu.IsAsync()) { gpu.IncrementSyncPoint(value); return; } fence_manager.SignalSyncPoint(value); } void RasterizerVulkan::ReleaseFences() { auto& gpu{system.GPU()}; if (!gpu.IsAsync()) { return; } fence_manager.WaitPendingFences(); } void RasterizerVulkan::FlushAndInvalidateRegion(VAddr addr, u64 size) { FlushRegion(addr, size); InvalidateRegion(addr, size); } void RasterizerVulkan::WaitForIdle() { // Everything but wait pixel operations. This intentionally includes FRAGMENT_SHADER_BIT because // fragment shaders can still write storage buffers. VkPipelineStageFlags flags = VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT; if (device.IsExtTransformFeedbackSupported()) { flags |= VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT; } scheduler.RequestOutsideRenderPassOperationContext(); scheduler.Record([event = *wfi_event, flags](vk::CommandBuffer cmdbuf) { cmdbuf.SetEvent(event, flags); cmdbuf.WaitEvents(event, flags, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, {}, {}, {}); }); } void RasterizerVulkan::FlushCommands() { if (draw_counter > 0) { draw_counter = 0; scheduler.Flush(); } } void RasterizerVulkan::TickFrame() { draw_counter = 0; update_descriptor_queue.TickFrame(); buffer_cache.TickFrame(); staging_pool.TickFrame(); } bool RasterizerVulkan::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src, const Tegra::Engines::Fermi2D::Regs::Surface& dst, const Tegra::Engines::Fermi2D::Config& copy_config) { texture_cache.DoFermiCopy(src, dst, copy_config); return true; } bool RasterizerVulkan::AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr, u32 pixel_stride) { if (!framebuffer_addr) { return false; } const auto surface{texture_cache.TryFindFramebufferSurface(framebuffer_addr)}; if (!surface) { return false; } // Verify that the cached surface is the same size and format as the requested framebuffer const auto& params{surface->GetSurfaceParams()}; ASSERT_MSG(params.width == config.width, "Framebuffer width is different"); ASSERT_MSG(params.height == config.height, "Framebuffer height is different"); screen_info.image = &surface->GetImage(); screen_info.width = params.width; screen_info.height = params.height; screen_info.is_srgb = surface->GetSurfaceParams().srgb_conversion; return true; } void RasterizerVulkan::SetupDirtyFlags() { state_tracker.Initialize(); } void RasterizerVulkan::FlushWork() { static constexpr u32 DRAWS_TO_DISPATCH = 4096; // Only check multiples of 8 draws static_assert(DRAWS_TO_DISPATCH % 8 == 0); if ((++draw_counter & 7) != 7) { return; } if (draw_counter < DRAWS_TO_DISPATCH) { // Send recorded tasks to the worker thread scheduler.DispatchWork(); return; } // Otherwise (every certain number of draws) flush execution. // This submits commands to the Vulkan driver. scheduler.Flush(); draw_counter = 0; } RasterizerVulkan::Texceptions RasterizerVulkan::UpdateAttachments() { MICROPROFILE_SCOPE(Vulkan_RenderTargets); auto& dirty = system.GPU().Maxwell3D().dirty.flags; const bool update_rendertargets = dirty[VideoCommon::Dirty::RenderTargets]; dirty[VideoCommon::Dirty::RenderTargets] = false; texture_cache.GuardRenderTargets(true); Texceptions texceptions; for (std::size_t rt = 0; rt < Maxwell::NumRenderTargets; ++rt) { if (update_rendertargets) { color_attachments[rt] = texture_cache.GetColorBufferSurface(rt); } if (color_attachments[rt] && WalkAttachmentOverlaps(*color_attachments[rt])) { texceptions[rt] = true; } } if (update_rendertargets) { zeta_attachment = texture_cache.GetDepthBufferSurface(); } if (zeta_attachment && WalkAttachmentOverlaps(*zeta_attachment)) { texceptions[ZETA_TEXCEPTION_INDEX] = true; } texture_cache.GuardRenderTargets(false); return texceptions; } bool RasterizerVulkan::WalkAttachmentOverlaps(const CachedSurfaceView& attachment) { bool overlap = false; for (auto& [view, layout] : sampled_views) { if (!attachment.IsSameSurface(*view)) { continue; } overlap = true; *layout = VK_IMAGE_LAYOUT_GENERAL; } return overlap; } std::tuple RasterizerVulkan::ConfigureFramebuffers( VkRenderPass renderpass) { FramebufferCacheKey key{renderpass, std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max()}; const auto try_push = [&key](const View& view) { if (!view) { return false; } key.views.push_back(view->GetHandle()); key.width = std::min(key.width, view->GetWidth()); key.height = std::min(key.height, view->GetHeight()); key.layers = std::min(key.layers, view->GetNumLayers()); return true; }; const auto& regs = system.GPU().Maxwell3D().regs; const std::size_t num_attachments = static_cast(regs.rt_control.count); for (std::size_t index = 0; index < num_attachments; ++index) { if (try_push(color_attachments[index])) { texture_cache.MarkColorBufferInUse(index); } } if (try_push(zeta_attachment)) { texture_cache.MarkDepthBufferInUse(); } const auto [fbentry, is_cache_miss] = framebuffer_cache.try_emplace(key); auto& framebuffer = fbentry->second; if (is_cache_miss) { VkFramebufferCreateInfo framebuffer_ci; framebuffer_ci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebuffer_ci.pNext = nullptr; framebuffer_ci.flags = 0; framebuffer_ci.renderPass = key.renderpass; framebuffer_ci.attachmentCount = static_cast(key.views.size()); framebuffer_ci.pAttachments = key.views.data(); framebuffer_ci.width = key.width; framebuffer_ci.height = key.height; framebuffer_ci.layers = key.layers; framebuffer = device.GetLogical().CreateFramebuffer(framebuffer_ci); } return {*framebuffer, VkExtent2D{key.width, key.height}}; } RasterizerVulkan::DrawParameters RasterizerVulkan::SetupGeometry(FixedPipelineState& fixed_state, BufferBindings& buffer_bindings, bool is_indexed, bool is_instanced) { MICROPROFILE_SCOPE(Vulkan_Geometry); const auto& gpu = system.GPU().Maxwell3D(); const auto& regs = gpu.regs; SetupVertexArrays(fixed_state.vertex_input, buffer_bindings); const u32 base_instance = regs.vb_base_instance; const u32 num_instances = is_instanced ? gpu.mme_draw.instance_count : 1; const u32 base_vertex = is_indexed ? regs.vb_element_base : regs.vertex_buffer.first; const u32 num_vertices = is_indexed ? regs.index_array.count : regs.vertex_buffer.count; DrawParameters params{base_instance, num_instances, base_vertex, num_vertices, is_indexed}; SetupIndexBuffer(buffer_bindings, params, is_indexed); return params; } void RasterizerVulkan::SetupShaderDescriptors( const std::array& shaders) { texture_cache.GuardSamplers(true); for (std::size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) { // Skip VertexA stage const auto& shader = shaders[stage + 1]; if (!shader) { continue; } const auto& entries = shader->GetEntries(); SetupGraphicsConstBuffers(entries, stage); SetupGraphicsGlobalBuffers(entries, stage); SetupGraphicsTexelBuffers(entries, stage); SetupGraphicsTextures(entries, stage); SetupGraphicsImages(entries, stage); } texture_cache.GuardSamplers(false); } void RasterizerVulkan::SetupImageTransitions( Texceptions texceptions, const std::array& color_attachments, const View& zeta_attachment) { TransitionImages(sampled_views, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_ACCESS_SHADER_READ_BIT); TransitionImages(image_views, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT); for (std::size_t rt = 0; rt < std::size(color_attachments); ++rt) { const auto color_attachment = color_attachments[rt]; if (color_attachment == nullptr) { continue; } const auto image_layout = texceptions[rt] ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; color_attachment->Transition(image_layout, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT); } if (zeta_attachment != nullptr) { const auto image_layout = texceptions[ZETA_TEXCEPTION_INDEX] ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; zeta_attachment->Transition(image_layout, VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT); } } void RasterizerVulkan::UpdateDynamicStates() { auto& regs = system.GPU().Maxwell3D().regs; UpdateViewportsState(regs); UpdateScissorsState(regs); UpdateDepthBias(regs); UpdateBlendConstants(regs); UpdateDepthBounds(regs); UpdateStencilFaces(regs); } void RasterizerVulkan::BeginTransformFeedback() { const auto& regs = system.GPU().Maxwell3D().regs; if (regs.tfb_enabled == 0) { return; } UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) || regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) || regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry)); UNIMPLEMENTED_IF(regs.tfb_bindings[1].buffer_enable); UNIMPLEMENTED_IF(regs.tfb_bindings[2].buffer_enable); UNIMPLEMENTED_IF(regs.tfb_bindings[3].buffer_enable); const auto& binding = regs.tfb_bindings[0]; UNIMPLEMENTED_IF(binding.buffer_enable == 0); UNIMPLEMENTED_IF(binding.buffer_offset != 0); const GPUVAddr gpu_addr = binding.Address(); const std::size_t size = binding.buffer_size; const auto [buffer, offset] = buffer_cache.UploadMemory(gpu_addr, size, 4, true); scheduler.Record([buffer = buffer, offset = offset, size](vk::CommandBuffer cmdbuf) { cmdbuf.BindTransformFeedbackBuffersEXT(0, 1, &buffer, &offset, &size); cmdbuf.BeginTransformFeedbackEXT(0, 0, nullptr, nullptr); }); } void RasterizerVulkan::EndTransformFeedback() { const auto& regs = system.GPU().Maxwell3D().regs; if (regs.tfb_enabled == 0) { return; } scheduler.Record( [](vk::CommandBuffer cmdbuf) { cmdbuf.EndTransformFeedbackEXT(0, 0, nullptr, nullptr); }); } void RasterizerVulkan::SetupVertexArrays(FixedPipelineState::VertexInput& vertex_input, BufferBindings& buffer_bindings) { const auto& regs = system.GPU().Maxwell3D().regs; for (std::size_t index = 0; index < Maxwell::NumVertexAttributes; ++index) { const auto& attrib = regs.vertex_attrib_format[index]; if (!attrib.IsValid()) { vertex_input.SetAttribute(index, false, 0, 0, {}, {}); continue; } [[maybe_unused]] const auto& buffer = regs.vertex_array[attrib.buffer]; ASSERT(buffer.IsEnabled()); vertex_input.SetAttribute(index, true, attrib.buffer, attrib.offset, attrib.type.Value(), attrib.size.Value()); } for (std::size_t index = 0; index < Maxwell::NumVertexArrays; ++index) { const auto& vertex_array = regs.vertex_array[index]; if (!vertex_array.IsEnabled()) { vertex_input.SetBinding(index, false, 0, 0); continue; } vertex_input.SetBinding( index, true, vertex_array.stride, regs.instanced_arrays.IsInstancingEnabled(index) ? vertex_array.divisor : 0); const GPUVAddr start{vertex_array.StartAddress()}; const GPUVAddr end{regs.vertex_array_limit[index].LimitAddress()}; ASSERT(end >= start); const std::size_t size{end - start}; if (size == 0) { buffer_bindings.AddVertexBinding(DefaultBuffer(), 0); continue; } const auto [buffer, offset] = buffer_cache.UploadMemory(start, size); buffer_bindings.AddVertexBinding(buffer, offset); } } void RasterizerVulkan::SetupIndexBuffer(BufferBindings& buffer_bindings, DrawParameters& params, bool is_indexed) { const auto& regs = system.GPU().Maxwell3D().regs; switch (regs.draw.topology) { case Maxwell::PrimitiveTopology::Quads: { if (!params.is_indexed) { const auto [buffer, offset] = quad_array_pass.Assemble(params.num_vertices, params.base_vertex); buffer_bindings.SetIndexBinding(buffer, offset, VK_INDEX_TYPE_UINT32); params.base_vertex = 0; params.num_vertices = params.num_vertices * 6 / 4; params.is_indexed = true; break; } const GPUVAddr gpu_addr = regs.index_array.IndexStart(); auto [buffer, offset] = buffer_cache.UploadMemory(gpu_addr, CalculateIndexBufferSize()); std::tie(buffer, offset) = quad_indexed_pass.Assemble( regs.index_array.format, params.num_vertices, params.base_vertex, buffer, offset); buffer_bindings.SetIndexBinding(buffer, offset, VK_INDEX_TYPE_UINT32); params.num_vertices = (params.num_vertices / 4) * 6; params.base_vertex = 0; break; } default: { if (!is_indexed) { break; } const GPUVAddr gpu_addr = regs.index_array.IndexStart(); auto [buffer, offset] = buffer_cache.UploadMemory(gpu_addr, CalculateIndexBufferSize()); auto format = regs.index_array.format; const bool is_uint8 = format == Maxwell::IndexFormat::UnsignedByte; if (is_uint8 && !device.IsExtIndexTypeUint8Supported()) { std::tie(buffer, offset) = uint8_pass.Assemble(params.num_vertices, buffer, offset); format = Maxwell::IndexFormat::UnsignedShort; } buffer_bindings.SetIndexBinding(buffer, offset, MaxwellToVK::IndexFormat(device, format)); break; } } } void RasterizerVulkan::SetupGraphicsConstBuffers(const ShaderEntries& entries, std::size_t stage) { MICROPROFILE_SCOPE(Vulkan_ConstBuffers); const auto& gpu = system.GPU().Maxwell3D(); const auto& shader_stage = gpu.state.shader_stages[stage]; for (const auto& entry : entries.const_buffers) { SetupConstBuffer(entry, shader_stage.const_buffers[entry.GetIndex()]); } } void RasterizerVulkan::SetupGraphicsGlobalBuffers(const ShaderEntries& entries, std::size_t stage) { MICROPROFILE_SCOPE(Vulkan_GlobalBuffers); auto& gpu{system.GPU()}; const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage]}; for (const auto& entry : entries.global_buffers) { const auto addr = cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset(); SetupGlobalBuffer(entry, addr); } } void RasterizerVulkan::SetupGraphicsTexelBuffers(const ShaderEntries& entries, std::size_t stage) { MICROPROFILE_SCOPE(Vulkan_Textures); const auto& gpu = system.GPU().Maxwell3D(); for (const auto& entry : entries.texel_buffers) { const auto image = GetTextureInfo(gpu, entry, stage).tic; SetupTexelBuffer(image, entry); } } void RasterizerVulkan::SetupGraphicsTextures(const ShaderEntries& entries, std::size_t stage) { MICROPROFILE_SCOPE(Vulkan_Textures); const auto& gpu = system.GPU().Maxwell3D(); for (const auto& entry : entries.samplers) { for (std::size_t i = 0; i < entry.Size(); ++i) { const auto texture = GetTextureInfo(gpu, entry, stage, i); SetupTexture(texture, entry); } } } void RasterizerVulkan::SetupGraphicsImages(const ShaderEntries& entries, std::size_t stage) { MICROPROFILE_SCOPE(Vulkan_Images); const auto& gpu = system.GPU().Maxwell3D(); for (const auto& entry : entries.images) { const auto tic = GetTextureInfo(gpu, entry, stage).tic; SetupImage(tic, entry); } } void RasterizerVulkan::SetupComputeConstBuffers(const ShaderEntries& entries) { MICROPROFILE_SCOPE(Vulkan_ConstBuffers); const auto& launch_desc = system.GPU().KeplerCompute().launch_description; for (const auto& entry : entries.const_buffers) { const auto& config = launch_desc.const_buffer_config[entry.GetIndex()]; const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value(); Tegra::Engines::ConstBufferInfo buffer; buffer.address = config.Address(); buffer.size = config.size; buffer.enabled = mask[entry.GetIndex()]; SetupConstBuffer(entry, buffer); } } void RasterizerVulkan::SetupComputeGlobalBuffers(const ShaderEntries& entries) { MICROPROFILE_SCOPE(Vulkan_GlobalBuffers); const auto cbufs{system.GPU().KeplerCompute().launch_description.const_buffer_config}; for (const auto& entry : entries.global_buffers) { const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()}; SetupGlobalBuffer(entry, addr); } } void RasterizerVulkan::SetupComputeTexelBuffers(const ShaderEntries& entries) { MICROPROFILE_SCOPE(Vulkan_Textures); const auto& gpu = system.GPU().KeplerCompute(); for (const auto& entry : entries.texel_buffers) { const auto image = GetTextureInfo(gpu, entry, ComputeShaderIndex).tic; SetupTexelBuffer(image, entry); } } void RasterizerVulkan::SetupComputeTextures(const ShaderEntries& entries) { MICROPROFILE_SCOPE(Vulkan_Textures); const auto& gpu = system.GPU().KeplerCompute(); for (const auto& entry : entries.samplers) { for (std::size_t i = 0; i < entry.Size(); ++i) { const auto texture = GetTextureInfo(gpu, entry, ComputeShaderIndex, i); SetupTexture(texture, entry); } } } void RasterizerVulkan::SetupComputeImages(const ShaderEntries& entries) { MICROPROFILE_SCOPE(Vulkan_Images); const auto& gpu = system.GPU().KeplerCompute(); for (const auto& entry : entries.images) { const auto tic = GetTextureInfo(gpu, entry, ComputeShaderIndex).tic; SetupImage(tic, entry); } } void RasterizerVulkan::SetupConstBuffer(const ConstBufferEntry& entry, const Tegra::Engines::ConstBufferInfo& buffer) { if (!buffer.enabled) { // Set values to zero to unbind buffers update_descriptor_queue.AddBuffer(DefaultBuffer(), 0, DEFAULT_BUFFER_SIZE); return; } // Align the size to avoid bad std140 interactions const std::size_t size = Common::AlignUp(CalculateConstBufferSize(entry, buffer), 4 * sizeof(float)); ASSERT(size <= MaxConstbufferSize); const auto [buffer_handle, offset] = buffer_cache.UploadMemory(buffer.address, size, device.GetUniformBufferAlignment()); update_descriptor_queue.AddBuffer(buffer_handle, offset, size); } void RasterizerVulkan::SetupGlobalBuffer(const GlobalBufferEntry& entry, GPUVAddr address) { auto& memory_manager{system.GPU().MemoryManager()}; const auto actual_addr = memory_manager.Read(address); const auto size = memory_manager.Read(address + 8); if (size == 0) { // Sometimes global memory pointers don't have a proper size. Upload a dummy entry // because Vulkan doesn't like empty buffers. // Note: Do *not* use DefaultBuffer() here, storage buffers can be written breaking the // default buffer. static constexpr std::size_t dummy_size = 4; const auto buffer = buffer_cache.GetEmptyBuffer(dummy_size); update_descriptor_queue.AddBuffer(buffer, 0, dummy_size); return; } const auto [buffer, offset] = buffer_cache.UploadMemory( actual_addr, size, device.GetStorageBufferAlignment(), entry.IsWritten()); update_descriptor_queue.AddBuffer(buffer, offset, size); } void RasterizerVulkan::SetupTexelBuffer(const Tegra::Texture::TICEntry& tic, const TexelBufferEntry& entry) { const auto view = texture_cache.GetTextureSurface(tic, entry); ASSERT(view->IsBufferView()); update_descriptor_queue.AddTexelBuffer(view->GetBufferView()); } void RasterizerVulkan::SetupTexture(const Tegra::Texture::FullTextureInfo& texture, const SamplerEntry& entry) { auto view = texture_cache.GetTextureSurface(texture.tic, entry); ASSERT(!view->IsBufferView()); const auto image_view = view->GetHandle(texture.tic.x_source, texture.tic.y_source, texture.tic.z_source, texture.tic.w_source); const auto sampler = sampler_cache.GetSampler(texture.tsc); update_descriptor_queue.AddSampledImage(sampler, image_view); const auto image_layout = update_descriptor_queue.GetLastImageLayout(); *image_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; sampled_views.push_back(ImageView{std::move(view), image_layout}); } void RasterizerVulkan::SetupImage(const Tegra::Texture::TICEntry& tic, const ImageEntry& entry) { auto view = texture_cache.GetImageSurface(tic, entry); if (entry.IsWritten()) { view->MarkAsModified(texture_cache.Tick()); } UNIMPLEMENTED_IF(tic.IsBuffer()); const auto image_view = view->GetHandle(tic.x_source, tic.y_source, tic.z_source, tic.w_source); update_descriptor_queue.AddImage(image_view); const auto image_layout = update_descriptor_queue.GetLastImageLayout(); *image_layout = VK_IMAGE_LAYOUT_GENERAL; image_views.push_back(ImageView{std::move(view), image_layout}); } void RasterizerVulkan::UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& regs) { if (!state_tracker.TouchViewports()) { return; } const std::array viewports{ GetViewportState(device, regs, 0), GetViewportState(device, regs, 1), GetViewportState(device, regs, 2), GetViewportState(device, regs, 3), GetViewportState(device, regs, 4), GetViewportState(device, regs, 5), GetViewportState(device, regs, 6), GetViewportState(device, regs, 7), GetViewportState(device, regs, 8), GetViewportState(device, regs, 9), GetViewportState(device, regs, 10), GetViewportState(device, regs, 11), GetViewportState(device, regs, 12), GetViewportState(device, regs, 13), GetViewportState(device, regs, 14), GetViewportState(device, regs, 15)}; scheduler.Record([viewports](vk::CommandBuffer cmdbuf) { cmdbuf.SetViewport(0, viewports); }); } void RasterizerVulkan::UpdateScissorsState(Tegra::Engines::Maxwell3D::Regs& regs) { if (!state_tracker.TouchScissors()) { return; } const std::array scissors = { GetScissorState(regs, 0), GetScissorState(regs, 1), GetScissorState(regs, 2), GetScissorState(regs, 3), GetScissorState(regs, 4), GetScissorState(regs, 5), GetScissorState(regs, 6), GetScissorState(regs, 7), GetScissorState(regs, 8), GetScissorState(regs, 9), GetScissorState(regs, 10), GetScissorState(regs, 11), GetScissorState(regs, 12), GetScissorState(regs, 13), GetScissorState(regs, 14), GetScissorState(regs, 15)}; scheduler.Record([scissors](vk::CommandBuffer cmdbuf) { cmdbuf.SetScissor(0, scissors); }); } void RasterizerVulkan::UpdateDepthBias(Tegra::Engines::Maxwell3D::Regs& regs) { if (!state_tracker.TouchDepthBias()) { return; } scheduler.Record([constant = regs.polygon_offset_units, clamp = regs.polygon_offset_clamp, factor = regs.polygon_offset_factor](vk::CommandBuffer cmdbuf) { cmdbuf.SetDepthBias(constant, clamp, factor / 2.0f); }); } void RasterizerVulkan::UpdateBlendConstants(Tegra::Engines::Maxwell3D::Regs& regs) { if (!state_tracker.TouchBlendConstants()) { return; } const std::array blend_color = {regs.blend_color.r, regs.blend_color.g, regs.blend_color.b, regs.blend_color.a}; scheduler.Record( [blend_color](vk::CommandBuffer cmdbuf) { cmdbuf.SetBlendConstants(blend_color.data()); }); } void RasterizerVulkan::UpdateDepthBounds(Tegra::Engines::Maxwell3D::Regs& regs) { if (!state_tracker.TouchDepthBounds()) { return; } scheduler.Record([min = regs.depth_bounds[0], max = regs.depth_bounds[1]]( vk::CommandBuffer cmdbuf) { cmdbuf.SetDepthBounds(min, max); }); } void RasterizerVulkan::UpdateStencilFaces(Tegra::Engines::Maxwell3D::Regs& regs) { if (!state_tracker.TouchStencilProperties()) { return; } if (regs.stencil_two_side_enable) { // Separate values per face scheduler.Record( [front_ref = regs.stencil_front_func_ref, front_write_mask = regs.stencil_front_mask, front_test_mask = regs.stencil_front_func_mask, back_ref = regs.stencil_back_func_ref, back_write_mask = regs.stencil_back_mask, back_test_mask = regs.stencil_back_func_mask](vk::CommandBuffer cmdbuf) { // Front face cmdbuf.SetStencilReference(VK_STENCIL_FACE_FRONT_BIT, front_ref); cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_FRONT_BIT, front_write_mask); cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_FRONT_BIT, front_test_mask); // Back face cmdbuf.SetStencilReference(VK_STENCIL_FACE_BACK_BIT, back_ref); cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_BACK_BIT, back_write_mask); cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_BACK_BIT, back_test_mask); }); } else { // Front face defines both faces scheduler.Record([ref = regs.stencil_back_func_ref, write_mask = regs.stencil_back_mask, test_mask = regs.stencil_back_func_mask](vk::CommandBuffer cmdbuf) { cmdbuf.SetStencilReference(VK_STENCIL_FACE_FRONT_AND_BACK, ref); cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_FRONT_AND_BACK, write_mask); cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_FRONT_AND_BACK, test_mask); }); } } std::size_t RasterizerVulkan::CalculateGraphicsStreamBufferSize(bool is_indexed) const { std::size_t size = CalculateVertexArraysSize(); if (is_indexed) { size = Common::AlignUp(size, 4) + CalculateIndexBufferSize(); } size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + device.GetUniformBufferAlignment()); return size; } std::size_t RasterizerVulkan::CalculateComputeStreamBufferSize() const { return Tegra::Engines::KeplerCompute::NumConstBuffers * (Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment()); } std::size_t RasterizerVulkan::CalculateVertexArraysSize() const { const auto& regs = system.GPU().Maxwell3D().regs; std::size_t size = 0; for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) { // This implementation assumes that all attributes are used in the shader. const GPUVAddr start{regs.vertex_array[index].StartAddress()}; const GPUVAddr end{regs.vertex_array_limit[index].LimitAddress()}; DEBUG_ASSERT(end >= start); size += (end - start) * regs.vertex_array[index].enable; } return size; } std::size_t RasterizerVulkan::CalculateIndexBufferSize() const { const auto& regs = system.GPU().Maxwell3D().regs; return static_cast(regs.index_array.count) * static_cast(regs.index_array.FormatSizeInBytes()); } std::size_t RasterizerVulkan::CalculateConstBufferSize( const ConstBufferEntry& entry, const Tegra::Engines::ConstBufferInfo& buffer) const { if (entry.IsIndirect()) { // Buffer is accessed indirectly, so upload the entire thing return buffer.size; } else { // Buffer is accessed directly, upload just what we use return entry.GetSize(); } } RenderPassParams RasterizerVulkan::GetRenderPassParams(Texceptions texceptions) const { const auto& regs = system.GPU().Maxwell3D().regs; const std::size_t num_attachments = static_cast(regs.rt_control.count); RenderPassParams params; params.color_formats = {}; std::size_t color_texceptions = 0; std::size_t index = 0; for (std::size_t rt = 0; rt < num_attachments; ++rt) { const auto& rendertarget = regs.rt[rt]; if (rendertarget.Address() == 0 || rendertarget.format == Tegra::RenderTargetFormat::NONE) { continue; } params.color_formats[index] = static_cast(rendertarget.format); color_texceptions |= (texceptions[rt] ? 1ULL : 0ULL) << index; ++index; } params.num_color_attachments = static_cast(index); params.texceptions = static_cast(color_texceptions); params.zeta_format = regs.zeta_enable ? static_cast(regs.zeta.format) : 0; params.zeta_texception = texceptions[ZETA_TEXCEPTION_INDEX]; return params; } VkBuffer RasterizerVulkan::DefaultBuffer() { if (default_buffer) { return *default_buffer; } VkBufferCreateInfo ci; ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; ci.pNext = nullptr; ci.flags = 0; ci.size = DEFAULT_BUFFER_SIZE; ci.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT; ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE; ci.queueFamilyIndexCount = 0; ci.pQueueFamilyIndices = nullptr; default_buffer = device.GetLogical().CreateBuffer(ci); default_buffer_commit = memory_manager.Commit(default_buffer, false); scheduler.RequestOutsideRenderPassOperationContext(); scheduler.Record([buffer = *default_buffer](vk::CommandBuffer cmdbuf) { cmdbuf.FillBuffer(buffer, 0, DEFAULT_BUFFER_SIZE, 0); }); return *default_buffer; } } // namespace Vulkan