// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "common/math_util.h" #include "common/microprofile.h" #include "common/scope_exit.h" #include "core/core.h" #include "core/frontend/emu_window.h" #include "core/hle/kernel/process.h" #include "core/settings.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_shader_gen.h" #include "video_core/renderer_opengl/maxwell_to_gl.h" #include "video_core/renderer_opengl/renderer_opengl.h" #include "video_core/video_core.h" namespace OpenGL { using Maxwell = Tegra::Engines::Maxwell3D::Regs; using PixelFormat = VideoCore::Surface::PixelFormat; using SurfaceType = VideoCore::Surface::SurfaceType; MICROPROFILE_DEFINE(OpenGL_VAO, "OpenGL", "Vertex Format Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_VB, "OpenGL", "Vertex Buffer Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Shader, "OpenGL", "Shader Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_UBO, "OpenGL", "Const Buffer Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Index, "OpenGL", "Index Buffer Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Texture, "OpenGL", "Texture Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Framebuffer, "OpenGL", "Framebuffer Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100)); MICROPROFILE_DEFINE(OpenGL_PrimitiveAssembly, "OpenGL", "Prim Asmbl", MP_RGB(255, 100, 100)); struct DrawParameters { GLenum primitive_mode; GLsizei count; GLint current_instance; bool use_indexed; GLint vertex_first; GLenum index_format; GLint base_vertex; GLintptr index_buffer_offset; void DispatchDraw() const { if (use_indexed) { const auto index_buffer_ptr = reinterpret_cast(index_buffer_offset); if (current_instance > 0) { glDrawElementsInstancedBaseVertexBaseInstance(primitive_mode, count, index_format, index_buffer_ptr, 1, base_vertex, current_instance); } else { glDrawElementsBaseVertex(primitive_mode, count, index_format, index_buffer_ptr, base_vertex); } } else { if (current_instance > 0) { glDrawArraysInstancedBaseInstance(primitive_mode, vertex_first, count, 1, current_instance); } else { glDrawArrays(primitive_mode, vertex_first, count); } } } }; struct FramebufferCacheKey { bool is_single_buffer = false; bool stencil_enable = false; std::array color_attachments{}; std::array colors{}; u32 colors_count = 0; GLuint zeta = 0; auto Tie() const { return std::tie(is_single_buffer, stencil_enable, color_attachments, colors, colors_count, zeta); } bool operator<(const FramebufferCacheKey& rhs) const { return Tie() < rhs.Tie(); } }; RasterizerOpenGL::RasterizerOpenGL(Core::Frontend::EmuWindow& window, ScreenInfo& info) : res_cache{*this}, shader_cache{*this}, emu_window{window}, screen_info{info}, buffer_cache(*this, STREAM_BUFFER_SIZE) { // Create sampler objects for (std::size_t i = 0; i < texture_samplers.size(); ++i) { texture_samplers[i].Create(); state.texture_units[i].sampler = texture_samplers[i].sampler.handle; } OpenGLState::ApplyDefaultState(); shader_program_manager = std::make_unique(); state.draw.shader_program = 0; state.Apply(); glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &uniform_buffer_alignment); LOG_CRITICAL(Render_OpenGL, "Sync fixed function OpenGL state here!"); CheckExtensions(); } RasterizerOpenGL::~RasterizerOpenGL() {} void RasterizerOpenGL::CheckExtensions() { if (!GLAD_GL_ARB_texture_filter_anisotropic && !GLAD_GL_EXT_texture_filter_anisotropic) { LOG_WARNING( Render_OpenGL, "Anisotropic filter is not supported! This can cause graphical issues in some games."); } if (!GLAD_GL_ARB_buffer_storage) { LOG_WARNING( Render_OpenGL, "Buffer storage control is not supported! This can cause performance degradation."); } } void RasterizerOpenGL::SetupVertexFormat() { auto& gpu = Core::System::GetInstance().GPU().Maxwell3D(); const auto& regs = gpu.regs; if (!gpu.dirty_flags.vertex_attrib_format) return; gpu.dirty_flags.vertex_attrib_format = false; MICROPROFILE_SCOPE(OpenGL_VAO); auto [iter, is_cache_miss] = vertex_array_cache.try_emplace(regs.vertex_attrib_format); auto& VAO = iter->second; if (is_cache_miss) { VAO.Create(); state.draw.vertex_array = VAO.handle; state.ApplyVertexBufferState(); // The index buffer binding is stored within the VAO. Stupid OpenGL, but easy to work // around. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer_cache.GetHandle()); // Use the vertex array as-is, assumes that the data is formatted correctly for OpenGL. // Enables the first 16 vertex attributes always, as we don't know which ones are actually // used until shader time. Note, Tegra technically supports 32, but we're capping this to 16 // for now to avoid OpenGL errors. // TODO(Subv): Analyze the shader to identify which attributes are actually used and don't // assume every shader uses them all. for (unsigned index = 0; index < 16; ++index) { const auto& attrib = regs.vertex_attrib_format[index]; // Ignore invalid attributes. if (!attrib.IsValid()) continue; const auto& buffer = regs.vertex_array[attrib.buffer]; LOG_TRACE(HW_GPU, "vertex attrib {}, count={}, size={}, type={}, offset={}, normalize={}", index, attrib.ComponentCount(), attrib.SizeString(), attrib.TypeString(), attrib.offset.Value(), attrib.IsNormalized()); ASSERT(buffer.IsEnabled()); glEnableVertexAttribArray(index); if (attrib.type == Tegra::Engines::Maxwell3D::Regs::VertexAttribute::Type::SignedInt || attrib.type == Tegra::Engines::Maxwell3D::Regs::VertexAttribute::Type::UnsignedInt) { glVertexAttribIFormat(index, attrib.ComponentCount(), MaxwellToGL::VertexType(attrib), attrib.offset); } else { glVertexAttribFormat(index, attrib.ComponentCount(), MaxwellToGL::VertexType(attrib), attrib.IsNormalized() ? GL_TRUE : GL_FALSE, attrib.offset); } glVertexAttribBinding(index, attrib.buffer); } } state.draw.vertex_array = VAO.handle; state.ApplyVertexBufferState(); // Rebinding the VAO invalidates the vertex buffer bindings. gpu.dirty_flags.vertex_array = 0xFFFFFFFF; } void RasterizerOpenGL::SetupVertexBuffer() { auto& gpu = Core::System::GetInstance().GPU().Maxwell3D(); const auto& regs = gpu.regs; if (!gpu.dirty_flags.vertex_array) return; MICROPROFILE_SCOPE(OpenGL_VB); // Upload all guest vertex arrays sequentially to our buffer for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) { if (~gpu.dirty_flags.vertex_array & (1u << index)) continue; const auto& vertex_array = regs.vertex_array[index]; if (!vertex_array.IsEnabled()) continue; Tegra::GPUVAddr start = vertex_array.StartAddress(); const Tegra::GPUVAddr end = regs.vertex_array_limit[index].LimitAddress(); ASSERT(end > start); const u64 size = end - start + 1; const GLintptr vertex_buffer_offset = buffer_cache.UploadMemory(start, size); // Bind the vertex array to the buffer at the current offset. glBindVertexBuffer(index, buffer_cache.GetHandle(), vertex_buffer_offset, vertex_array.stride); if (regs.instanced_arrays.IsInstancingEnabled(index) && vertex_array.divisor != 0) { // Enable vertex buffer instancing with the specified divisor. glVertexBindingDivisor(index, vertex_array.divisor); } else { // Disable the vertex buffer instancing. glVertexBindingDivisor(index, 0); } } // Implicit set by glBindVertexBuffer. Stupid glstate handling... state.draw.vertex_buffer = buffer_cache.GetHandle(); gpu.dirty_flags.vertex_array = 0; } DrawParameters RasterizerOpenGL::SetupDraw() { const auto& gpu = Core::System::GetInstance().GPU().Maxwell3D(); const auto& regs = gpu.regs; const bool is_indexed = accelerate_draw == AccelDraw::Indexed; DrawParameters params{}; params.current_instance = gpu.state.current_instance; if (regs.draw.topology == Maxwell::PrimitiveTopology::Quads) { MICROPROFILE_SCOPE(OpenGL_PrimitiveAssembly); params.use_indexed = true; params.primitive_mode = GL_TRIANGLES; if (is_indexed) { params.index_format = MaxwellToGL::IndexFormat(regs.index_array.format); params.count = (regs.index_array.count / 4) * 6; params.index_buffer_offset = primitive_assembler.MakeQuadIndexed( regs.index_array.IndexStart(), regs.index_array.FormatSizeInBytes(), regs.index_array.count); params.base_vertex = static_cast(regs.vb_element_base); } else { // MakeQuadArray always generates u32 indexes params.index_format = GL_UNSIGNED_INT; params.count = (regs.vertex_buffer.count / 4) * 6; params.index_buffer_offset = primitive_assembler.MakeQuadArray(regs.vertex_buffer.first, params.count); } return params; } params.use_indexed = is_indexed; params.primitive_mode = MaxwellToGL::PrimitiveTopology(regs.draw.topology); if (is_indexed) { MICROPROFILE_SCOPE(OpenGL_Index); params.index_format = MaxwellToGL::IndexFormat(regs.index_array.format); params.count = regs.index_array.count; params.index_buffer_offset = buffer_cache.UploadMemory(regs.index_array.IndexStart(), CalculateIndexBufferSize()); params.base_vertex = static_cast(regs.vb_element_base); } else { params.count = regs.vertex_buffer.count; params.vertex_first = regs.vertex_buffer.first; } return params; } void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) { MICROPROFILE_SCOPE(OpenGL_Shader); const auto& gpu = Core::System::GetInstance().GPU().Maxwell3D(); // Next available bindpoints to use when uploading the const buffers and textures to the GLSL // shaders. The constbuffer bindpoint starts after the shader stage configuration bind points. u32 current_constbuffer_bindpoint = Tegra::Engines::Maxwell3D::Regs::MaxShaderStage; u32 current_texture_bindpoint = 0; std::array clip_distances{}; for (std::size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) { const auto& shader_config = gpu.regs.shader_config[index]; const Maxwell::ShaderProgram program{static_cast(index)}; // Skip stages that are not enabled if (!gpu.regs.IsShaderConfigEnabled(index)) { switch (program) { case Maxwell::ShaderProgram::Geometry: shader_program_manager->UseTrivialGeometryShader(); break; } continue; } const std::size_t stage{index == 0 ? 0 : index - 1}; // Stage indices are 0 - 5 GLShader::MaxwellUniformData ubo{}; ubo.SetFromRegs(gpu.state.shader_stages[stage]); const GLintptr offset = buffer_cache.UploadHostMemory( &ubo, sizeof(ubo), static_cast(uniform_buffer_alignment)); // Bind the buffer glBindBufferRange(GL_UNIFORM_BUFFER, static_cast(stage), buffer_cache.GetHandle(), offset, static_cast(sizeof(ubo))); Shader shader{shader_cache.GetStageProgram(program)}; switch (program) { case Maxwell::ShaderProgram::VertexA: case Maxwell::ShaderProgram::VertexB: { shader_program_manager->UseProgrammableVertexShader( shader->GetProgramHandle(primitive_mode)); break; } case Maxwell::ShaderProgram::Geometry: { shader_program_manager->UseProgrammableGeometryShader( shader->GetProgramHandle(primitive_mode)); break; } case Maxwell::ShaderProgram::Fragment: { shader_program_manager->UseProgrammableFragmentShader( shader->GetProgramHandle(primitive_mode)); break; } default: LOG_CRITICAL(HW_GPU, "Unimplemented shader index={}, enable={}, offset=0x{:08X}", index, shader_config.enable.Value(), shader_config.offset); UNREACHABLE(); } // Configure the const buffers for this shader stage. current_constbuffer_bindpoint = SetupConstBuffers(static_cast(stage), shader, primitive_mode, current_constbuffer_bindpoint); // Configure the textures for this shader stage. current_texture_bindpoint = SetupTextures(static_cast(stage), shader, primitive_mode, current_texture_bindpoint); // Workaround for Intel drivers. // When a clip distance is enabled but not set in the shader it crops parts of the screen // (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the // clip distances only when it's written by a shader stage. for (std::size_t i = 0; i < Maxwell::NumClipDistances; ++i) { clip_distances[i] |= shader->GetShaderEntries().clip_distances[i]; } // When VertexA is enabled, we have dual vertex shaders if (program == Maxwell::ShaderProgram::VertexA) { // VertexB was combined with VertexA, so we skip the VertexB iteration index++; } } SyncClipEnabled(clip_distances); } void RasterizerOpenGL::SetupCachedFramebuffer(const FramebufferCacheKey& fbkey, OpenGLState& current_state) { const auto [entry, is_cache_miss] = framebuffer_cache.try_emplace(fbkey); auto& framebuffer = entry->second; if (is_cache_miss) framebuffer.Create(); current_state.draw.draw_framebuffer = framebuffer.handle; current_state.ApplyFramebufferState(); if (!is_cache_miss) return; if (fbkey.is_single_buffer) { if (fbkey.color_attachments[0] != GL_NONE) { glFramebufferTexture(GL_DRAW_FRAMEBUFFER, fbkey.color_attachments[0], fbkey.colors[0], 0); } glDrawBuffer(fbkey.color_attachments[0]); } else { for (std::size_t index = 0; index < Maxwell::NumRenderTargets; ++index) { if (fbkey.colors[index]) { glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + static_cast(index), fbkey.colors[index], 0); } } glDrawBuffers(fbkey.colors_count, fbkey.color_attachments.data()); } if (fbkey.zeta) { GLenum zeta_attachment = fbkey.stencil_enable ? GL_DEPTH_STENCIL_ATTACHMENT : GL_DEPTH_ATTACHMENT; glFramebufferTexture(GL_DRAW_FRAMEBUFFER, zeta_attachment, fbkey.zeta, 0); } } std::size_t RasterizerOpenGL::CalculateVertexArraysSize() const { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; std::size_t size = 0; for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) { if (!regs.vertex_array[index].IsEnabled()) continue; const Tegra::GPUVAddr start = regs.vertex_array[index].StartAddress(); const Tegra::GPUVAddr end = regs.vertex_array_limit[index].LimitAddress(); ASSERT(end > start); size += end - start + 1; } return size; } std::size_t RasterizerOpenGL::CalculateIndexBufferSize() const { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; return static_cast(regs.index_array.count) * static_cast(regs.index_array.FormatSizeInBytes()); } bool RasterizerOpenGL::AccelerateDrawBatch(bool is_indexed) { accelerate_draw = is_indexed ? AccelDraw::Indexed : AccelDraw::Arrays; DrawArrays(); return true; } template static constexpr auto RangeFromInterval(Map& map, const Interval& interval) { return boost::make_iterator_range(map.equal_range(interval)); } void RasterizerOpenGL::UpdatePagesCachedCount(VAddr addr, u64 size, int delta) { const u64 page_start{addr >> Memory::PAGE_BITS}; const u64 page_end{(addr + size + Memory::PAGE_SIZE - 1) >> Memory::PAGE_BITS}; // Interval maps will erase segments if count reaches 0, so if delta is negative we have to // subtract after iterating const auto pages_interval = CachedPageMap::interval_type::right_open(page_start, page_end); if (delta > 0) cached_pages.add({pages_interval, delta}); for (const auto& pair : RangeFromInterval(cached_pages, pages_interval)) { const auto interval = pair.first & pages_interval; const int count = pair.second; const VAddr interval_start_addr = boost::icl::first(interval) << Memory::PAGE_BITS; const VAddr interval_end_addr = boost::icl::last_next(interval) << Memory::PAGE_BITS; const u64 interval_size = interval_end_addr - interval_start_addr; if (delta > 0 && count == delta) Memory::RasterizerMarkRegionCached(interval_start_addr, interval_size, true); else if (delta < 0 && count == -delta) Memory::RasterizerMarkRegionCached(interval_start_addr, interval_size, false); else ASSERT(count >= 0); } if (delta < 0) cached_pages.add({pages_interval, delta}); } void RasterizerOpenGL::ConfigureFramebuffers(OpenGLState& current_state, bool using_color_fb, bool using_depth_fb, bool preserve_contents, std::optional single_color_target) { MICROPROFILE_SCOPE(OpenGL_Framebuffer); const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; Surface depth_surface; if (using_depth_fb) { depth_surface = res_cache.GetDepthBufferSurface(preserve_contents); } // TODO(bunnei): Figure out how the below register works. According to envytools, this should be // used to enable multiple render targets. However, it is left unset on all games that I have // tested. UNIMPLEMENTED_IF(regs.rt_separate_frag_data != 0); // Bind the framebuffer surfaces current_state.framebuffer_srgb.enabled = regs.framebuffer_srgb != 0; FramebufferCacheKey fbkey; if (using_color_fb) { if (single_color_target) { // Used when just a single color attachment is enabled, e.g. for clearing a color buffer Surface color_surface = res_cache.GetColorBufferSurface(*single_color_target, preserve_contents); if (color_surface) { // Assume that a surface will be written to if it is used as a framebuffer, even if // the shader doesn't actually write to it. color_surface->MarkAsModified(true, res_cache); // Workaround for and issue in nvidia drivers // https://devtalk.nvidia.com/default/topic/776591/opengl/gl_framebuffer_srgb-functions-incorrectly/ state.framebuffer_srgb.enabled |= color_surface->GetSurfaceParams().srgb_conversion; } fbkey.is_single_buffer = true; fbkey.color_attachments[0] = GL_COLOR_ATTACHMENT0 + static_cast(*single_color_target); fbkey.colors[0] = color_surface != nullptr ? color_surface->Texture().handle : 0; } else { // Multiple color attachments are enabled for (std::size_t index = 0; index < Maxwell::NumRenderTargets; ++index) { Surface color_surface = res_cache.GetColorBufferSurface(index, preserve_contents); if (color_surface) { // Assume that a surface will be written to if it is used as a framebuffer, even // if the shader doesn't actually write to it. color_surface->MarkAsModified(true, res_cache); // Enable sRGB only for supported formats // Workaround for and issue in nvidia drivers // https://devtalk.nvidia.com/default/topic/776591/opengl/gl_framebuffer_srgb-functions-incorrectly/ state.framebuffer_srgb.enabled |= color_surface->GetSurfaceParams().srgb_conversion; } fbkey.color_attachments[index] = GL_COLOR_ATTACHMENT0 + regs.rt_control.GetMap(index); fbkey.colors[index] = color_surface != nullptr ? color_surface->Texture().handle : 0; } fbkey.is_single_buffer = false; fbkey.colors_count = regs.rt_control.count; } } else { // No color attachments are enabled - leave them as zero fbkey.is_single_buffer = true; } if (depth_surface) { // Assume that a surface will be written to if it is used as a framebuffer, even if // the shader doesn't actually write to it. depth_surface->MarkAsModified(true, res_cache); fbkey.zeta = depth_surface->Texture().handle; fbkey.stencil_enable = regs.stencil_enable; } SetupCachedFramebuffer(fbkey, current_state); SyncViewport(current_state); } void RasterizerOpenGL::Clear() { const auto prev_state{state}; SCOPE_EXIT({ prev_state.Apply(); }); const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; bool use_color{}; bool use_depth{}; bool use_stencil{}; OpenGLState clear_state; if (regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B || regs.clear_buffers.A) { use_color = true; } if (use_color) { clear_state.color_mask[0].red_enabled = regs.clear_buffers.R ? GL_TRUE : GL_FALSE; clear_state.color_mask[0].green_enabled = regs.clear_buffers.G ? GL_TRUE : GL_FALSE; clear_state.color_mask[0].blue_enabled = regs.clear_buffers.B ? GL_TRUE : GL_FALSE; clear_state.color_mask[0].alpha_enabled = regs.clear_buffers.A ? GL_TRUE : GL_FALSE; } if (regs.clear_buffers.Z) { ASSERT_MSG(regs.zeta_enable != 0, "Tried to clear Z but buffer is not enabled!"); use_depth = true; // Always enable the depth write when clearing the depth buffer. The depth write mask is // ignored when clearing the buffer in the Switch, but OpenGL obeys it so we set it to // true. clear_state.depth.test_enabled = true; clear_state.depth.test_func = GL_ALWAYS; } if (regs.clear_buffers.S) { ASSERT_MSG(regs.zeta_enable != 0, "Tried to clear stencil but buffer is not enabled!"); use_stencil = true; clear_state.stencil.test_enabled = true; if (regs.clear_flags.stencil) { // Stencil affects the clear so fill it with the used masks clear_state.stencil.front.test_func = GL_ALWAYS; clear_state.stencil.front.test_mask = regs.stencil_front_func_mask; clear_state.stencil.front.action_stencil_fail = GL_KEEP; clear_state.stencil.front.action_depth_fail = GL_KEEP; clear_state.stencil.front.action_depth_pass = GL_KEEP; clear_state.stencil.front.write_mask = regs.stencil_front_mask; if (regs.stencil_two_side_enable) { clear_state.stencil.back.test_func = GL_ALWAYS; clear_state.stencil.back.test_mask = regs.stencil_back_func_mask; clear_state.stencil.back.action_stencil_fail = GL_KEEP; clear_state.stencil.back.action_depth_fail = GL_KEEP; clear_state.stencil.back.action_depth_pass = GL_KEEP; clear_state.stencil.back.write_mask = regs.stencil_back_mask; } else { clear_state.stencil.back.test_func = GL_ALWAYS; clear_state.stencil.back.test_mask = 0xFFFFFFFF; clear_state.stencil.back.write_mask = 0xFFFFFFFF; clear_state.stencil.back.action_stencil_fail = GL_KEEP; clear_state.stencil.back.action_depth_fail = GL_KEEP; clear_state.stencil.back.action_depth_pass = GL_KEEP; } } } if (!use_color && !use_depth && !use_stencil) { // No color surface nor depth/stencil surface are enabled return; } ScopeAcquireGLContext acquire_context{emu_window}; ConfigureFramebuffers(clear_state, use_color, use_depth || use_stencil, false, regs.clear_buffers.RT.Value()); if (regs.clear_flags.scissor) { SyncScissorTest(clear_state); } if (regs.clear_flags.viewport) { clear_state.EmulateViewportWithScissor(); } clear_state.Apply(); if (use_color) { glClearBufferfv(GL_COLOR, regs.clear_buffers.RT, regs.clear_color); } if (use_depth && use_stencil) { glClearBufferfi(GL_DEPTH_STENCIL, 0, regs.clear_depth, regs.clear_stencil); } else if (use_depth) { glClearBufferfv(GL_DEPTH, 0, ®s.clear_depth); } else if (use_stencil) { glClearBufferiv(GL_STENCIL, 0, ®s.clear_stencil); } } void RasterizerOpenGL::DrawArrays() { if (accelerate_draw == AccelDraw::Disabled) return; MICROPROFILE_SCOPE(OpenGL_Drawing); auto& gpu = Core::System::GetInstance().GPU().Maxwell3D(); const auto& regs = gpu.regs; ScopeAcquireGLContext acquire_context{emu_window}; ConfigureFramebuffers(state); SyncColorMask(); SyncFragmentColorClampState(); SyncMultiSampleState(); SyncDepthTestState(); SyncStencilTestState(); SyncBlendState(); SyncLogicOpState(); SyncCullMode(); SyncPrimitiveRestart(); SyncScissorTest(state); // Alpha Testing is synced on shaders. SyncTransformFeedback(); SyncPointState(); CheckAlphaTests(); SyncPolygonOffset(); // TODO(bunnei): Sync framebuffer_scale uniform here // TODO(bunnei): Sync scissorbox uniform(s) here // Draw the vertex batch const bool is_indexed = accelerate_draw == AccelDraw::Indexed; state.draw.vertex_buffer = buffer_cache.GetHandle(); state.ApplyVertexBufferState(); std::size_t buffer_size = CalculateVertexArraysSize(); // Add space for index buffer (keeping in mind non-core primitives) switch (regs.draw.topology) { case Maxwell::PrimitiveTopology::Quads: buffer_size = Common::AlignUp(buffer_size, 4) + primitive_assembler.CalculateQuadSize(regs.vertex_buffer.count); break; default: if (is_indexed) { buffer_size = Common::AlignUp(buffer_size, 4) + CalculateIndexBufferSize(); } break; } // Uniform space for the 5 shader stages buffer_size = Common::AlignUp(buffer_size, 4) + (sizeof(GLShader::MaxwellUniformData) + uniform_buffer_alignment) * Maxwell::MaxShaderStage; // Add space for at least 18 constant buffers buffer_size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + uniform_buffer_alignment); bool invalidate = buffer_cache.Map(buffer_size); if (invalidate) { // As all cached buffers are invalidated, we need to recheck their state. gpu.dirty_flags.vertex_array = 0xFFFFFFFF; } SetupVertexFormat(); SetupVertexBuffer(); DrawParameters params = SetupDraw(); SetupShaders(params.primitive_mode); buffer_cache.Unmap(); shader_program_manager->ApplyTo(state); state.Apply(); // Execute draw call params.DispatchDraw(); // Disable scissor test state.viewports[0].scissor.enabled = false; accelerate_draw = AccelDraw::Disabled; // Unbind textures for potential future use as framebuffer attachments for (auto& texture_unit : state.texture_units) { texture_unit.Unbind(); } state.Apply(); } void RasterizerOpenGL::FlushAll() {} void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size) { MICROPROFILE_SCOPE(OpenGL_CacheManagement); if (Settings::values.use_accurate_gpu_emulation) { // Only flush if use_accurate_gpu_emulation is enabled, as it incurs a performance hit res_cache.FlushRegion(addr, size); } } void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size) { MICROPROFILE_SCOPE(OpenGL_CacheManagement); res_cache.InvalidateRegion(addr, size); shader_cache.InvalidateRegion(addr, size); buffer_cache.InvalidateRegion(addr, size); } void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) { FlushRegion(addr, size); InvalidateRegion(addr, size); } bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src, const Tegra::Engines::Fermi2D::Regs::Surface& dst) { MICROPROFILE_SCOPE(OpenGL_Blits); if (Settings::values.use_accurate_gpu_emulation) { // Skip the accelerated copy and perform a slow but more accurate copy return false; } res_cache.FermiCopySurface(src, dst); return true; } bool RasterizerOpenGL::AccelerateFill(const void* config) { UNREACHABLE(); return true; } bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr, u32 pixel_stride) { if (!framebuffer_addr) { return {}; } MICROPROFILE_SCOPE(OpenGL_CacheManagement); const auto& surface{res_cache.TryFindFramebufferSurface(framebuffer_addr)}; if (!surface) { return {}; } // Verify that the cached surface is the same size and format as the requested framebuffer const auto& params{surface->GetSurfaceParams()}; const auto& pixel_format{ VideoCore::Surface::PixelFormatFromGPUPixelFormat(config.pixel_format)}; ASSERT_MSG(params.width == config.width, "Framebuffer width is different"); ASSERT_MSG(params.height == config.height, "Framebuffer height is different"); ASSERT_MSG(params.pixel_format == pixel_format, "Framebuffer pixel_format is different"); screen_info.display_texture = surface->Texture().handle; return true; } void RasterizerOpenGL::SamplerInfo::Create() { sampler.Create(); mag_filter = min_filter = Tegra::Texture::TextureFilter::Linear; wrap_u = wrap_v = wrap_p = Tegra::Texture::WrapMode::Wrap; uses_depth_compare = false; depth_compare_func = Tegra::Texture::DepthCompareFunc::Never; // default is GL_LINEAR_MIPMAP_LINEAR glSamplerParameteri(sampler.handle, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // Other attributes have correct defaults glSamplerParameteri(sampler.handle, GL_TEXTURE_COMPARE_FUNC, GL_NEVER); } void RasterizerOpenGL::SamplerInfo::SyncWithConfig(const Tegra::Texture::TSCEntry& config) { const GLuint s = sampler.handle; if (mag_filter != config.mag_filter) { mag_filter = config.mag_filter; glSamplerParameteri( s, GL_TEXTURE_MAG_FILTER, MaxwellToGL::TextureFilterMode(mag_filter, Tegra::Texture::TextureMipmapFilter::None)); } if (min_filter != config.min_filter || mip_filter != config.mip_filter) { min_filter = config.min_filter; mip_filter = config.mip_filter; glSamplerParameteri(s, GL_TEXTURE_MIN_FILTER, MaxwellToGL::TextureFilterMode(min_filter, mip_filter)); } if (wrap_u != config.wrap_u) { wrap_u = config.wrap_u; glSamplerParameteri(s, GL_TEXTURE_WRAP_S, MaxwellToGL::WrapMode(wrap_u)); } if (wrap_v != config.wrap_v) { wrap_v = config.wrap_v; glSamplerParameteri(s, GL_TEXTURE_WRAP_T, MaxwellToGL::WrapMode(wrap_v)); } if (wrap_p != config.wrap_p) { wrap_p = config.wrap_p; glSamplerParameteri(s, GL_TEXTURE_WRAP_R, MaxwellToGL::WrapMode(wrap_p)); } if (uses_depth_compare != (config.depth_compare_enabled == 1)) { uses_depth_compare = (config.depth_compare_enabled == 1); if (uses_depth_compare) { glSamplerParameteri(s, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); } else { glSamplerParameteri(s, GL_TEXTURE_COMPARE_MODE, GL_NONE); } } if (depth_compare_func != config.depth_compare_func) { depth_compare_func = config.depth_compare_func; glSamplerParameteri(s, GL_TEXTURE_COMPARE_FUNC, MaxwellToGL::DepthCompareFunc(depth_compare_func)); } GLvec4 new_border_color; if (config.srgb_conversion) { new_border_color[0] = config.srgb_border_color_r / 255.0f; new_border_color[1] = config.srgb_border_color_g / 255.0f; new_border_color[2] = config.srgb_border_color_g / 255.0f; } else { new_border_color[0] = config.border_color_r; new_border_color[1] = config.border_color_g; new_border_color[2] = config.border_color_b; } new_border_color[3] = config.border_color_a; if (border_color != new_border_color) { border_color = new_border_color; glSamplerParameterfv(s, GL_TEXTURE_BORDER_COLOR, border_color.data()); } const float anisotropic_max = static_cast(1 << config.max_anisotropy.Value()); if (anisotropic_max != max_anisotropic) { max_anisotropic = anisotropic_max; if (GLAD_GL_ARB_texture_filter_anisotropic) { glSamplerParameterf(s, GL_TEXTURE_MAX_ANISOTROPY, max_anisotropic); } else if (GLAD_GL_EXT_texture_filter_anisotropic) { glSamplerParameterf(s, GL_TEXTURE_MAX_ANISOTROPY_EXT, max_anisotropic); } } const float lod_min = static_cast(config.min_lod_clamp.Value()) / 256.0f; if (lod_min != min_lod) { min_lod = lod_min; glSamplerParameterf(s, GL_TEXTURE_MIN_LOD, min_lod); } const float lod_max = static_cast(config.max_lod_clamp.Value()) / 256.0f; if (lod_max != max_lod) { max_lod = lod_max; glSamplerParameterf(s, GL_TEXTURE_MAX_LOD, max_lod); } const u32 bias = config.mip_lod_bias.Value(); // Sign extend the 13-bit value. constexpr u32 mask = 1U << (13 - 1); const float bias_lod = static_cast((bias ^ mask) - mask) / 256.f; if (lod_bias != bias_lod) { lod_bias = bias_lod; glSamplerParameterf(s, GL_TEXTURE_LOD_BIAS, lod_bias); } } u32 RasterizerOpenGL::SetupConstBuffers(Maxwell::ShaderStage stage, Shader& shader, GLenum primitive_mode, u32 current_bindpoint) { MICROPROFILE_SCOPE(OpenGL_UBO); const auto& gpu = Core::System::GetInstance().GPU(); const auto& maxwell3d = gpu.Maxwell3D(); const auto& shader_stage = maxwell3d.state.shader_stages[static_cast(stage)]; const auto& entries = shader->GetShaderEntries().const_buffer_entries; constexpr u64 max_binds = Tegra::Engines::Maxwell3D::Regs::MaxConstBuffers; std::array bind_buffers; std::array bind_offsets; std::array bind_sizes; ASSERT_MSG(entries.size() <= max_binds, "Exceeded expected number of binding points."); // Upload only the enabled buffers from the 16 constbuffers of each shader stage for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) { const auto& used_buffer = entries[bindpoint]; const auto& buffer = shader_stage.const_buffers[used_buffer.GetIndex()]; if (!buffer.enabled) { // With disabled buffers set values as zero to unbind them bind_buffers[bindpoint] = 0; bind_offsets[bindpoint] = 0; bind_sizes[bindpoint] = 0; continue; } std::size_t size = 0; if (used_buffer.IsIndirect()) { // Buffer is accessed indirectly, so upload the entire thing size = buffer.size; if (size > MaxConstbufferSize) { LOG_CRITICAL(HW_GPU, "indirect constbuffer size {} exceeds maximum {}", size, MaxConstbufferSize); size = MaxConstbufferSize; } } else { // Buffer is accessed directly, upload just what we use size = used_buffer.GetSize() * sizeof(float); } // Align the actual size so it ends up being a multiple of vec4 to meet the OpenGL std140 // UBO alignment requirements. size = Common::AlignUp(size, sizeof(GLvec4)); ASSERT_MSG(size <= MaxConstbufferSize, "Constbuffer too big"); GLintptr const_buffer_offset = buffer_cache.UploadMemory( buffer.address, size, static_cast(uniform_buffer_alignment)); // Now configure the bindpoint of the buffer inside the shader glUniformBlockBinding(shader->GetProgramHandle(primitive_mode), shader->GetProgramResourceIndex(used_buffer), current_bindpoint + bindpoint); // Prepare values for multibind bind_buffers[bindpoint] = buffer_cache.GetHandle(); bind_offsets[bindpoint] = const_buffer_offset; bind_sizes[bindpoint] = size; } glBindBuffersRange(GL_UNIFORM_BUFFER, current_bindpoint, static_cast(entries.size()), bind_buffers.data(), bind_offsets.data(), bind_sizes.data()); return current_bindpoint + static_cast(entries.size()); } u32 RasterizerOpenGL::SetupTextures(Maxwell::ShaderStage stage, Shader& shader, GLenum primitive_mode, u32 current_unit) { MICROPROFILE_SCOPE(OpenGL_Texture); const auto& gpu = Core::System::GetInstance().GPU(); const auto& maxwell3d = gpu.Maxwell3D(); const auto& entries = shader->GetShaderEntries().texture_samplers; ASSERT_MSG(current_unit + entries.size() <= std::size(state.texture_units), "Exceeded the number of active textures."); for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) { const auto& entry = entries[bindpoint]; const u32 current_bindpoint = current_unit + bindpoint; // Bind the uniform to the sampler. glProgramUniform1i(shader->GetProgramHandle(primitive_mode), shader->GetUniformLocation(entry), current_bindpoint); const auto texture = maxwell3d.GetStageTexture(entry.GetStage(), entry.GetOffset()); if (!texture.enabled) { state.texture_units[current_bindpoint].texture = 0; continue; } texture_samplers[current_bindpoint].SyncWithConfig(texture.tsc); Surface surface = res_cache.GetTextureSurface(texture, entry); if (surface != nullptr) { const GLuint handle = entry.IsArray() ? surface->TextureLayer().handle : surface->Texture().handle; const GLenum target = entry.IsArray() ? surface->TargetLayer() : surface->Target(); state.texture_units[current_bindpoint].texture = handle; state.texture_units[current_bindpoint].target = target; state.texture_units[current_bindpoint].swizzle.r = MaxwellToGL::SwizzleSource(texture.tic.x_source); state.texture_units[current_bindpoint].swizzle.g = MaxwellToGL::SwizzleSource(texture.tic.y_source); state.texture_units[current_bindpoint].swizzle.b = MaxwellToGL::SwizzleSource(texture.tic.z_source); state.texture_units[current_bindpoint].swizzle.a = MaxwellToGL::SwizzleSource(texture.tic.w_source); } else { // Can occur when texture addr is null or its memory is unmapped/invalid state.texture_units[current_bindpoint].texture = 0; } } return current_unit + static_cast(entries.size()); } void RasterizerOpenGL::SyncViewport(OpenGLState& current_state) { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; const bool geometry_shaders_enabled = regs.IsShaderConfigEnabled(static_cast(Maxwell::ShaderProgram::Geometry)); const std::size_t viewport_count = geometry_shaders_enabled ? Tegra::Engines::Maxwell3D::Regs::NumViewports : 1; for (std::size_t i = 0; i < viewport_count; i++) { auto& viewport = current_state.viewports[i]; const auto& src = regs.viewports[i]; const MathUtil::Rectangle viewport_rect{regs.viewport_transform[i].GetRect()}; viewport.x = viewport_rect.left; viewport.y = viewport_rect.bottom; viewport.width = viewport_rect.GetWidth(); viewport.height = viewport_rect.GetHeight(); viewport.depth_range_far = regs.viewports[i].depth_range_far; viewport.depth_range_near = regs.viewports[i].depth_range_near; } state.depth_clamp.far_plane = regs.view_volume_clip_control.depth_clamp_far != 0; state.depth_clamp.near_plane = regs.view_volume_clip_control.depth_clamp_near != 0; } void RasterizerOpenGL::SyncClipEnabled( const std::array& clip_mask) { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; const std::array reg_state{ regs.clip_distance_enabled.c0 != 0, regs.clip_distance_enabled.c1 != 0, regs.clip_distance_enabled.c2 != 0, regs.clip_distance_enabled.c3 != 0, regs.clip_distance_enabled.c4 != 0, regs.clip_distance_enabled.c5 != 0, regs.clip_distance_enabled.c6 != 0, regs.clip_distance_enabled.c7 != 0}; for (std::size_t i = 0; i < Maxwell::Regs::NumClipDistances; ++i) { state.clip_distance[i] = reg_state[i] && clip_mask[i]; } } void RasterizerOpenGL::SyncClipCoef() { UNIMPLEMENTED(); } void RasterizerOpenGL::SyncCullMode() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.cull.enabled = regs.cull.enabled != 0; if (state.cull.enabled) { state.cull.front_face = MaxwellToGL::FrontFace(regs.cull.front_face); state.cull.mode = MaxwellToGL::CullFace(regs.cull.cull_face); const bool flip_triangles{regs.screen_y_control.triangle_rast_flip == 0 || regs.viewport_transform[0].scale_y < 0.0f}; // If the GPU is configured to flip the rasterized triangles, then we need to flip the // notion of front and back. Note: We flip the triangles when the value of the register is 0 // because OpenGL already does it for us. if (flip_triangles) { if (state.cull.front_face == GL_CCW) state.cull.front_face = GL_CW; else if (state.cull.front_face == GL_CW) state.cull.front_face = GL_CCW; } } } void RasterizerOpenGL::SyncPrimitiveRestart() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.primitive_restart.enabled = regs.primitive_restart.enabled; state.primitive_restart.index = regs.primitive_restart.index; } void RasterizerOpenGL::SyncDepthTestState() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.depth.test_enabled = regs.depth_test_enable != 0; state.depth.write_mask = regs.depth_write_enabled ? GL_TRUE : GL_FALSE; if (!state.depth.test_enabled) return; state.depth.test_func = MaxwellToGL::ComparisonOp(regs.depth_test_func); } void RasterizerOpenGL::SyncStencilTestState() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.stencil.test_enabled = regs.stencil_enable != 0; if (!regs.stencil_enable) { return; } state.stencil.front.test_func = MaxwellToGL::ComparisonOp(regs.stencil_front_func_func); state.stencil.front.test_ref = regs.stencil_front_func_ref; state.stencil.front.test_mask = regs.stencil_front_func_mask; state.stencil.front.action_stencil_fail = MaxwellToGL::StencilOp(regs.stencil_front_op_fail); state.stencil.front.action_depth_fail = MaxwellToGL::StencilOp(regs.stencil_front_op_zfail); state.stencil.front.action_depth_pass = MaxwellToGL::StencilOp(regs.stencil_front_op_zpass); state.stencil.front.write_mask = regs.stencil_front_mask; if (regs.stencil_two_side_enable) { state.stencil.back.test_func = MaxwellToGL::ComparisonOp(regs.stencil_back_func_func); state.stencil.back.test_ref = regs.stencil_back_func_ref; state.stencil.back.test_mask = regs.stencil_back_func_mask; state.stencil.back.action_stencil_fail = MaxwellToGL::StencilOp(regs.stencil_back_op_fail); state.stencil.back.action_depth_fail = MaxwellToGL::StencilOp(regs.stencil_back_op_zfail); state.stencil.back.action_depth_pass = MaxwellToGL::StencilOp(regs.stencil_back_op_zpass); state.stencil.back.write_mask = regs.stencil_back_mask; } else { state.stencil.back.test_func = GL_ALWAYS; state.stencil.back.test_ref = 0; state.stencil.back.test_mask = 0xFFFFFFFF; state.stencil.back.write_mask = 0xFFFFFFFF; state.stencil.back.action_stencil_fail = GL_KEEP; state.stencil.back.action_depth_fail = GL_KEEP; state.stencil.back.action_depth_pass = GL_KEEP; } } void RasterizerOpenGL::SyncColorMask() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; const std::size_t count = regs.independent_blend_enable ? Tegra::Engines::Maxwell3D::Regs::NumRenderTargets : 1; for (std::size_t i = 0; i < count; i++) { const auto& source = regs.color_mask[regs.color_mask_common ? 0 : i]; auto& dest = state.color_mask[i]; dest.red_enabled = (source.R == 0) ? GL_FALSE : GL_TRUE; dest.green_enabled = (source.G == 0) ? GL_FALSE : GL_TRUE; dest.blue_enabled = (source.B == 0) ? GL_FALSE : GL_TRUE; dest.alpha_enabled = (source.A == 0) ? GL_FALSE : GL_TRUE; } } void RasterizerOpenGL::SyncMultiSampleState() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.multisample_control.alpha_to_coverage = regs.multisample_control.alpha_to_coverage != 0; state.multisample_control.alpha_to_one = regs.multisample_control.alpha_to_one != 0; } void RasterizerOpenGL::SyncFragmentColorClampState() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.fragment_color_clamp.enabled = regs.frag_color_clamp != 0; } void RasterizerOpenGL::SyncBlendState() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.blend_color.red = regs.blend_color.r; state.blend_color.green = regs.blend_color.g; state.blend_color.blue = regs.blend_color.b; state.blend_color.alpha = regs.blend_color.a; state.independant_blend.enabled = regs.independent_blend_enable; if (!state.independant_blend.enabled) { auto& blend = state.blend[0]; const auto& src = regs.blend; blend.enabled = src.enable[0] != 0; if (blend.enabled) { blend.rgb_equation = MaxwellToGL::BlendEquation(src.equation_rgb); blend.src_rgb_func = MaxwellToGL::BlendFunc(src.factor_source_rgb); blend.dst_rgb_func = MaxwellToGL::BlendFunc(src.factor_dest_rgb); blend.a_equation = MaxwellToGL::BlendEquation(src.equation_a); blend.src_a_func = MaxwellToGL::BlendFunc(src.factor_source_a); blend.dst_a_func = MaxwellToGL::BlendFunc(src.factor_dest_a); } for (std::size_t i = 1; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) { state.blend[i].enabled = false; } return; } for (std::size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) { auto& blend = state.blend[i]; const auto& src = regs.independent_blend[i]; blend.enabled = regs.blend.enable[i] != 0; if (!blend.enabled) continue; blend.rgb_equation = MaxwellToGL::BlendEquation(src.equation_rgb); blend.src_rgb_func = MaxwellToGL::BlendFunc(src.factor_source_rgb); blend.dst_rgb_func = MaxwellToGL::BlendFunc(src.factor_dest_rgb); blend.a_equation = MaxwellToGL::BlendEquation(src.equation_a); blend.src_a_func = MaxwellToGL::BlendFunc(src.factor_source_a); blend.dst_a_func = MaxwellToGL::BlendFunc(src.factor_dest_a); } } void RasterizerOpenGL::SyncLogicOpState() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.logic_op.enabled = regs.logic_op.enable != 0; if (!state.logic_op.enabled) return; ASSERT_MSG(regs.blend.enable[0] == 0, "Blending and logic op can't be enabled at the same time."); state.logic_op.operation = MaxwellToGL::LogicOp(regs.logic_op.operation); } void RasterizerOpenGL::SyncScissorTest(OpenGLState& current_state) { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; const bool geometry_shaders_enabled = regs.IsShaderConfigEnabled(static_cast(Maxwell::ShaderProgram::Geometry)); const std::size_t viewport_count = geometry_shaders_enabled ? Tegra::Engines::Maxwell3D::Regs::NumViewports : 1; for (std::size_t i = 0; i < viewport_count; i++) { const auto& src = regs.scissor_test[i]; auto& dst = current_state.viewports[i].scissor; dst.enabled = (src.enable != 0); if (dst.enabled == 0) { return; } const u32 width = src.max_x - src.min_x; const u32 height = src.max_y - src.min_y; dst.x = src.min_x; dst.y = src.min_y; dst.width = width; dst.height = height; } } void RasterizerOpenGL::SyncTransformFeedback() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; if (regs.tfb_enabled != 0) { LOG_CRITICAL(Render_OpenGL, "Transform feedbacks are not implemented"); UNREACHABLE(); } } void RasterizerOpenGL::SyncPointState() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.point.size = regs.point_size; } void RasterizerOpenGL::SyncPolygonOffset() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; state.polygon_offset.fill_enable = regs.polygon_offset_fill_enable != 0; state.polygon_offset.line_enable = regs.polygon_offset_line_enable != 0; state.polygon_offset.point_enable = regs.polygon_offset_point_enable != 0; state.polygon_offset.units = regs.polygon_offset_units; state.polygon_offset.factor = regs.polygon_offset_factor; state.polygon_offset.clamp = regs.polygon_offset_clamp; } void RasterizerOpenGL::CheckAlphaTests() { const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs; if (regs.alpha_test_enabled != 0 && regs.rt_control.count > 1) { LOG_CRITICAL(Render_OpenGL, "Alpha Testing is enabled with Multiple Render Targets, " "this behavior is undefined."); UNREACHABLE(); } } } // namespace OpenGL