// Copyright 2017 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once #include #include "common/assert.h" #include "common/bit_field.h" #include "common/common_funcs.h" #include "common/common_types.h" namespace Pica { struct PipelineRegs { enum class VertexAttributeFormat : u32 { BYTE = 0, UBYTE = 1, SHORT = 2, FLOAT = 3, }; struct { BitField<0, 29, u32> base_address; PAddr GetPhysicalBaseAddress() const { return base_address * 8; } // Descriptor for internal vertex attributes union { BitField<0, 2, VertexAttributeFormat> format0; // size of one element BitField<2, 2, u32> size0; // number of elements minus 1 BitField<4, 2, VertexAttributeFormat> format1; BitField<6, 2, u32> size1; BitField<8, 2, VertexAttributeFormat> format2; BitField<10, 2, u32> size2; BitField<12, 2, VertexAttributeFormat> format3; BitField<14, 2, u32> size3; BitField<16, 2, VertexAttributeFormat> format4; BitField<18, 2, u32> size4; BitField<20, 2, VertexAttributeFormat> format5; BitField<22, 2, u32> size5; BitField<24, 2, VertexAttributeFormat> format6; BitField<26, 2, u32> size6; BitField<28, 2, VertexAttributeFormat> format7; BitField<30, 2, u32> size7; }; union { BitField<0, 2, VertexAttributeFormat> format8; BitField<2, 2, u32> size8; BitField<4, 2, VertexAttributeFormat> format9; BitField<6, 2, u32> size9; BitField<8, 2, VertexAttributeFormat> format10; BitField<10, 2, u32> size10; BitField<12, 2, VertexAttributeFormat> format11; BitField<14, 2, u32> size11; BitField<16, 12, u32> attribute_mask; // number of total attributes minus 1 BitField<28, 4, u32> max_attribute_index; }; inline VertexAttributeFormat GetFormat(int n) const { VertexAttributeFormat formats[] = {format0, format1, format2, format3, format4, format5, format6, format7, format8, format9, format10, format11}; return formats[n]; } inline int GetNumElements(int n) const { u32 sizes[] = {size0, size1, size2, size3, size4, size5, size6, size7, size8, size9, size10, size11}; return (int)sizes[n] + 1; } inline int GetElementSizeInBytes(int n) const { return (GetFormat(n) == VertexAttributeFormat::FLOAT) ? 4 : (GetFormat(n) == VertexAttributeFormat::SHORT) ? 2 : 1; } inline int GetStride(int n) const { return GetNumElements(n) * GetElementSizeInBytes(n); } inline bool IsDefaultAttribute(int id) const { return (id >= 12) || (attribute_mask & (1ULL << id)) != 0; } inline int GetNumTotalAttributes() const { return (int)max_attribute_index + 1; } // Attribute loaders map the source vertex data to input attributes // This e.g. allows to load different attributes from different memory locations struct { // Source attribute data offset from the base address u32 data_offset; union { BitField<0, 4, u32> comp0; BitField<4, 4, u32> comp1; BitField<8, 4, u32> comp2; BitField<12, 4, u32> comp3; BitField<16, 4, u32> comp4; BitField<20, 4, u32> comp5; BitField<24, 4, u32> comp6; BitField<28, 4, u32> comp7; }; union { BitField<0, 4, u32> comp8; BitField<4, 4, u32> comp9; BitField<8, 4, u32> comp10; BitField<12, 4, u32> comp11; // bytes for a single vertex in this loader BitField<16, 8, u32> byte_count; BitField<28, 4, u32> component_count; }; inline int GetComponent(int n) const { u32 components[] = {comp0, comp1, comp2, comp3, comp4, comp5, comp6, comp7, comp8, comp9, comp10, comp11}; return (int)components[n]; } } attribute_loaders[12]; } vertex_attributes; struct { enum IndexFormat : u32 { BYTE = 0, SHORT = 1, }; union { BitField<0, 31, u32> offset; // relative to base attribute address BitField<31, 1, IndexFormat> format; }; } index_array; // Number of vertices to render u32 num_vertices; INSERT_PADDING_WORDS(0x1); // The index of the first vertex to render u32 vertex_offset; INSERT_PADDING_WORDS(0x3); // These two trigger rendering of triangles u32 trigger_draw; u32 trigger_draw_indexed; INSERT_PADDING_WORDS(0x2); // These registers are used to setup the default "fall-back" vertex shader attributes struct { // Index of the current default attribute u32 index; // Writing to these registers sets the "current" default attribute. u32 set_value[3]; } vs_default_attributes_setup; INSERT_PADDING_WORDS(0x2); struct { // There are two channels that can be used to configure the next command buffer, which can // be then executed by writing to the "trigger" registers. There are two reasons why a game // might use this feature: // 1) With this, an arbitrary number of additional command buffers may be executed in // sequence without requiring any intervention of the CPU after the initial one is // kicked off. // 2) Games can configure these registers to provide a command list subroutine mechanism. BitField<0, 20, u32> size[2]; ///< Size (in bytes / 8) of each channel's command buffer BitField<0, 28, u32> addr[2]; ///< Physical address / 8 of each channel's command buffer u32 trigger[2]; ///< Triggers execution of the channel's command buffer when written to unsigned GetSize(unsigned index) const { ASSERT(index < 2); return 8 * size[index]; } PAddr GetPhysicalAddress(unsigned index) const { ASSERT(index < 2); return (PAddr)(8 * addr[index]); } } command_buffer; INSERT_PADDING_WORDS(4); /// Number of input attributes to the vertex shader minus 1 BitField<0, 4, u32> max_input_attrib_index; INSERT_PADDING_WORDS(2); enum class GPUMode : u32 { Drawing = 0, Configuring = 1, }; GPUMode gpu_mode; INSERT_PADDING_WORDS(0x18); enum class TriangleTopology : u32 { List = 0, Strip = 1, Fan = 2, Shader = 3, // Programmable setup unit implemented in a geometry shader }; BitField<8, 2, TriangleTopology> triangle_topology; u32 restart_primitive; INSERT_PADDING_WORDS(0x20); }; static_assert(sizeof(PipelineRegs) == 0x80 * sizeof(u32), "PipelineRegs struct has incorrect size"); } // namespace Pica