// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include "common/common_types.h" #include "math.h" #include "pica.h" #include "rasterizer.h" #include "vertex_shader.h" namespace Pica { namespace Rasterizer { static void DrawPixel(int x, int y, const Math::Vec4& color) { u32* color_buffer = (u32*)Memory::GetPointer(registers.framebuffer.GetColorBufferAddress()); u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); // Assuming RGBA8 format until actual framebuffer format handling is implemented *(color_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value; } static u32 GetDepth(int x, int y) { u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress()); // Assuming 16-bit depth buffer format until actual format handling is implemented return *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2); } static void SetDepth(int x, int y, u16 value) { u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress()); // Assuming 16-bit depth buffer format until actual format handling is implemented *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value; } void ProcessTriangle(const VertexShader::OutputVertex& v0, const VertexShader::OutputVertex& v1, const VertexShader::OutputVertex& v2) { // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values struct Fix12P4 { Fix12P4() {} Fix12P4(u16 val) : val(val) {} static u16 FracMask() { return 0xF; } static u16 IntMask() { return (u16)~0xF; } operator u16() const { return val; } bool operator < (const Fix12P4& oth) const { return (u16)*this < (u16)oth; } private: u16 val; }; // vertex positions in rasterizer coordinates auto FloatToFix = [](float24 flt) { return Fix12P4(flt.ToFloat32() * 16.0f); }; auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3 vec) { return Math::Vec3{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; }; Math::Vec3 vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos), ScreenToRasterizerCoordinates(v1.screenpos), ScreenToRasterizerCoordinates(v2.screenpos) }; // TODO: Proper scissor rect test! u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); min_x = min_x & Fix12P4::IntMask(); min_y = min_y & Fix12P4::IntMask(); max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask(); max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask(); // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias // values which are added to the barycentric coordinates w0, w1 and w2, respectively. // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones... auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2& vtx, const Math::Vec2& line1, const Math::Vec2& line2) { if (line1.y == line2.y) { // just check if vertex is above us => bottom line parallel to x-axis return vtx.y < line1.y; } else { // check if vertex is on our left => right side // TODO: Not sure how likely this is to overflow return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y); } }; int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; // TODO: Not sure if looping through x first might be faster for (u16 y = min_y; y < max_y; y += 0x10) { for (u16 x = min_x; x < max_x; x += 0x10) { // Calculate the barycentric coordinates w0, w1 and w2 auto orient2d = [](const Math::Vec2& vtx1, const Math::Vec2& vtx2, const Math::Vec2& vtx3) { const auto vec1 = (vtx2.Cast() - vtx1.Cast()).Append(0); const auto vec2 = (vtx3.Cast() - vtx1.Cast()).Append(0); // TODO: There is a very small chance this will overflow for sizeof(int) == 4 return Cross(vec1, vec2).z; }; int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); int wsum = w0 + w1 + w2; // If current pixel is not covered by the current primitive if (w0 < 0 || w1 < 0 || w2 < 0) continue; // Perspective correct attribute interpolation: // Attribute values cannot be calculated by simple linear interpolation since // they are not linear in screen space. For example, when interpolating a // texture coordinate across two vertices, something simple like // u = (u0*w0 + u1*w1)/(w0+w1) // will not work. However, the attribute value divided by the // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear // in screenspace. Hence, we can linearly interpolate these two independently and // calculate the interpolated attribute by dividing the results. // I.e. // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) // u = u_over_w / one_over_w // // The generalization to three vertices is straightforward in baricentric coordinates. auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w, attr1 / v1.pos.w, attr2 / v2.pos.w); auto w_inverse = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w, float24::FromFloat32(1.f) / v1.pos.w, float24::FromFloat32(1.f) / v2.pos.w); auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0), float24::FromFloat32(w1), float24::FromFloat32(w2)); float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates); return interpolated_attr_over_w / interpolated_w_inverse; }; Math::Vec4 primary_color{ (u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255), (u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255) }; u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 + (float)v1.screenpos[2].ToFloat32() * w1 + (float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); // TODO: Shouldn't need to multiply by 65536? SetDepth(x >> 4, y >> 4, z); DrawPixel(x >> 4, y >> 4, primary_color); } } } } // namespace Rasterizer } // namespace Pica