// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/assert.h" #include "common/logging/log.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/macro_interpreter.h" namespace Tegra { MacroInterpreter::MacroInterpreter(Engines::Maxwell3D& maxwell3d) : maxwell3d(maxwell3d) {} void MacroInterpreter::Execute(u32 offset, std::vector parameters) { Reset(); registers[1] = parameters[0]; this->parameters = std::move(parameters); // Execute the code until we hit an exit condition. bool keep_executing = true; while (keep_executing) { keep_executing = Step(offset, false); } // Assert the the macro used all the input parameters ASSERT(next_parameter_index == this->parameters.size()); } void MacroInterpreter::Reset() { registers = {}; pc = 0; delayed_pc = {}; method_address.raw = 0; parameters.clear(); // The next parameter index starts at 1, because $r1 already has the value of the first // parameter. next_parameter_index = 1; carry_flag = false; } bool MacroInterpreter::Step(u32 offset, bool is_delay_slot) { u32 base_address = pc; Opcode opcode = GetOpcode(offset); pc += 4; // Update the program counter if we were delayed if (delayed_pc) { ASSERT(is_delay_slot); pc = *delayed_pc; delayed_pc = {}; } switch (opcode.operation) { case Operation::ALU: { u32 result = GetALUResult(opcode.alu_operation, GetRegister(opcode.src_a), GetRegister(opcode.src_b)); ProcessResult(opcode.result_operation, opcode.dst, result); break; } case Operation::AddImmediate: { ProcessResult(opcode.result_operation, opcode.dst, GetRegister(opcode.src_a) + opcode.immediate); break; } case Operation::ExtractInsert: { u32 dst = GetRegister(opcode.src_a); u32 src = GetRegister(opcode.src_b); src = (src >> opcode.bf_src_bit) & opcode.GetBitfieldMask(); dst &= ~(opcode.GetBitfieldMask() << opcode.bf_dst_bit); dst |= src << opcode.bf_dst_bit; ProcessResult(opcode.result_operation, opcode.dst, dst); break; } case Operation::ExtractShiftLeftImmediate: { u32 dst = GetRegister(opcode.src_a); u32 src = GetRegister(opcode.src_b); u32 result = ((src >> dst) & opcode.GetBitfieldMask()) << opcode.bf_dst_bit; ProcessResult(opcode.result_operation, opcode.dst, result); break; } case Operation::ExtractShiftLeftRegister: { u32 dst = GetRegister(opcode.src_a); u32 src = GetRegister(opcode.src_b); u32 result = ((src >> opcode.bf_src_bit) & opcode.GetBitfieldMask()) << dst; ProcessResult(opcode.result_operation, opcode.dst, result); break; } case Operation::Read: { u32 result = Read(GetRegister(opcode.src_a) + opcode.immediate); ProcessResult(opcode.result_operation, opcode.dst, result); break; } case Operation::Branch: { ASSERT_MSG(!is_delay_slot, "Executing a branch in a delay slot is not valid"); u32 value = GetRegister(opcode.src_a); bool taken = EvaluateBranchCondition(opcode.branch_condition, value); if (taken) { // Ignore the delay slot if the branch has the annul bit. if (opcode.branch_annul) { pc = base_address + opcode.GetBranchTarget(); return true; } delayed_pc = base_address + opcode.GetBranchTarget(); // Execute one more instruction due to the delay slot. return Step(offset, true); } break; } default: UNIMPLEMENTED_MSG("Unimplemented macro operation {}", static_cast(opcode.operation.Value())); } // An instruction with the Exit flag will not actually // cause an exit if it's executed inside a delay slot. // TODO(Blinkhawk): Reversed to always exit. The behavior explained above requires further // testing on the MME code. if (opcode.is_exit) { // Exit has a delay slot, execute the next instruction Step(offset, true); return false; } return true; } MacroInterpreter::Opcode MacroInterpreter::GetOpcode(u32 offset) const { const auto& macro_memory{maxwell3d.GetMacroMemory()}; ASSERT((pc % sizeof(u32)) == 0); ASSERT((pc + offset) < macro_memory.size() * sizeof(u32)); return {macro_memory[offset + pc / sizeof(u32)]}; } u32 MacroInterpreter::GetALUResult(ALUOperation operation, u32 src_a, u32 src_b) { switch (operation) { case ALUOperation::Add: { const u64 result{static_cast(src_a) + src_b}; carry_flag = result > 0xffffffff; return static_cast(result); } case ALUOperation::AddWithCarry: { const u64 result{static_cast(src_a) + src_b + (carry_flag ? 1ULL : 0ULL)}; carry_flag = result > 0xffffffff; return static_cast(result); } case ALUOperation::Subtract: { const u64 result{static_cast(src_a) - src_b}; carry_flag = result < 0x100000000; return static_cast(result); } case ALUOperation::SubtractWithBorrow: { const u64 result{static_cast(src_a) - src_b - (carry_flag ? 0ULL : 1ULL)}; carry_flag = result < 0x100000000; return static_cast(result); } case ALUOperation::Xor: return src_a ^ src_b; case ALUOperation::Or: return src_a | src_b; case ALUOperation::And: return src_a & src_b; case ALUOperation::AndNot: return src_a & ~src_b; case ALUOperation::Nand: return ~(src_a & src_b); default: UNIMPLEMENTED_MSG("Unimplemented ALU operation {}", static_cast(operation)); return 0; } } void MacroInterpreter::ProcessResult(ResultOperation operation, u32 reg, u32 result) { switch (operation) { case ResultOperation::IgnoreAndFetch: // Fetch parameter and ignore result. SetRegister(reg, FetchParameter()); break; case ResultOperation::Move: // Move result. SetRegister(reg, result); break; case ResultOperation::MoveAndSetMethod: // Move result and use as Method Address. SetRegister(reg, result); SetMethodAddress(result); break; case ResultOperation::FetchAndSend: // Fetch parameter and send result. SetRegister(reg, FetchParameter()); Send(result); break; case ResultOperation::MoveAndSend: // Move and send result. SetRegister(reg, result); Send(result); break; case ResultOperation::FetchAndSetMethod: // Fetch parameter and use result as Method Address. SetRegister(reg, FetchParameter()); SetMethodAddress(result); break; case ResultOperation::MoveAndSetMethodFetchAndSend: // Move result and use as Method Address, then fetch and send parameter. SetRegister(reg, result); SetMethodAddress(result); Send(FetchParameter()); break; case ResultOperation::MoveAndSetMethodSend: // Move result and use as Method Address, then send bits 12:17 of result. SetRegister(reg, result); SetMethodAddress(result); Send((result >> 12) & 0b111111); break; default: UNIMPLEMENTED_MSG("Unimplemented result operation {}", static_cast(operation)); } } u32 MacroInterpreter::FetchParameter() { return parameters.at(next_parameter_index++); } u32 MacroInterpreter::GetRegister(u32 register_id) const { return registers.at(register_id); } void MacroInterpreter::SetRegister(u32 register_id, u32 value) { // Register 0 is hardwired as the zero register. // Ensure no writes to it actually occur. if (register_id == 0) { return; } registers.at(register_id) = value; } void MacroInterpreter::SetMethodAddress(u32 address) { method_address.raw = address; } void MacroInterpreter::Send(u32 value) { maxwell3d.CallMethod({method_address.address, value}); // Increment the method address by the method increment. method_address.address.Assign(method_address.address.Value() + method_address.increment.Value()); } u32 MacroInterpreter::Read(u32 method) const { return maxwell3d.GetRegisterValue(method); } bool MacroInterpreter::EvaluateBranchCondition(BranchCondition cond, u32 value) const { switch (cond) { case BranchCondition::Zero: return value == 0; case BranchCondition::NotZero: return value != 0; } UNREACHABLE(); return true; } } // namespace Tegra