// Copyright 2019 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/assert.h" #include "common/microprofile.h" #include "common/scope_exit.h" #include "common/settings.h" #include "common/thread.h" #include "core/core.h" #include "core/frontend/emu_window.h" #include "video_core/dma_pusher.h" #include "video_core/gpu.h" #include "video_core/gpu_thread.h" #include "video_core/renderer_base.h" namespace VideoCommon::GPUThread { /// Runs the GPU thread static void RunThread(Core::System& system, VideoCore::RendererBase& renderer, Core::Frontend::GraphicsContext& context, Tegra::DmaPusher& dma_pusher, SynchState& state) { std::string name = "yuzu:GPU"; MicroProfileOnThreadCreate(name.c_str()); SCOPE_EXIT({ MicroProfileOnThreadExit(); }); Common::SetCurrentThreadName(name.c_str()); Common::SetCurrentThreadPriority(Common::ThreadPriority::High); system.RegisterHostThread(); // Wait for first GPU command before acquiring the window context state.queue.Wait(); // If emulation was stopped during disk shader loading, abort before trying to acquire context if (!state.is_running) { return; } auto current_context = context.Acquire(); VideoCore::RasterizerInterface* const rasterizer = renderer.ReadRasterizer(); CommandDataContainer next; while (state.is_running) { next = state.queue.PopWait(); if (auto* submit_list = std::get_if(&next.data)) { dma_pusher.Push(std::move(submit_list->entries)); dma_pusher.DispatchCalls(); } else if (const auto* data = std::get_if(&next.data)) { renderer.SwapBuffers(data->framebuffer ? &*data->framebuffer : nullptr); } else if (std::holds_alternative(next.data)) { rasterizer->ReleaseFences(); } else if (std::holds_alternative(next.data)) { system.GPU().TickWork(); } else if (const auto* flush = std::get_if(&next.data)) { rasterizer->FlushRegion(flush->addr, flush->size); } else if (const auto* invalidate = std::get_if(&next.data)) { rasterizer->OnCPUWrite(invalidate->addr, invalidate->size); } else if (std::holds_alternative(next.data)) { ASSERT(state.is_running == false); } else { UNREACHABLE(); } state.signaled_fence.store(next.fence); if (next.block) { // We have to lock the write_lock to ensure that the condition_variable wait not get a // race between the check and the lock itself. std::lock_guard lk(state.write_lock); state.cv.notify_all(); } } } ThreadManager::ThreadManager(Core::System& system_, bool is_async_) : system{system_}, is_async{is_async_} {} ThreadManager::~ThreadManager() { ShutDown(); } void ThreadManager::StartThread(VideoCore::RendererBase& renderer, Core::Frontend::GraphicsContext& context, Tegra::DmaPusher& dma_pusher) { rasterizer = renderer.ReadRasterizer(); thread = std::thread(RunThread, std::ref(system), std::ref(renderer), std::ref(context), std::ref(dma_pusher), std::ref(state)); } void ThreadManager::SubmitList(Tegra::CommandList&& entries) { PushCommand(SubmitListCommand(std::move(entries))); } void ThreadManager::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) { PushCommand(SwapBuffersCommand(framebuffer ? std::make_optional(*framebuffer) : std::nullopt)); } void ThreadManager::FlushRegion(VAddr addr, u64 size) { if (!is_async) { // Always flush with synchronous GPU mode PushCommand(FlushRegionCommand(addr, size)); return; } if (!Settings::IsGPULevelExtreme()) { return; } auto& gpu = system.GPU(); u64 fence = gpu.RequestFlush(addr, size); PushCommand(GPUTickCommand(), true); ASSERT(fence <= gpu.CurrentFlushRequestFence()); } void ThreadManager::InvalidateRegion(VAddr addr, u64 size) { rasterizer->OnCPUWrite(addr, size); } void ThreadManager::FlushAndInvalidateRegion(VAddr addr, u64 size) { // Skip flush on asynch mode, as FlushAndInvalidateRegion is not used for anything too important rasterizer->OnCPUWrite(addr, size); } void ThreadManager::ShutDown() { if (!state.is_running) { return; } { std::lock_guard lk(state.write_lock); state.is_running = false; state.cv.notify_all(); } if (!thread.joinable()) { return; } // Notify GPU thread that a shutdown is pending PushCommand(EndProcessingCommand()); thread.join(); } void ThreadManager::OnCommandListEnd() { PushCommand(OnCommandListEndCommand()); } u64 ThreadManager::PushCommand(CommandData&& command_data, bool block) { if (!is_async) { // In synchronous GPU mode, block the caller until the command has executed block = true; } std::unique_lock lk(state.write_lock); const u64 fence{++state.last_fence}; state.queue.Push(CommandDataContainer(std::move(command_data), fence, block)); if (block) { state.cv.wait(lk, [this, fence] { return fence <= state.signaled_fence.load(std::memory_order_relaxed) || !state.is_running; }); } return fence; } } // namespace VideoCommon::GPUThread