// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/assert.h" #include "common/microprofile.h" #include "core/core.h" #include "core/core_timing.h" #include "core/core_timing_util.h" #include "core/frontend/emu_window.h" #include "core/memory.h" #include "core/settings.h" #include "video_core/engines/fermi_2d.h" #include "video_core/engines/kepler_compute.h" #include "video_core/engines/kepler_memory.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_dma.h" #include "video_core/gpu.h" #include "video_core/memory_manager.h" #include "video_core/renderer_base.h" #include "video_core/video_core.h" namespace Tegra { MICROPROFILE_DEFINE(GPU_wait, "GPU", "Wait for the GPU", MP_RGB(128, 128, 192)); GPU::GPU(Core::System& system, std::unique_ptr&& renderer_, bool is_async) : system{system}, renderer{std::move(renderer_)}, is_async{is_async} { auto& rasterizer{renderer->Rasterizer()}; memory_manager = std::make_unique(system, rasterizer); dma_pusher = std::make_unique(system, *this); maxwell_3d = std::make_unique(system, rasterizer, *memory_manager); fermi_2d = std::make_unique(rasterizer); kepler_compute = std::make_unique(system, rasterizer, *memory_manager); maxwell_dma = std::make_unique(system, *memory_manager); kepler_memory = std::make_unique(system, *memory_manager); } GPU::~GPU() = default; Engines::Maxwell3D& GPU::Maxwell3D() { return *maxwell_3d; } const Engines::Maxwell3D& GPU::Maxwell3D() const { return *maxwell_3d; } Engines::KeplerCompute& GPU::KeplerCompute() { return *kepler_compute; } const Engines::KeplerCompute& GPU::KeplerCompute() const { return *kepler_compute; } MemoryManager& GPU::MemoryManager() { return *memory_manager; } const MemoryManager& GPU::MemoryManager() const { return *memory_manager; } DmaPusher& GPU::DmaPusher() { return *dma_pusher; } const DmaPusher& GPU::DmaPusher() const { return *dma_pusher; } void GPU::WaitFence(u32 syncpoint_id, u32 value) { // Synced GPU, is always in sync if (!is_async) { return; } MICROPROFILE_SCOPE(GPU_wait); std::unique_lock lock{sync_mutex}; sync_cv.wait(lock, [=]() { return syncpoints[syncpoint_id].load() >= value; }); } void GPU::IncrementSyncPoint(const u32 syncpoint_id) { syncpoints[syncpoint_id]++; std::lock_guard lock{sync_mutex}; sync_cv.notify_all(); if (!syncpt_interrupts[syncpoint_id].empty()) { u32 value = syncpoints[syncpoint_id].load(); auto it = syncpt_interrupts[syncpoint_id].begin(); while (it != syncpt_interrupts[syncpoint_id].end()) { if (value >= *it) { TriggerCpuInterrupt(syncpoint_id, *it); it = syncpt_interrupts[syncpoint_id].erase(it); continue; } it++; } } } u32 GPU::GetSyncpointValue(const u32 syncpoint_id) const { return syncpoints[syncpoint_id].load(); } void GPU::RegisterSyncptInterrupt(const u32 syncpoint_id, const u32 value) { auto& interrupt = syncpt_interrupts[syncpoint_id]; bool contains = std::any_of(interrupt.begin(), interrupt.end(), [value](u32 in_value) { return in_value == value; }); if (contains) { return; } syncpt_interrupts[syncpoint_id].emplace_back(value); } bool GPU::CancelSyncptInterrupt(const u32 syncpoint_id, const u32 value) { std::lock_guard lock{sync_mutex}; auto& interrupt = syncpt_interrupts[syncpoint_id]; const auto iter = std::find_if(interrupt.begin(), interrupt.end(), [value](u32 interrupt_value) { return value == interrupt_value; }); if (iter == interrupt.end()) { return false; } interrupt.erase(iter); return true; } u64 GPU::RequestFlush(VAddr addr, std::size_t size) { std::unique_lock lck{flush_request_mutex}; const u64 fence = ++last_flush_fence; flush_requests.emplace_back(fence, addr, size); return fence; } void GPU::TickWork() { std::unique_lock lck{flush_request_mutex}; while (!flush_requests.empty()) { auto& request = flush_requests.front(); const u64 fence = request.fence; const VAddr addr = request.addr; const std::size_t size = request.size; flush_requests.pop_front(); flush_request_mutex.unlock(); renderer->Rasterizer().FlushRegion(addr, size); current_flush_fence.store(fence); flush_request_mutex.lock(); } } u64 GPU::GetTicks() const { // This values were reversed engineered by fincs from NVN // The gpu clock is reported in units of 385/625 nanoseconds constexpr u64 gpu_ticks_num = 384; constexpr u64 gpu_ticks_den = 625; const u64 cpu_ticks = system.CoreTiming().GetTicks(); u64 nanoseconds = Core::Timing::CyclesToNs(cpu_ticks).count(); if (Settings::values.use_fast_gpu_time) { nanoseconds /= 256; } const u64 nanoseconds_num = nanoseconds / gpu_ticks_den; const u64 nanoseconds_rem = nanoseconds % gpu_ticks_den; return nanoseconds_num * gpu_ticks_num + (nanoseconds_rem * gpu_ticks_num) / gpu_ticks_den; } void GPU::FlushCommands() { renderer->Rasterizer().FlushCommands(); } void GPU::SyncGuestHost() { renderer->Rasterizer().SyncGuestHost(); } void GPU::OnCommandListEnd() { renderer->Rasterizer().ReleaseFences(); } // Note that, traditionally, methods are treated as 4-byte addressable locations, and hence // their numbers are written down multiplied by 4 in Docs. Here we are not multiply by 4. // So the values you see in docs might be multiplied by 4. enum class BufferMethods { BindObject = 0x0, Nop = 0x2, SemaphoreAddressHigh = 0x4, SemaphoreAddressLow = 0x5, SemaphoreSequence = 0x6, SemaphoreTrigger = 0x7, NotifyIntr = 0x8, WrcacheFlush = 0x9, Unk28 = 0xA, UnkCacheFlush = 0xB, RefCnt = 0x14, SemaphoreAcquire = 0x1A, SemaphoreRelease = 0x1B, FenceValue = 0x1C, FenceAction = 0x1D, Unk78 = 0x1E, Unk7c = 0x1F, Yield = 0x20, NonPullerMethods = 0x40, }; enum class GpuSemaphoreOperation { AcquireEqual = 0x1, WriteLong = 0x2, AcquireGequal = 0x4, AcquireMask = 0x8, }; void GPU::CallMethod(const MethodCall& method_call) { LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method_call.method, method_call.subchannel); ASSERT(method_call.subchannel < bound_engines.size()); if (ExecuteMethodOnEngine(method_call.method)) { CallEngineMethod(method_call); } else { CallPullerMethod(method_call); } } void GPU::CallMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount, u32 methods_pending) { LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method, subchannel); ASSERT(subchannel < bound_engines.size()); if (ExecuteMethodOnEngine(method)) { CallEngineMultiMethod(method, subchannel, base_start, amount, methods_pending); } else { for (std::size_t i = 0; i < amount; i++) { CallPullerMethod( {method, base_start[i], subchannel, methods_pending - static_cast(i)}); } } } bool GPU::ExecuteMethodOnEngine(u32 method) { const auto buffer_method = static_cast(method); return buffer_method >= BufferMethods::NonPullerMethods; } void GPU::CallPullerMethod(const MethodCall& method_call) { regs.reg_array[method_call.method] = method_call.argument; const auto method = static_cast(method_call.method); switch (method) { case BufferMethods::BindObject: { ProcessBindMethod(method_call); break; } case BufferMethods::Nop: case BufferMethods::SemaphoreAddressHigh: case BufferMethods::SemaphoreAddressLow: case BufferMethods::SemaphoreSequence: case BufferMethods::RefCnt: case BufferMethods::UnkCacheFlush: case BufferMethods::WrcacheFlush: case BufferMethods::FenceValue: case BufferMethods::FenceAction: break; case BufferMethods::SemaphoreTrigger: { ProcessSemaphoreTriggerMethod(); break; } case BufferMethods::NotifyIntr: { // TODO(Kmather73): Research and implement this method. LOG_ERROR(HW_GPU, "Special puller engine method NotifyIntr not implemented"); break; } case BufferMethods::Unk28: { // TODO(Kmather73): Research and implement this method. LOG_ERROR(HW_GPU, "Special puller engine method Unk28 not implemented"); break; } case BufferMethods::SemaphoreAcquire: { ProcessSemaphoreAcquire(); break; } case BufferMethods::SemaphoreRelease: { ProcessSemaphoreRelease(); break; } case BufferMethods::Yield: { // TODO(Kmather73): Research and implement this method. LOG_ERROR(HW_GPU, "Special puller engine method Yield not implemented"); break; } default: LOG_ERROR(HW_GPU, "Special puller engine method {:X} not implemented", static_cast(method)); break; } } void GPU::CallEngineMethod(const MethodCall& method_call) { const EngineID engine = bound_engines[method_call.subchannel]; switch (engine) { case EngineID::FERMI_TWOD_A: fermi_2d->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; case EngineID::MAXWELL_B: maxwell_3d->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; case EngineID::KEPLER_COMPUTE_B: kepler_compute->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; case EngineID::MAXWELL_DMA_COPY_A: maxwell_dma->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; case EngineID::KEPLER_INLINE_TO_MEMORY_B: kepler_memory->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; default: UNIMPLEMENTED_MSG("Unimplemented engine"); } } void GPU::CallEngineMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount, u32 methods_pending) { const EngineID engine = bound_engines[subchannel]; switch (engine) { case EngineID::FERMI_TWOD_A: fermi_2d->CallMultiMethod(method, base_start, amount, methods_pending); break; case EngineID::MAXWELL_B: maxwell_3d->CallMultiMethod(method, base_start, amount, methods_pending); break; case EngineID::KEPLER_COMPUTE_B: kepler_compute->CallMultiMethod(method, base_start, amount, methods_pending); break; case EngineID::MAXWELL_DMA_COPY_A: maxwell_dma->CallMultiMethod(method, base_start, amount, methods_pending); break; case EngineID::KEPLER_INLINE_TO_MEMORY_B: kepler_memory->CallMultiMethod(method, base_start, amount, methods_pending); break; default: UNIMPLEMENTED_MSG("Unimplemented engine"); } } void GPU::ProcessBindMethod(const MethodCall& method_call) { // Bind the current subchannel to the desired engine id. LOG_DEBUG(HW_GPU, "Binding subchannel {} to engine {}", method_call.subchannel, method_call.argument); auto engine_id = static_cast(method_call.argument); bound_engines[method_call.subchannel] = static_cast(engine_id); switch (engine_id) { case EngineID::FERMI_TWOD_A: dma_pusher->BindSubchannel(fermi_2d.get(), method_call.subchannel); break; case EngineID::MAXWELL_B: dma_pusher->BindSubchannel(maxwell_3d.get(), method_call.subchannel); break; case EngineID::KEPLER_COMPUTE_B: dma_pusher->BindSubchannel(kepler_compute.get(), method_call.subchannel); break; case EngineID::MAXWELL_DMA_COPY_A: dma_pusher->BindSubchannel(maxwell_dma.get(), method_call.subchannel); break; case EngineID::KEPLER_INLINE_TO_MEMORY_B: dma_pusher->BindSubchannel(kepler_memory.get(), method_call.subchannel); break; default: UNIMPLEMENTED_MSG("Unimplemented engine"); } } void GPU::ProcessSemaphoreTriggerMethod() { const auto semaphoreOperationMask = 0xF; const auto op = static_cast(regs.semaphore_trigger & semaphoreOperationMask); if (op == GpuSemaphoreOperation::WriteLong) { struct Block { u32 sequence; u32 zeros = 0; u64 timestamp; }; Block block{}; block.sequence = regs.semaphore_sequence; // TODO(Kmather73): Generate a real GPU timestamp and write it here instead of // CoreTiming block.timestamp = GetTicks(); memory_manager->WriteBlock(regs.semaphore_address.SemaphoreAddress(), &block, sizeof(block)); } else { const u32 word{memory_manager->Read(regs.semaphore_address.SemaphoreAddress())}; if ((op == GpuSemaphoreOperation::AcquireEqual && word == regs.semaphore_sequence) || (op == GpuSemaphoreOperation::AcquireGequal && static_cast(word - regs.semaphore_sequence) > 0) || (op == GpuSemaphoreOperation::AcquireMask && (word & regs.semaphore_sequence))) { // Nothing to do in this case } else { regs.acquire_source = true; regs.acquire_value = regs.semaphore_sequence; if (op == GpuSemaphoreOperation::AcquireEqual) { regs.acquire_active = true; regs.acquire_mode = false; } else if (op == GpuSemaphoreOperation::AcquireGequal) { regs.acquire_active = true; regs.acquire_mode = true; } else if (op == GpuSemaphoreOperation::AcquireMask) { // TODO(kemathe) The acquire mask operation waits for a value that, ANDed with // semaphore_sequence, gives a non-0 result LOG_ERROR(HW_GPU, "Invalid semaphore operation AcquireMask not implemented"); } else { LOG_ERROR(HW_GPU, "Invalid semaphore operation"); } } } } void GPU::ProcessSemaphoreRelease() { memory_manager->Write(regs.semaphore_address.SemaphoreAddress(), regs.semaphore_release); } void GPU::ProcessSemaphoreAcquire() { const u32 word = memory_manager->Read(regs.semaphore_address.SemaphoreAddress()); const auto value = regs.semaphore_acquire; if (word != value) { regs.acquire_active = true; regs.acquire_value = value; // TODO(kemathe73) figure out how to do the acquire_timeout regs.acquire_mode = false; regs.acquire_source = false; } } } // namespace Tegra