// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "common/assert.h" #include "common/microprofile.h" #include "common/settings.h" #include "core/core.h" #include "core/core_timing.h" #include "core/core_timing_util.h" #include "core/frontend/emu_window.h" #include "core/hardware_interrupt_manager.h" #include "core/memory.h" #include "video_core/engines/fermi_2d.h" #include "video_core/engines/kepler_compute.h" #include "video_core/engines/kepler_memory.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_dma.h" #include "video_core/gpu.h" #include "video_core/memory_manager.h" #include "video_core/renderer_base.h" #include "video_core/shader_notify.h" #include "video_core/video_core.h" namespace Tegra { MICROPROFILE_DEFINE(GPU_wait, "GPU", "Wait for the GPU", MP_RGB(128, 128, 192)); GPU::GPU(Core::System& system_, bool is_async_, bool use_nvdec_) : system{system_}, memory_manager{std::make_unique(system)}, dma_pusher{std::make_unique(system, *this)}, use_nvdec{use_nvdec_}, maxwell_3d{std::make_unique(system, *memory_manager)}, fermi_2d{std::make_unique()}, kepler_compute{std::make_unique(system, *memory_manager)}, maxwell_dma{std::make_unique(system, *memory_manager)}, kepler_memory{std::make_unique(system, *memory_manager)}, shader_notify{std::make_unique()}, is_async{is_async_}, gpu_thread{system_, is_async_} {} GPU::~GPU() = default; void GPU::BindRenderer(std::unique_ptr renderer_) { renderer = std::move(renderer_); rasterizer = renderer->ReadRasterizer(); memory_manager->BindRasterizer(rasterizer); maxwell_3d->BindRasterizer(rasterizer); fermi_2d->BindRasterizer(rasterizer); kepler_compute->BindRasterizer(rasterizer); } Engines::Maxwell3D& GPU::Maxwell3D() { return *maxwell_3d; } const Engines::Maxwell3D& GPU::Maxwell3D() const { return *maxwell_3d; } Engines::KeplerCompute& GPU::KeplerCompute() { return *kepler_compute; } const Engines::KeplerCompute& GPU::KeplerCompute() const { return *kepler_compute; } MemoryManager& GPU::MemoryManager() { return *memory_manager; } const MemoryManager& GPU::MemoryManager() const { return *memory_manager; } DmaPusher& GPU::DmaPusher() { return *dma_pusher; } Tegra::CDmaPusher& GPU::CDmaPusher() { return *cdma_pusher; } const DmaPusher& GPU::DmaPusher() const { return *dma_pusher; } const Tegra::CDmaPusher& GPU::CDmaPusher() const { return *cdma_pusher; } void GPU::WaitFence(u32 syncpoint_id, u32 value) { // Synced GPU, is always in sync if (!is_async) { return; } if (syncpoint_id == UINT32_MAX) { // TODO: Research what this does. LOG_ERROR(HW_GPU, "Waiting for syncpoint -1 not implemented"); return; } MICROPROFILE_SCOPE(GPU_wait); std::unique_lock lock{sync_mutex}; sync_cv.wait(lock, [=, this] { return syncpoints.at(syncpoint_id).load() >= value; }); } void GPU::IncrementSyncPoint(const u32 syncpoint_id) { auto& syncpoint = syncpoints.at(syncpoint_id); syncpoint++; std::lock_guard lock{sync_mutex}; sync_cv.notify_all(); auto& interrupt = syncpt_interrupts.at(syncpoint_id); if (!interrupt.empty()) { u32 value = syncpoint.load(); auto it = interrupt.begin(); while (it != interrupt.end()) { if (value >= *it) { TriggerCpuInterrupt(syncpoint_id, *it); it = interrupt.erase(it); continue; } it++; } } } u32 GPU::GetSyncpointValue(const u32 syncpoint_id) const { return syncpoints.at(syncpoint_id).load(); } void GPU::RegisterSyncptInterrupt(const u32 syncpoint_id, const u32 value) { auto& interrupt = syncpt_interrupts.at(syncpoint_id); bool contains = std::any_of(interrupt.begin(), interrupt.end(), [value](u32 in_value) { return in_value == value; }); if (contains) { return; } interrupt.emplace_back(value); } bool GPU::CancelSyncptInterrupt(const u32 syncpoint_id, const u32 value) { std::lock_guard lock{sync_mutex}; auto& interrupt = syncpt_interrupts.at(syncpoint_id); const auto iter = std::find_if(interrupt.begin(), interrupt.end(), [value](u32 interrupt_value) { return value == interrupt_value; }); if (iter == interrupt.end()) { return false; } interrupt.erase(iter); return true; } u64 GPU::RequestFlush(VAddr addr, std::size_t size) { std::unique_lock lck{flush_request_mutex}; const u64 fence = ++last_flush_fence; flush_requests.emplace_back(fence, addr, size); return fence; } void GPU::TickWork() { std::unique_lock lck{flush_request_mutex}; while (!flush_requests.empty()) { auto& request = flush_requests.front(); const u64 fence = request.fence; const VAddr addr = request.addr; const std::size_t size = request.size; flush_requests.pop_front(); flush_request_mutex.unlock(); rasterizer->FlushRegion(addr, size); current_flush_fence.store(fence); flush_request_mutex.lock(); } } u64 GPU::GetTicks() const { // This values were reversed engineered by fincs from NVN // The gpu clock is reported in units of 385/625 nanoseconds constexpr u64 gpu_ticks_num = 384; constexpr u64 gpu_ticks_den = 625; u64 nanoseconds = system.CoreTiming().GetGlobalTimeNs().count(); if (Settings::values.use_fast_gpu_time.GetValue()) { nanoseconds /= 256; } const u64 nanoseconds_num = nanoseconds / gpu_ticks_den; const u64 nanoseconds_rem = nanoseconds % gpu_ticks_den; return nanoseconds_num * gpu_ticks_num + (nanoseconds_rem * gpu_ticks_num) / gpu_ticks_den; } void GPU::FlushCommands() { rasterizer->FlushCommands(); } void GPU::SyncGuestHost() { rasterizer->SyncGuestHost(); } enum class GpuSemaphoreOperation { AcquireEqual = 0x1, WriteLong = 0x2, AcquireGequal = 0x4, AcquireMask = 0x8, }; void GPU::CallMethod(const MethodCall& method_call) { LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method_call.method, method_call.subchannel); ASSERT(method_call.subchannel < bound_engines.size()); if (ExecuteMethodOnEngine(method_call.method)) { CallEngineMethod(method_call); } else { CallPullerMethod(method_call); } } void GPU::CallMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount, u32 methods_pending) { LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method, subchannel); ASSERT(subchannel < bound_engines.size()); if (ExecuteMethodOnEngine(method)) { CallEngineMultiMethod(method, subchannel, base_start, amount, methods_pending); } else { for (std::size_t i = 0; i < amount; i++) { CallPullerMethod(MethodCall{ method, base_start[i], subchannel, methods_pending - static_cast(i), }); } } } bool GPU::ExecuteMethodOnEngine(u32 method) { const auto buffer_method = static_cast(method); return buffer_method >= BufferMethods::NonPullerMethods; } void GPU::CallPullerMethod(const MethodCall& method_call) { regs.reg_array[method_call.method] = method_call.argument; const auto method = static_cast(method_call.method); switch (method) { case BufferMethods::BindObject: { ProcessBindMethod(method_call); break; } case BufferMethods::Nop: case BufferMethods::SemaphoreAddressHigh: case BufferMethods::SemaphoreAddressLow: case BufferMethods::SemaphoreSequence: case BufferMethods::RefCnt: case BufferMethods::UnkCacheFlush: case BufferMethods::WrcacheFlush: case BufferMethods::FenceValue: break; case BufferMethods::FenceAction: ProcessFenceActionMethod(); break; case BufferMethods::WaitForInterrupt: ProcessWaitForInterruptMethod(); break; case BufferMethods::SemaphoreTrigger: { ProcessSemaphoreTriggerMethod(); break; } case BufferMethods::NotifyIntr: { // TODO(Kmather73): Research and implement this method. LOG_ERROR(HW_GPU, "Special puller engine method NotifyIntr not implemented"); break; } case BufferMethods::Unk28: { // TODO(Kmather73): Research and implement this method. LOG_ERROR(HW_GPU, "Special puller engine method Unk28 not implemented"); break; } case BufferMethods::SemaphoreAcquire: { ProcessSemaphoreAcquire(); break; } case BufferMethods::SemaphoreRelease: { ProcessSemaphoreRelease(); break; } case BufferMethods::Yield: { // TODO(Kmather73): Research and implement this method. LOG_ERROR(HW_GPU, "Special puller engine method Yield not implemented"); break; } default: LOG_ERROR(HW_GPU, "Special puller engine method {:X} not implemented", method); break; } } void GPU::CallEngineMethod(const MethodCall& method_call) { const EngineID engine = bound_engines[method_call.subchannel]; switch (engine) { case EngineID::FERMI_TWOD_A: fermi_2d->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; case EngineID::MAXWELL_B: maxwell_3d->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; case EngineID::KEPLER_COMPUTE_B: kepler_compute->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; case EngineID::MAXWELL_DMA_COPY_A: maxwell_dma->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; case EngineID::KEPLER_INLINE_TO_MEMORY_B: kepler_memory->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall()); break; default: UNIMPLEMENTED_MSG("Unimplemented engine"); } } void GPU::CallEngineMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount, u32 methods_pending) { const EngineID engine = bound_engines[subchannel]; switch (engine) { case EngineID::FERMI_TWOD_A: fermi_2d->CallMultiMethod(method, base_start, amount, methods_pending); break; case EngineID::MAXWELL_B: maxwell_3d->CallMultiMethod(method, base_start, amount, methods_pending); break; case EngineID::KEPLER_COMPUTE_B: kepler_compute->CallMultiMethod(method, base_start, amount, methods_pending); break; case EngineID::MAXWELL_DMA_COPY_A: maxwell_dma->CallMultiMethod(method, base_start, amount, methods_pending); break; case EngineID::KEPLER_INLINE_TO_MEMORY_B: kepler_memory->CallMultiMethod(method, base_start, amount, methods_pending); break; default: UNIMPLEMENTED_MSG("Unimplemented engine"); } } void GPU::ProcessBindMethod(const MethodCall& method_call) { // Bind the current subchannel to the desired engine id. LOG_DEBUG(HW_GPU, "Binding subchannel {} to engine {}", method_call.subchannel, method_call.argument); const auto engine_id = static_cast(method_call.argument); bound_engines[method_call.subchannel] = static_cast(engine_id); switch (engine_id) { case EngineID::FERMI_TWOD_A: dma_pusher->BindSubchannel(fermi_2d.get(), method_call.subchannel); break; case EngineID::MAXWELL_B: dma_pusher->BindSubchannel(maxwell_3d.get(), method_call.subchannel); break; case EngineID::KEPLER_COMPUTE_B: dma_pusher->BindSubchannel(kepler_compute.get(), method_call.subchannel); break; case EngineID::MAXWELL_DMA_COPY_A: dma_pusher->BindSubchannel(maxwell_dma.get(), method_call.subchannel); break; case EngineID::KEPLER_INLINE_TO_MEMORY_B: dma_pusher->BindSubchannel(kepler_memory.get(), method_call.subchannel); break; default: UNIMPLEMENTED_MSG("Unimplemented engine {:04X}", engine_id); } } void GPU::ProcessFenceActionMethod() { switch (regs.fence_action.op) { case FenceOperation::Acquire: WaitFence(regs.fence_action.syncpoint_id, regs.fence_value); break; case FenceOperation::Increment: IncrementSyncPoint(regs.fence_action.syncpoint_id); break; default: UNIMPLEMENTED_MSG("Unimplemented operation {}", regs.fence_action.op.Value()); } } void GPU::ProcessWaitForInterruptMethod() { // TODO(bunnei) ImplementMe LOG_WARNING(HW_GPU, "(STUBBED) called"); } void GPU::ProcessSemaphoreTriggerMethod() { const auto semaphoreOperationMask = 0xF; const auto op = static_cast(regs.semaphore_trigger & semaphoreOperationMask); if (op == GpuSemaphoreOperation::WriteLong) { struct Block { u32 sequence; u32 zeros = 0; u64 timestamp; }; Block block{}; block.sequence = regs.semaphore_sequence; // TODO(Kmather73): Generate a real GPU timestamp and write it here instead of // CoreTiming block.timestamp = GetTicks(); memory_manager->WriteBlock(regs.semaphore_address.SemaphoreAddress(), &block, sizeof(block)); } else { const u32 word{memory_manager->Read(regs.semaphore_address.SemaphoreAddress())}; if ((op == GpuSemaphoreOperation::AcquireEqual && word == regs.semaphore_sequence) || (op == GpuSemaphoreOperation::AcquireGequal && static_cast(word - regs.semaphore_sequence) > 0) || (op == GpuSemaphoreOperation::AcquireMask && (word & regs.semaphore_sequence))) { // Nothing to do in this case } else { regs.acquire_source = true; regs.acquire_value = regs.semaphore_sequence; if (op == GpuSemaphoreOperation::AcquireEqual) { regs.acquire_active = true; regs.acquire_mode = false; } else if (op == GpuSemaphoreOperation::AcquireGequal) { regs.acquire_active = true; regs.acquire_mode = true; } else if (op == GpuSemaphoreOperation::AcquireMask) { // TODO(kemathe) The acquire mask operation waits for a value that, ANDed with // semaphore_sequence, gives a non-0 result LOG_ERROR(HW_GPU, "Invalid semaphore operation AcquireMask not implemented"); } else { LOG_ERROR(HW_GPU, "Invalid semaphore operation"); } } } } void GPU::ProcessSemaphoreRelease() { memory_manager->Write(regs.semaphore_address.SemaphoreAddress(), regs.semaphore_release); } void GPU::ProcessSemaphoreAcquire() { const u32 word = memory_manager->Read(regs.semaphore_address.SemaphoreAddress()); const auto value = regs.semaphore_acquire; if (word != value) { regs.acquire_active = true; regs.acquire_value = value; // TODO(kemathe73) figure out how to do the acquire_timeout regs.acquire_mode = false; regs.acquire_source = false; } } void GPU::Start() { gpu_thread.StartThread(*renderer, renderer->Context(), *dma_pusher); cpu_context = renderer->GetRenderWindow().CreateSharedContext(); cpu_context->MakeCurrent(); } void GPU::ObtainContext() { cpu_context->MakeCurrent(); } void GPU::ReleaseContext() { cpu_context->DoneCurrent(); } void GPU::PushGPUEntries(Tegra::CommandList&& entries) { gpu_thread.SubmitList(std::move(entries)); } void GPU::PushCommandBuffer(Tegra::ChCommandHeaderList& entries) { if (!use_nvdec) { return; } if (!cdma_pusher) { cdma_pusher = std::make_unique(*this); } // SubmitCommandBuffer would make the nvdec operations async, this is not currently working // TODO(ameerj): RE proper async nvdec operation // gpu_thread.SubmitCommandBuffer(std::move(entries)); cdma_pusher->ProcessEntries(std::move(entries)); } void GPU::ClearCommandBuffer() { // This condition fires when a video stream ends, clear all intermediary data cdma_pusher.reset(); LOG_INFO(Service_NVDRV, "NVDEC video stream ended"); } void GPU::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) { gpu_thread.SwapBuffers(framebuffer); } void GPU::FlushRegion(VAddr addr, u64 size) { gpu_thread.FlushRegion(addr, size); } void GPU::InvalidateRegion(VAddr addr, u64 size) { gpu_thread.InvalidateRegion(addr, size); } void GPU::FlushAndInvalidateRegion(VAddr addr, u64 size) { gpu_thread.FlushAndInvalidateRegion(addr, size); } void GPU::TriggerCpuInterrupt(const u32 syncpoint_id, const u32 value) const { auto& interrupt_manager = system.InterruptManager(); interrupt_manager.GPUInterruptSyncpt(syncpoint_id, value); } void GPU::ShutDown() { gpu_thread.ShutDown(); } void GPU::OnCommandListEnd() { if (is_async) { // This command only applies to asynchronous GPU mode gpu_thread.OnCommandListEnd(); } } } // namespace Tegra