// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "core/core.h" #include "core/core_timing.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/engines/shader_type.h" #include "video_core/gpu.h" #include "video_core/memory_manager.h" #include "video_core/rasterizer_interface.h" #include "video_core/textures/texture.h" namespace Tegra::Engines { using VideoCore::QueryType; /// First register id that is actually a Macro call. constexpr u32 MacroRegistersStart = 0xE00; Maxwell3D::Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager) : system{system}, rasterizer{rasterizer}, memory_manager{memory_manager}, macro_interpreter{*this}, upload_state{memory_manager, regs.upload} { dirty.flags.flip(); InitializeRegisterDefaults(); } void Maxwell3D::InitializeRegisterDefaults() { // Initializes registers to their default values - what games expect them to be at boot. This is // for certain registers that may not be explicitly set by games. // Reset all registers to zero std::memset(®s, 0, sizeof(regs)); // Depth range near/far is not always set, but is expected to be the default 0.0f, 1.0f. This is // needed for ARMS. for (auto& viewport : regs.viewports) { viewport.depth_range_near = 0.0f; viewport.depth_range_far = 1.0f; } // Doom and Bomberman seems to use the uninitialized registers and just enable blend // so initialize blend registers with sane values regs.blend.equation_rgb = Regs::Blend::Equation::Add; regs.blend.factor_source_rgb = Regs::Blend::Factor::One; regs.blend.factor_dest_rgb = Regs::Blend::Factor::Zero; regs.blend.equation_a = Regs::Blend::Equation::Add; regs.blend.factor_source_a = Regs::Blend::Factor::One; regs.blend.factor_dest_a = Regs::Blend::Factor::Zero; for (auto& blend : regs.independent_blend) { blend.equation_rgb = Regs::Blend::Equation::Add; blend.factor_source_rgb = Regs::Blend::Factor::One; blend.factor_dest_rgb = Regs::Blend::Factor::Zero; blend.equation_a = Regs::Blend::Equation::Add; blend.factor_source_a = Regs::Blend::Factor::One; blend.factor_dest_a = Regs::Blend::Factor::Zero; } regs.stencil_front_op_fail = Regs::StencilOp::Keep; regs.stencil_front_op_zfail = Regs::StencilOp::Keep; regs.stencil_front_op_zpass = Regs::StencilOp::Keep; regs.stencil_front_func_func = Regs::ComparisonOp::Always; regs.stencil_front_func_mask = 0xFFFFFFFF; regs.stencil_front_mask = 0xFFFFFFFF; regs.stencil_two_side_enable = 1; regs.stencil_back_op_fail = Regs::StencilOp::Keep; regs.stencil_back_op_zfail = Regs::StencilOp::Keep; regs.stencil_back_op_zpass = Regs::StencilOp::Keep; regs.stencil_back_func_func = Regs::ComparisonOp::Always; regs.stencil_back_func_mask = 0xFFFFFFFF; regs.stencil_back_mask = 0xFFFFFFFF; regs.depth_test_func = Regs::ComparisonOp::Always; regs.front_face = Regs::FrontFace::CounterClockWise; regs.cull_face = Regs::CullFace::Back; // TODO(Rodrigo): Most games do not set a point size. I think this is a case of a // register carrying a default value. Assume it's OpenGL's default (1). regs.point_size = 1.0f; // TODO(bunnei): Some games do not initialize the color masks (e.g. Sonic Mania). Assuming a // default of enabled fixes rendering here. for (auto& color_mask : regs.color_mask) { color_mask.R.Assign(1); color_mask.G.Assign(1); color_mask.B.Assign(1); color_mask.A.Assign(1); } for (auto& format : regs.vertex_attrib_format) { format.constant.Assign(1); } // NVN games expect these values to be enabled at boot regs.rasterize_enable = 1; regs.rt_separate_frag_data = 1; regs.framebuffer_srgb = 1; regs.front_face = Maxwell3D::Regs::FrontFace::ClockWise; shadow_state = regs; mme_inline[MAXWELL3D_REG_INDEX(draw.vertex_end_gl)] = true; mme_inline[MAXWELL3D_REG_INDEX(draw.vertex_begin_gl)] = true; mme_inline[MAXWELL3D_REG_INDEX(vertex_buffer.count)] = true; mme_inline[MAXWELL3D_REG_INDEX(index_array.count)] = true; } void Maxwell3D::CallMacroMethod(u32 method, std::size_t num_parameters, const u32* parameters) { // Reset the current macro. executing_macro = 0; // Lookup the macro offset const u32 entry = ((method - MacroRegistersStart) >> 1) % static_cast(macro_positions.size()); // Execute the current macro. macro_interpreter.Execute(macro_positions[entry], num_parameters, parameters); if (mme_draw.current_mode != MMEDrawMode::Undefined) { FlushMMEInlineDraw(); } } void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) { const u32 method = method_call.method; if (method == cb_data_state.current) { regs.reg_array[method] = method_call.argument; ProcessCBData(method_call.argument); return; } else if (cb_data_state.current != null_cb_data) { FinishCBData(); } // It is an error to write to a register other than the current macro's ARG register before it // has finished execution. if (executing_macro != 0) { ASSERT(method == executing_macro + 1); } // Methods after 0xE00 are special, they're actually triggers for some microcode that was // uploaded to the GPU during initialization. if (method >= MacroRegistersStart) { // We're trying to execute a macro if (executing_macro == 0) { // A macro call must begin by writing the macro method's register, not its argument. ASSERT_MSG((method % 2) == 0, "Can't start macro execution by writing to the ARGS register"); executing_macro = method; } macro_params.push_back(method_call.argument); // Call the macro when there are no more parameters in the command buffer if (method_call.IsLastCall()) { CallMacroMethod(executing_macro, macro_params.size(), macro_params.data()); macro_params.clear(); } return; } ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register, increase the size of the Regs structure"); u32 arg = method_call.argument; // Keep track of the register value in shadow_state when requested. if (shadow_state.shadow_ram_control == Regs::ShadowRamControl::Track || shadow_state.shadow_ram_control == Regs::ShadowRamControl::TrackWithFilter) { shadow_state.reg_array[method] = arg; } else if (shadow_state.shadow_ram_control == Regs::ShadowRamControl::Replay) { arg = shadow_state.reg_array[method]; } if (regs.reg_array[method] != arg) { regs.reg_array[method] = arg; for (const auto& table : dirty.tables) { dirty.flags[table[method]] = true; } } switch (method) { case MAXWELL3D_REG_INDEX(shadow_ram_control): { shadow_state.shadow_ram_control = static_cast(method_call.argument); break; } case MAXWELL3D_REG_INDEX(macros.data): { ProcessMacroUpload(arg); break; } case MAXWELL3D_REG_INDEX(macros.bind): { ProcessMacroBind(arg); break; } case MAXWELL3D_REG_INDEX(firmware[4]): { ProcessFirmwareCall4(); break; } case MAXWELL3D_REG_INDEX(const_buffer.cb_data[0]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[1]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[2]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[3]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[4]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[5]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[6]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[7]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[8]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[9]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[10]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[11]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[12]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[13]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[14]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[15]): { StartCBData(method); break; } case MAXWELL3D_REG_INDEX(cb_bind[0]): { ProcessCBBind(0); break; } case MAXWELL3D_REG_INDEX(cb_bind[1]): { ProcessCBBind(1); break; } case MAXWELL3D_REG_INDEX(cb_bind[2]): { ProcessCBBind(2); break; } case MAXWELL3D_REG_INDEX(cb_bind[3]): { ProcessCBBind(3); break; } case MAXWELL3D_REG_INDEX(cb_bind[4]): { ProcessCBBind(4); break; } case MAXWELL3D_REG_INDEX(draw.vertex_end_gl): { DrawArrays(); break; } case MAXWELL3D_REG_INDEX(clear_buffers): { ProcessClearBuffers(); break; } case MAXWELL3D_REG_INDEX(query.query_get): { ProcessQueryGet(); break; } case MAXWELL3D_REG_INDEX(condition.mode): { ProcessQueryCondition(); break; } case MAXWELL3D_REG_INDEX(counter_reset): { ProcessCounterReset(); break; } case MAXWELL3D_REG_INDEX(sync_info): { ProcessSyncPoint(); break; } case MAXWELL3D_REG_INDEX(exec_upload): { upload_state.ProcessExec(regs.exec_upload.linear != 0); break; } case MAXWELL3D_REG_INDEX(data_upload): { const bool is_last_call = method_call.IsLastCall(); upload_state.ProcessData(arg, is_last_call); if (is_last_call) { OnMemoryWrite(); } break; } default: break; } } void Maxwell3D::StepInstance(const MMEDrawMode expected_mode, const u32 count) { if (mme_draw.current_mode == MMEDrawMode::Undefined) { if (mme_draw.gl_begin_consume) { mme_draw.current_mode = expected_mode; mme_draw.current_count = count; mme_draw.instance_count = 1; mme_draw.gl_begin_consume = false; mme_draw.gl_end_count = 0; } return; } else { if (mme_draw.current_mode == expected_mode && count == mme_draw.current_count && mme_draw.instance_mode && mme_draw.gl_begin_consume) { mme_draw.instance_count++; mme_draw.gl_begin_consume = false; return; } else { FlushMMEInlineDraw(); } } // Tail call in case it needs to retry. StepInstance(expected_mode, count); } void Maxwell3D::CallMethodFromMME(const GPU::MethodCall& method_call) { const u32 method = method_call.method; if (mme_inline[method]) { regs.reg_array[method] = method_call.argument; if (method == MAXWELL3D_REG_INDEX(vertex_buffer.count) || method == MAXWELL3D_REG_INDEX(index_array.count)) { const MMEDrawMode expected_mode = method == MAXWELL3D_REG_INDEX(vertex_buffer.count) ? MMEDrawMode::Array : MMEDrawMode::Indexed; StepInstance(expected_mode, method_call.argument); } else if (method == MAXWELL3D_REG_INDEX(draw.vertex_begin_gl)) { mme_draw.instance_mode = (regs.draw.instance_next != 0) || (regs.draw.instance_cont != 0); mme_draw.gl_begin_consume = true; } else { mme_draw.gl_end_count++; } } else { if (mme_draw.current_mode != MMEDrawMode::Undefined) { FlushMMEInlineDraw(); } CallMethod(method_call); } } void Maxwell3D::FlushMMEInlineDraw() { LOG_TRACE(HW_GPU, "called, topology={}, count={}", static_cast(regs.draw.topology.Value()), regs.vertex_buffer.count); ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?"); ASSERT(mme_draw.instance_count == mme_draw.gl_end_count); // Both instance configuration registers can not be set at the same time. ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont, "Illegal combination of instancing parameters"); const bool is_indexed = mme_draw.current_mode == MMEDrawMode::Indexed; if (ShouldExecute()) { rasterizer.Draw(is_indexed, true); } // TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if // the game is trying to draw indexed or direct mode. This needs to be verified on HW still - // it's possible that it is incorrect and that there is some other register used to specify the // drawing mode. if (is_indexed) { regs.index_array.count = 0; } else { regs.vertex_buffer.count = 0; } mme_draw.current_mode = MMEDrawMode::Undefined; mme_draw.current_count = 0; mme_draw.instance_count = 0; mme_draw.instance_mode = false; mme_draw.gl_begin_consume = false; mme_draw.gl_end_count = 0; } void Maxwell3D::ProcessMacroUpload(u32 data) { ASSERT_MSG(regs.macros.upload_address < macro_memory.size(), "upload_address exceeded macro_memory size!"); macro_memory[regs.macros.upload_address++] = data; } void Maxwell3D::ProcessMacroBind(u32 data) { macro_positions[regs.macros.entry++] = data; } void Maxwell3D::ProcessFirmwareCall4() { LOG_WARNING(HW_GPU, "(STUBBED) called"); // Firmware call 4 is a blob that changes some registers depending on its parameters. // These registers don't affect emulation and so are stubbed by setting 0xd00 to 1. regs.reg_array[0xd00] = 1; } void Maxwell3D::StampQueryResult(u64 payload, bool long_query) { struct LongQueryResult { u64_le value; u64_le timestamp; }; static_assert(sizeof(LongQueryResult) == 16, "LongQueryResult has wrong size"); const GPUVAddr sequence_address{regs.query.QueryAddress()}; if (long_query) { // Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast // GPU, this command may actually take a while to complete in real hardware due to GPU // wait queues. LongQueryResult query_result{payload, system.GPU().GetTicks()}; memory_manager.WriteBlock(sequence_address, &query_result, sizeof(query_result)); } else { memory_manager.Write(sequence_address, static_cast(payload)); } } void Maxwell3D::ProcessQueryGet() { // TODO(Subv): Support the other query units. ASSERT_MSG(regs.query.query_get.unit == Regs::QueryUnit::Crop, "Units other than CROP are unimplemented"); switch (regs.query.query_get.operation) { case Regs::QueryOperation::Release: if (regs.query.query_get.fence == 1) { rasterizer.SignalSemaphore(regs.query.QueryAddress(), regs.query.query_sequence); } else { StampQueryResult(regs.query.query_sequence, regs.query.query_get.short_query == 0); } break; case Regs::QueryOperation::Acquire: // TODO(Blinkhawk): Under this operation, the GPU waits for the CPU to write a value that // matches the current payload. UNIMPLEMENTED_MSG("Unimplemented query operation ACQUIRE"); break; case Regs::QueryOperation::Counter: if (const std::optional result = GetQueryResult()) { // If the query returns an empty optional it means it's cached and deferred. // In this case we have a non-empty result, so we stamp it immediately. StampQueryResult(*result, regs.query.query_get.short_query == 0); } break; case Regs::QueryOperation::Trap: UNIMPLEMENTED_MSG("Unimplemented query operation TRAP"); break; default: UNIMPLEMENTED_MSG("Unknown query operation"); break; } } void Maxwell3D::ProcessQueryCondition() { const GPUVAddr condition_address{regs.condition.Address()}; switch (regs.condition.mode) { case Regs::ConditionMode::Always: { execute_on = true; break; } case Regs::ConditionMode::Never: { execute_on = false; break; } case Regs::ConditionMode::ResNonZero: { Regs::QueryCompare cmp; memory_manager.ReadBlock(condition_address, &cmp, sizeof(cmp)); execute_on = cmp.initial_sequence != 0U && cmp.initial_mode != 0U; break; } case Regs::ConditionMode::Equal: { Regs::QueryCompare cmp; memory_manager.ReadBlock(condition_address, &cmp, sizeof(cmp)); execute_on = cmp.initial_sequence == cmp.current_sequence && cmp.initial_mode == cmp.current_mode; break; } case Regs::ConditionMode::NotEqual: { Regs::QueryCompare cmp; memory_manager.ReadBlock(condition_address, &cmp, sizeof(cmp)); execute_on = cmp.initial_sequence != cmp.current_sequence || cmp.initial_mode != cmp.current_mode; break; } default: { UNIMPLEMENTED_MSG("Uninplemented Condition Mode!"); execute_on = true; break; } } } void Maxwell3D::ProcessCounterReset() { switch (regs.counter_reset) { case Regs::CounterReset::SampleCnt: rasterizer.ResetCounter(QueryType::SamplesPassed); break; default: LOG_WARNING(Render_OpenGL, "Unimplemented counter reset={}", static_cast(regs.counter_reset)); break; } } void Maxwell3D::ProcessSyncPoint() { const u32 sync_point = regs.sync_info.sync_point.Value(); const u32 increment = regs.sync_info.increment.Value(); [[maybe_unused]] const u32 cache_flush = regs.sync_info.unknown.Value(); if (increment) { rasterizer.SignalSyncPoint(sync_point); } } void Maxwell3D::DrawArrays() { LOG_TRACE(HW_GPU, "called, topology={}, count={}", static_cast(regs.draw.topology.Value()), regs.vertex_buffer.count); ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?"); // Both instance configuration registers can not be set at the same time. ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont, "Illegal combination of instancing parameters"); if (regs.draw.instance_next) { // Increment the current instance *before* drawing. state.current_instance += 1; } else if (!regs.draw.instance_cont) { // Reset the current instance to 0. state.current_instance = 0; } const bool is_indexed{regs.index_array.count && !regs.vertex_buffer.count}; if (ShouldExecute()) { rasterizer.Draw(is_indexed, false); } // TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if // the game is trying to draw indexed or direct mode. This needs to be verified on HW still - // it's possible that it is incorrect and that there is some other register used to specify the // drawing mode. if (is_indexed) { regs.index_array.count = 0; } else { regs.vertex_buffer.count = 0; } } std::optional Maxwell3D::GetQueryResult() { switch (regs.query.query_get.select) { case Regs::QuerySelect::Zero: return 0; case Regs::QuerySelect::SamplesPassed: // Deferred. rasterizer.Query(regs.query.QueryAddress(), VideoCore::QueryType::SamplesPassed, system.GPU().GetTicks()); return {}; default: UNIMPLEMENTED_MSG("Unimplemented query select type {}", static_cast(regs.query.query_get.select.Value())); return 1; } } void Maxwell3D::ProcessCBBind(std::size_t stage_index) { // Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage. auto& shader = state.shader_stages[stage_index]; auto& bind_data = regs.cb_bind[stage_index]; ASSERT(bind_data.index < Regs::MaxConstBuffers); auto& buffer = shader.const_buffers[bind_data.index]; buffer.enabled = bind_data.valid.Value() != 0; buffer.address = regs.const_buffer.BufferAddress(); buffer.size = regs.const_buffer.cb_size; } void Maxwell3D::ProcessCBData(u32 value) { const u32 id = cb_data_state.id; cb_data_state.buffer[id][cb_data_state.counter] = value; // Increment the current buffer position. regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4; cb_data_state.counter++; } void Maxwell3D::StartCBData(u32 method) { constexpr u32 first_cb_data = MAXWELL3D_REG_INDEX(const_buffer.cb_data[0]); cb_data_state.start_pos = regs.const_buffer.cb_pos; cb_data_state.id = method - first_cb_data; cb_data_state.current = method; cb_data_state.counter = 0; ProcessCBData(regs.const_buffer.cb_data[cb_data_state.id]); } void Maxwell3D::FinishCBData() { // Write the input value to the current const buffer at the current position. const GPUVAddr buffer_address = regs.const_buffer.BufferAddress(); ASSERT(buffer_address != 0); // Don't allow writing past the end of the buffer. ASSERT(regs.const_buffer.cb_pos <= regs.const_buffer.cb_size); const GPUVAddr address{buffer_address + cb_data_state.start_pos}; const std::size_t size = regs.const_buffer.cb_pos - cb_data_state.start_pos; const u32 id = cb_data_state.id; memory_manager.WriteBlock(address, cb_data_state.buffer[id].data(), size); OnMemoryWrite(); cb_data_state.id = null_cb_data; cb_data_state.current = null_cb_data; } Texture::TICEntry Maxwell3D::GetTICEntry(u32 tic_index) const { const GPUVAddr tic_address_gpu{regs.tic.TICAddress() + tic_index * sizeof(Texture::TICEntry)}; Texture::TICEntry tic_entry; memory_manager.ReadBlockUnsafe(tic_address_gpu, &tic_entry, sizeof(Texture::TICEntry)); return tic_entry; } Texture::TSCEntry Maxwell3D::GetTSCEntry(u32 tsc_index) const { const GPUVAddr tsc_address_gpu{regs.tsc.TSCAddress() + tsc_index * sizeof(Texture::TSCEntry)}; Texture::TSCEntry tsc_entry; memory_manager.ReadBlockUnsafe(tsc_address_gpu, &tsc_entry, sizeof(Texture::TSCEntry)); return tsc_entry; } Texture::FullTextureInfo Maxwell3D::GetTextureInfo(Texture::TextureHandle tex_handle) const { return Texture::FullTextureInfo{GetTICEntry(tex_handle.tic_id), GetTSCEntry(tex_handle.tsc_id)}; } Texture::FullTextureInfo Maxwell3D::GetStageTexture(ShaderType stage, std::size_t offset) const { const auto stage_index = static_cast(stage); const auto& shader = state.shader_stages[stage_index]; const auto& tex_info_buffer = shader.const_buffers[regs.tex_cb_index]; ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0); const GPUVAddr tex_info_address = tex_info_buffer.address + offset * sizeof(Texture::TextureHandle); ASSERT(tex_info_address < tex_info_buffer.address + tex_info_buffer.size); const Texture::TextureHandle tex_handle{memory_manager.Read(tex_info_address)}; return GetTextureInfo(tex_handle); } u32 Maxwell3D::GetRegisterValue(u32 method) const { ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register"); return regs.reg_array[method]; } void Maxwell3D::ProcessClearBuffers() { ASSERT(regs.clear_buffers.R == regs.clear_buffers.G && regs.clear_buffers.R == regs.clear_buffers.B && regs.clear_buffers.R == regs.clear_buffers.A); rasterizer.Clear(); } u32 Maxwell3D::AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const { ASSERT(stage != ShaderType::Compute); const auto& shader_stage = state.shader_stages[static_cast(stage)]; const auto& buffer = shader_stage.const_buffers[const_buffer]; u32 result; std::memcpy(&result, memory_manager.GetPointer(buffer.address + offset), sizeof(u32)); return result; } SamplerDescriptor Maxwell3D::AccessBoundSampler(ShaderType stage, u64 offset) const { return AccessBindlessSampler(stage, regs.tex_cb_index, offset * sizeof(Texture::TextureHandle)); } SamplerDescriptor Maxwell3D::AccessBindlessSampler(ShaderType stage, u64 const_buffer, u64 offset) const { ASSERT(stage != ShaderType::Compute); const auto& shader = state.shader_stages[static_cast(stage)]; const auto& tex_info_buffer = shader.const_buffers[const_buffer]; const GPUVAddr tex_info_address = tex_info_buffer.address + offset; const Texture::TextureHandle tex_handle{memory_manager.Read(tex_info_address)}; const Texture::FullTextureInfo tex_info = GetTextureInfo(tex_handle); SamplerDescriptor result = SamplerDescriptor::FromTIC(tex_info.tic); result.is_shadow.Assign(tex_info.tsc.depth_compare_enabled.Value()); return result; } VideoCore::GuestDriverProfile& Maxwell3D::AccessGuestDriverProfile() { return rasterizer.AccessGuestDriverProfile(); } const VideoCore::GuestDriverProfile& Maxwell3D::AccessGuestDriverProfile() const { return rasterizer.AccessGuestDriverProfile(); } } // namespace Tegra::Engines