// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include "common/file_util.h" #include "core/core.h" #include "core/core_timing.h" // Numbers are chosen randomly to make sure the correct one is given. static constexpr std::array CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals static std::bitset callbacks_ran_flags; static u64 expected_callback = 0; static s64 lateness = 0; template void CallbackTemplate(u64 userdata, s64 cycles_late) { static_assert(IDX < CB_IDS.size(), "IDX out of range"); callbacks_ran_flags.set(IDX); REQUIRE(CB_IDS[IDX] == userdata); REQUIRE(CB_IDS[IDX] == expected_callback); REQUIRE(lateness == cycles_late); } static u64 callbacks_done = 0; void EmptyCallback(u64 userdata, s64 cycles_late) { ++callbacks_done; } struct ScopeInit final { ScopeInit() { core_timing.Initialize(); } ~ScopeInit() { core_timing.Shutdown(); } Core::Timing::CoreTiming core_timing; }; static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0, int expected_lateness = 0, int cpu_downcount = 0) { callbacks_ran_flags = 0; expected_callback = CB_IDS[idx]; lateness = expected_lateness; // Pretend we executed X cycles of instructions. core_timing.SwitchContext(context); core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount); core_timing.Advance(); core_timing.SwitchContext((context + 1) % 4); REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags); } TEST_CASE("CoreTiming[BasicOrder]", "[core]") { ScopeInit guard; auto& core_timing = guard.core_timing; std::shared_ptr cb_a = Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>); std::shared_ptr cb_b = Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>); std::shared_ptr cb_c = Core::Timing::CreateEvent("callbackC", CallbackTemplate<2>); std::shared_ptr cb_d = Core::Timing::CreateEvent("callbackD", CallbackTemplate<3>); std::shared_ptr cb_e = Core::Timing::CreateEvent("callbackE", CallbackTemplate<4>); // Enter slice 0 core_timing.ResetRun(); // D -> B -> C -> A -> E core_timing.SwitchContext(0); core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); REQUIRE(1000 == core_timing.GetDowncount()); core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]); REQUIRE(500 == core_timing.GetDowncount()); core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]); REQUIRE(500 == core_timing.GetDowncount()); core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]); REQUIRE(100 == core_timing.GetDowncount()); core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]); REQUIRE(100 == core_timing.GetDowncount()); AdvanceAndCheck(core_timing, 3, 0); AdvanceAndCheck(core_timing, 1, 1); AdvanceAndCheck(core_timing, 2, 2); AdvanceAndCheck(core_timing, 0, 3); AdvanceAndCheck(core_timing, 4, 0); } TEST_CASE("CoreTiming[FairSharing]", "[core]") { ScopeInit guard; auto& core_timing = guard.core_timing; std::shared_ptr empty_callback = Core::Timing::CreateEvent("empty_callback", EmptyCallback); callbacks_done = 0; u64 MAX_CALLBACKS = 10; for (std::size_t i = 0; i < 10; i++) { core_timing.ScheduleEvent(i * 3333U, empty_callback, 0); } const s64 advances = MAX_SLICE_LENGTH / 10; core_timing.ResetRun(); u64 current_time = core_timing.GetTicks(); bool keep_running{}; do { keep_running = false; for (u32 active_core = 0; active_core < 4; ++active_core) { core_timing.SwitchContext(active_core); if (core_timing.CanCurrentContextRun()) { core_timing.AddTicks(std::min(advances, core_timing.GetDowncount())); core_timing.Advance(); } keep_running |= core_timing.CanCurrentContextRun(); } } while (keep_running); u64 current_time_2 = core_timing.GetTicks(); REQUIRE(MAX_CALLBACKS == callbacks_done); REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4); } TEST_CASE("Core::Timing[PredictableLateness]", "[core]") { ScopeInit guard; auto& core_timing = guard.core_timing; std::shared_ptr cb_a = Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>); std::shared_ptr cb_b = Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>); // Enter slice 0 core_timing.ResetRun(); core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]); AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10) AdvanceAndCheck(core_timing, 1, 1, 50, -50); }