// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include "common/file_util.h" #include "core/core.h" #include "core/core_timing.h" // Numbers are chosen randomly to make sure the correct one is given. static constexpr std::array CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals static std::bitset callbacks_ran_flags; static u64 expected_callback = 0; static s64 lateness = 0; template void CallbackTemplate(u64 userdata, s64 cycles_late) { static_assert(IDX < CB_IDS.size(), "IDX out of range"); callbacks_ran_flags.set(IDX); REQUIRE(CB_IDS[IDX] == userdata); REQUIRE(CB_IDS[IDX] == expected_callback); REQUIRE(lateness == cycles_late); } class ScopeInit final { public: ScopeInit() { CoreTiming::Init(); } ~ScopeInit() { CoreTiming::Shutdown(); } }; static void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0, int cpu_downcount = 0) { callbacks_ran_flags = 0; expected_callback = CB_IDS[idx]; lateness = expected_lateness; CoreTiming::AddTicks(CoreTiming::GetDowncount() - cpu_downcount); // Pretend we executed X cycles of instructions. CoreTiming::Advance(); REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags); REQUIRE(downcount == CoreTiming::GetDowncount()); } TEST_CASE("CoreTiming[BasicOrder]", "[core]") { ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); // Enter slice 0 CoreTiming::Advance(); // D -> B -> C -> A -> E CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); REQUIRE(1000 == CoreTiming::GetDowncount()); CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]); REQUIRE(500 == CoreTiming::GetDowncount()); CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]); REQUIRE(500 == CoreTiming::GetDowncount()); CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]); REQUIRE(100 == CoreTiming::GetDowncount()); CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]); REQUIRE(100 == CoreTiming::GetDowncount()); AdvanceAndCheck(3, 400); AdvanceAndCheck(1, 300); AdvanceAndCheck(2, 200); AdvanceAndCheck(0, 200); AdvanceAndCheck(4, MAX_SLICE_LENGTH); } TEST_CASE("CoreTiming[Threadsave]", "[core]") { ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); // Enter slice 0 CoreTiming::Advance(); // D -> B -> C -> A -> E CoreTiming::ScheduleEventThreadsafe(1000, cb_a, CB_IDS[0]); // Manually force since ScheduleEventThreadsafe doesn't call it CoreTiming::ForceExceptionCheck(1000); REQUIRE(1000 == CoreTiming::GetDowncount()); CoreTiming::ScheduleEventThreadsafe(500, cb_b, CB_IDS[1]); // Manually force since ScheduleEventThreadsafe doesn't call it CoreTiming::ForceExceptionCheck(500); REQUIRE(500 == CoreTiming::GetDowncount()); CoreTiming::ScheduleEventThreadsafe(800, cb_c, CB_IDS[2]); // Manually force since ScheduleEventThreadsafe doesn't call it CoreTiming::ForceExceptionCheck(800); REQUIRE(500 == CoreTiming::GetDowncount()); CoreTiming::ScheduleEventThreadsafe(100, cb_d, CB_IDS[3]); // Manually force since ScheduleEventThreadsafe doesn't call it CoreTiming::ForceExceptionCheck(100); REQUIRE(100 == CoreTiming::GetDowncount()); CoreTiming::ScheduleEventThreadsafe(1200, cb_e, CB_IDS[4]); // Manually force since ScheduleEventThreadsafe doesn't call it CoreTiming::ForceExceptionCheck(1200); REQUIRE(100 == CoreTiming::GetDowncount()); AdvanceAndCheck(3, 400); AdvanceAndCheck(1, 300); AdvanceAndCheck(2, 200); AdvanceAndCheck(0, 200); AdvanceAndCheck(4, MAX_SLICE_LENGTH); } namespace SharedSlotTest { static unsigned int counter = 0; template void FifoCallback(u64 userdata, s64 cycles_late) { static_assert(ID < CB_IDS.size(), "ID out of range"); callbacks_ran_flags.set(ID); REQUIRE(CB_IDS[ID] == userdata); REQUIRE(ID == counter); REQUIRE(lateness == cycles_late); ++counter; } } // namespace SharedSlotTest TEST_CASE("CoreTiming[SharedSlot]", "[core]") { using namespace SharedSlotTest; ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>); CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>); CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>); CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>); CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]); CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]); CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]); // Enter slice 0 CoreTiming::Advance(); REQUIRE(1000 == CoreTiming::GetDowncount()); callbacks_ran_flags = 0; counter = 0; lateness = 0; CoreTiming::AddTicks(CoreTiming::GetDowncount()); CoreTiming::Advance(); REQUIRE(MAX_SLICE_LENGTH == CoreTiming::GetDowncount()); REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong()); } TEST_CASE("CoreTiming[PredictableLateness]", "[core]") { ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); // Enter slice 0 CoreTiming::Advance(); CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); AdvanceAndCheck(0, 90, 10, -10); // (100 - 10) AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50); } namespace ChainSchedulingTest { static int reschedules = 0; static void RescheduleCallback(u64 userdata, s64 cycles_late) { --reschedules; REQUIRE(reschedules >= 0); REQUIRE(lateness == cycles_late); if (reschedules > 0) CoreTiming::ScheduleEvent(1000, reinterpret_cast(userdata), userdata); } } // namespace ChainSchedulingTest TEST_CASE("CoreTiming[ChainScheduling]", "[core]") { using namespace ChainSchedulingTest; ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); CoreTiming::EventType* cb_rs = CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback); // Enter slice 0 CoreTiming::Advance(); CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]); CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast(cb_rs)); REQUIRE(800 == CoreTiming::GetDowncount()); reschedules = 3; AdvanceAndCheck(0, 200); // cb_a AdvanceAndCheck(1, 1000); // cb_b, cb_rs REQUIRE(2 == reschedules); CoreTiming::AddTicks(CoreTiming::GetDowncount()); CoreTiming::Advance(); // cb_rs REQUIRE(1 == reschedules); REQUIRE(200 == CoreTiming::GetDowncount()); AdvanceAndCheck(2, 800); // cb_c CoreTiming::AddTicks(CoreTiming::GetDowncount()); CoreTiming::Advance(); // cb_rs REQUIRE(0 == reschedules); REQUIRE(MAX_SLICE_LENGTH == CoreTiming::GetDowncount()); }