// Copyright 2021 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include #include #include #include "shader_recompiler/environment.h" #include "shader_recompiler/frontend/ir/basic_block.h" #include "shader_recompiler/frontend/ir/ir_emitter.h" #include "shader_recompiler/frontend/maxwell/structured_control_flow.h" #include "shader_recompiler/frontend/maxwell/translate/translate.h" #include "shader_recompiler/object_pool.h" namespace Shader::Maxwell { namespace { struct Statement; // Use normal_link because we are not guaranteed to destroy the tree in order using ListBaseHook = boost::intrusive::list_base_hook>; using Tree = boost::intrusive::list, // Avoid linear complexity on splice, size is never called boost::intrusive::constant_time_size>; using Node = Tree::iterator; using ConstNode = Tree::const_iterator; enum class StatementType { Code, Goto, Label, If, Loop, Break, Return, Kill, Function, Identity, Not, Or, SetVariable, Variable, }; bool HasChildren(StatementType type) { switch (type) { case StatementType::If: case StatementType::Loop: case StatementType::Function: return true; default: return false; } } struct Goto {}; struct Label {}; struct If {}; struct Loop {}; struct Break {}; struct Return {}; struct Kill {}; struct FunctionTag {}; struct Identity {}; struct Not {}; struct Or {}; struct SetVariable {}; struct Variable {}; #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 26495) // Always initialize a member variable, expected in Statement #endif struct Statement : ListBaseHook { Statement(IR::Block* code_, Statement* up_) : code{code_}, up{up_}, type{StatementType::Code} {} Statement(Goto, Statement* cond_, Node label_, Statement* up_) : label{label_}, cond{cond_}, up{up_}, type{StatementType::Goto} {} Statement(Label, u32 id_, Statement* up_) : id{id_}, up{up_}, type{StatementType::Label} {} Statement(If, Statement* cond_, Tree&& children_, Statement* up_) : children{std::move(children_)}, cond{cond_}, up{up_}, type{StatementType::If} {} Statement(Loop, Statement* cond_, Tree&& children_, Statement* up_) : children{std::move(children_)}, cond{cond_}, up{up_}, type{StatementType::Loop} {} Statement(Break, Statement* cond_, Statement* up_) : cond{cond_}, up{up_}, type{StatementType::Break} {} Statement(Return) : type{StatementType::Return} {} Statement(Kill) : type{StatementType::Kill} {} Statement(FunctionTag) : children{}, type{StatementType::Function} {} Statement(Identity, IR::Condition cond_) : guest_cond{cond_}, type{StatementType::Identity} {} Statement(Not, Statement* op_) : op{op_}, type{StatementType::Not} {} Statement(Or, Statement* op_a_, Statement* op_b_) : op_a{op_a_}, op_b{op_b_}, type{StatementType::Or} {} Statement(SetVariable, u32 id_, Statement* op_, Statement* up_) : op{op_}, id{id_}, up{up_}, type{StatementType::SetVariable} {} Statement(Variable, u32 id_) : id{id_}, type{StatementType::Variable} {} ~Statement() { if (HasChildren(type)) { std::destroy_at(&children); } } union { IR::Block* code; Node label; Tree children; IR::Condition guest_cond; Statement* op; Statement* op_a; }; union { Statement* cond; Statement* op_b; u32 id; }; Statement* up{}; StatementType type; }; #ifdef _MSC_VER #pragma warning(pop) #endif std::string DumpExpr(const Statement* stmt) { switch (stmt->type) { case StatementType::Identity: return fmt::format("{}", stmt->guest_cond); case StatementType::Not: return fmt::format("!{}", DumpExpr(stmt->op)); case StatementType::Or: return fmt::format("{} || {}", DumpExpr(stmt->op_a), DumpExpr(stmt->op_b)); case StatementType::Variable: return fmt::format("goto_L{}", stmt->id); default: return ""; } } std::string DumpTree(const Tree& tree, u32 indentation = 0) { std::string ret; std::string indent(indentation, ' '); for (auto stmt = tree.begin(); stmt != tree.end(); ++stmt) { switch (stmt->type) { case StatementType::Code: ret += fmt::format("{} Block {:04x} -> {:04x} (0x{:016x});\n", indent, stmt->code->LocationBegin(), stmt->code->LocationEnd(), reinterpret_cast(stmt->code)); break; case StatementType::Goto: ret += fmt::format("{} if ({}) goto L{};\n", indent, DumpExpr(stmt->cond), stmt->label->id); break; case StatementType::Label: ret += fmt::format("{}L{}:\n", indent, stmt->id); break; case StatementType::If: ret += fmt::format("{} if ({}) {{\n", indent, DumpExpr(stmt->cond)); ret += DumpTree(stmt->children, indentation + 4); ret += fmt::format("{} }}\n", indent); break; case StatementType::Loop: ret += fmt::format("{} do {{\n", indent); ret += DumpTree(stmt->children, indentation + 4); ret += fmt::format("{} }} while ({});\n", indent, DumpExpr(stmt->cond)); break; case StatementType::Break: ret += fmt::format("{} if ({}) break;\n", indent, DumpExpr(stmt->cond)); break; case StatementType::Return: ret += fmt::format("{} return;\n", indent); break; case StatementType::Kill: ret += fmt::format("{} kill;\n", indent); break; case StatementType::SetVariable: ret += fmt::format("{} goto_L{} = {};\n", indent, stmt->id, DumpExpr(stmt->op)); break; case StatementType::Function: case StatementType::Identity: case StatementType::Not: case StatementType::Or: case StatementType::Variable: throw LogicError("Statement can't be printed"); } } return ret; } bool HasNode(const Tree& tree, ConstNode stmt) { const auto end{tree.end()}; for (auto it = tree.begin(); it != end; ++it) { if (it == stmt || (HasChildren(it->type) && HasNode(it->children, stmt))) { return true; } } return false; } Node FindStatementWithLabel(Tree& tree, ConstNode goto_stmt) { const ConstNode label_stmt{goto_stmt->label}; const ConstNode end{tree.end()}; for (auto it = tree.begin(); it != end; ++it) { if (it == label_stmt || (HasChildren(it->type) && HasNode(it->children, label_stmt))) { return it; } } throw LogicError("Lift label not in tree"); } void SanitizeNoBreaks(const Tree& tree) { if (std::ranges::find(tree, StatementType::Break, &Statement::type) != tree.end()) { throw NotImplementedException("Capturing statement with break nodes"); } } size_t Level(Node stmt) { size_t level{0}; Statement* node{stmt->up}; while (node) { ++level; node = node->up; } return level; } bool IsDirectlyRelated(Node goto_stmt, Node label_stmt) { const size_t goto_level{Level(goto_stmt)}; const size_t label_level{Level(label_stmt)}; size_t min_level; size_t max_level; Node min; Node max; if (label_level < goto_level) { min_level = label_level; max_level = goto_level; min = label_stmt; max = goto_stmt; } else { // goto_level < label_level min_level = goto_level; max_level = label_level; min = goto_stmt; max = label_stmt; } while (max_level > min_level) { --max_level; max = max->up; } return min->up == max->up; } bool IsIndirectlyRelated(Node goto_stmt, Node label_stmt) { return goto_stmt->up != label_stmt->up && !IsDirectlyRelated(goto_stmt, label_stmt); } bool SearchNode(const Tree& tree, ConstNode stmt, size_t& offset) { ++offset; const auto end = tree.end(); for (ConstNode it = tree.begin(); it != end; ++it) { ++offset; if (stmt == it) { return true; } if (HasChildren(it->type) && SearchNode(it->children, stmt, offset)) { return true; } } return false; } class GotoPass { public: explicit GotoPass(Flow::CFG& cfg, ObjectPool& inst_pool_, ObjectPool& block_pool_, ObjectPool& stmt_pool) : inst_pool{inst_pool_}, block_pool{block_pool_}, pool{stmt_pool} { std::vector gotos{BuildTree(cfg)}; for (const Node& goto_stmt : gotos | std::views::reverse) { RemoveGoto(goto_stmt); } } Statement& RootStatement() noexcept { return root_stmt; } private: void RemoveGoto(Node goto_stmt) { // Force goto_stmt and label_stmt to be directly related const Node label_stmt{goto_stmt->label}; if (IsIndirectlyRelated(goto_stmt, label_stmt)) { // Move goto_stmt out using outward-movement transformation until it becomes // directly related to label_stmt while (!IsDirectlyRelated(goto_stmt, label_stmt)) { goto_stmt = MoveOutward(goto_stmt); } } // Force goto_stmt and label_stmt to be siblings if (IsDirectlyRelated(goto_stmt, label_stmt)) { const size_t label_level{Level(label_stmt)}; size_t goto_level{Level(goto_stmt)}; if (goto_level > label_level) { // Move goto_stmt out of its level using outward-movement transformations while (goto_level > label_level) { goto_stmt = MoveOutward(goto_stmt); --goto_level; } } else { // Level(goto_stmt) < Level(label_stmt) if (Offset(goto_stmt) > Offset(label_stmt)) { // Lift goto_stmt to above stmt containing label_stmt using goto-lifting // transformations goto_stmt = Lift(goto_stmt); } // Move goto_stmt into label_stmt's level using inward-movement transformation while (goto_level < label_level) { goto_stmt = MoveInward(goto_stmt); ++goto_level; } } } // TODO: Remove this { Node it{goto_stmt}; bool sibling{false}; do { sibling |= it == label_stmt; --it; } while (it != goto_stmt->up->children.begin()); while (it != goto_stmt->up->children.end()) { sibling |= it == label_stmt; ++it; } if (!sibling) { throw LogicError("Not siblings"); } } // goto_stmt and label_stmt are guaranteed to be siblings, eliminate if (std::next(goto_stmt) == label_stmt) { // Simply eliminate the goto if the label is next to it goto_stmt->up->children.erase(goto_stmt); } else if (Offset(goto_stmt) < Offset(label_stmt)) { // Eliminate goto_stmt with a conditional EliminateAsConditional(goto_stmt, label_stmt); } else { // Eliminate goto_stmt with a loop EliminateAsLoop(goto_stmt, label_stmt); } } std::vector BuildTree(Flow::CFG& cfg) { u32 label_id{0}; std::vector gotos; Flow::Function& first_function{cfg.Functions().front()}; BuildTree(cfg, first_function, label_id, gotos, root_stmt.children.end(), std::nullopt); return gotos; } void BuildTree(Flow::CFG& cfg, Flow::Function& function, u32& label_id, std::vector& gotos, Node function_insert_point, std::optional return_label) { Statement* const false_stmt{pool.Create(Identity{}, IR::Condition{false})}; Tree& root{root_stmt.children}; std::unordered_map local_labels; local_labels.reserve(function.blocks.size()); for (Flow::Block& block : function.blocks) { Statement* const label{pool.Create(Label{}, label_id, &root_stmt)}; const Node label_it{root.insert(function_insert_point, *label)}; local_labels.emplace(&block, label_it); ++label_id; } for (Flow::Block& block : function.blocks) { const Node label{local_labels.at(&block)}; // Insertion point const Node ip{std::next(label)}; // Reset goto variables before the first block and after its respective label const auto make_reset_variable{[&]() -> Statement& { return *pool.Create(SetVariable{}, label->id, false_stmt, &root_stmt); }}; root.push_front(make_reset_variable()); root.insert(ip, make_reset_variable()); const u32 begin_offset{block.begin.Offset()}; const u32 end_offset{block.end.Offset()}; IR::Block* const ir_block{block_pool.Create(inst_pool, begin_offset, end_offset)}; root.insert(ip, *pool.Create(ir_block, &root_stmt)); switch (block.end_class) { case Flow::EndClass::Branch: { Statement* const always_cond{pool.Create(Identity{}, IR::Condition{true})}; if (block.cond == IR::Condition{true}) { const Node true_label{local_labels.at(block.branch_true)}; gotos.push_back( root.insert(ip, *pool.Create(Goto{}, always_cond, true_label, &root_stmt))); } else if (block.cond == IR::Condition{false}) { const Node false_label{local_labels.at(block.branch_false)}; gotos.push_back(root.insert( ip, *pool.Create(Goto{}, always_cond, false_label, &root_stmt))); } else { const Node true_label{local_labels.at(block.branch_true)}; const Node false_label{local_labels.at(block.branch_false)}; Statement* const true_cond{pool.Create(Identity{}, block.cond)}; gotos.push_back( root.insert(ip, *pool.Create(Goto{}, true_cond, true_label, &root_stmt))); gotos.push_back(root.insert( ip, *pool.Create(Goto{}, always_cond, false_label, &root_stmt))); } break; } case Flow::EndClass::Call: { Flow::Function& call{cfg.Functions()[block.function_call]}; const Node call_return_label{local_labels.at(block.return_block)}; BuildTree(cfg, call, label_id, gotos, ip, call_return_label); break; } case Flow::EndClass::Exit: root.insert(ip, *pool.Create(Return{})); break; case Flow::EndClass::Return: { Statement* const always_cond{pool.Create(Identity{}, block.cond)}; auto goto_stmt{pool.Create(Goto{}, always_cond, return_label.value(), &root_stmt)}; gotos.push_back(root.insert(ip, *goto_stmt)); break; } case Flow::EndClass::Kill: root.insert(ip, *pool.Create(Kill{})); break; } } } void UpdateTreeUp(Statement* tree) { for (Statement& stmt : tree->children) { stmt.up = tree; } } void EliminateAsConditional(Node goto_stmt, Node label_stmt) { Tree& body{goto_stmt->up->children}; Tree if_body; if_body.splice(if_body.begin(), body, std::next(goto_stmt), label_stmt); Statement* const cond{pool.Create(Not{}, goto_stmt->cond)}; Statement* const if_stmt{pool.Create(If{}, cond, std::move(if_body), goto_stmt->up)}; UpdateTreeUp(if_stmt); body.insert(goto_stmt, *if_stmt); body.erase(goto_stmt); } void EliminateAsLoop(Node goto_stmt, Node label_stmt) { Tree& body{goto_stmt->up->children}; Tree loop_body; loop_body.splice(loop_body.begin(), body, label_stmt, goto_stmt); Statement* const cond{goto_stmt->cond}; Statement* const loop{pool.Create(Loop{}, cond, std::move(loop_body), goto_stmt->up)}; UpdateTreeUp(loop); body.insert(goto_stmt, *loop); body.erase(goto_stmt); } [[nodiscard]] Node MoveOutward(Node goto_stmt) { switch (goto_stmt->up->type) { case StatementType::If: return MoveOutwardIf(goto_stmt); case StatementType::Loop: return MoveOutwardLoop(goto_stmt); default: throw LogicError("Invalid outward movement"); } } [[nodiscard]] Node MoveInward(Node goto_stmt) { Statement* const parent{goto_stmt->up}; Tree& body{parent->children}; const Node label_nested_stmt{FindStatementWithLabel(body, goto_stmt)}; const Node label{goto_stmt->label}; const u32 label_id{label->id}; Statement* const goto_cond{goto_stmt->cond}; Statement* const set_var{pool.Create(SetVariable{}, label_id, goto_cond, parent)}; body.insert(goto_stmt, *set_var); Tree if_body; if_body.splice(if_body.begin(), body, std::next(goto_stmt), label_nested_stmt); Statement* const variable{pool.Create(Variable{}, label_id)}; Statement* const neg_var{pool.Create(Not{}, variable)}; if (!if_body.empty()) { Statement* const if_stmt{pool.Create(If{}, neg_var, std::move(if_body), parent)}; UpdateTreeUp(if_stmt); body.insert(goto_stmt, *if_stmt); } body.erase(goto_stmt); switch (label_nested_stmt->type) { case StatementType::If: // Update nested if condition label_nested_stmt->cond = pool.Create(Or{}, variable, label_nested_stmt->cond); break; case StatementType::Loop: break; default: throw LogicError("Invalid inward movement"); } Tree& nested_tree{label_nested_stmt->children}; Statement* const new_goto{pool.Create(Goto{}, variable, label, &*label_nested_stmt)}; return nested_tree.insert(nested_tree.begin(), *new_goto); } [[nodiscard]] Node Lift(Node goto_stmt) { Statement* const parent{goto_stmt->up}; Tree& body{parent->children}; const Node label{goto_stmt->label}; const u32 label_id{label->id}; const Node label_nested_stmt{FindStatementWithLabel(body, goto_stmt)}; const auto type{label_nested_stmt->type}; Tree loop_body; loop_body.splice(loop_body.begin(), body, label_nested_stmt, goto_stmt); SanitizeNoBreaks(loop_body); Statement* const variable{pool.Create(Variable{}, label_id)}; Statement* const loop_stmt{pool.Create(Loop{}, variable, std::move(loop_body), parent)}; UpdateTreeUp(loop_stmt); const Node loop_node{body.insert(goto_stmt, *loop_stmt)}; Statement* const new_goto{pool.Create(Goto{}, variable, label, loop_stmt)}; loop_stmt->children.push_front(*new_goto); const Node new_goto_node{loop_stmt->children.begin()}; Statement* const set_var{pool.Create(SetVariable{}, label_id, goto_stmt->cond, loop_stmt)}; loop_stmt->children.push_back(*set_var); body.erase(goto_stmt); return new_goto_node; } Node MoveOutwardIf(Node goto_stmt) { const Node parent{Tree::s_iterator_to(*goto_stmt->up)}; Tree& body{parent->children}; const u32 label_id{goto_stmt->label->id}; Statement* const goto_cond{goto_stmt->cond}; Statement* const set_goto_var{pool.Create(SetVariable{}, label_id, goto_cond, &*parent)}; body.insert(goto_stmt, *set_goto_var); Tree if_body; if_body.splice(if_body.begin(), body, std::next(goto_stmt), body.end()); if_body.pop_front(); Statement* const cond{pool.Create(Variable{}, label_id)}; Statement* const neg_cond{pool.Create(Not{}, cond)}; Statement* const if_stmt{pool.Create(If{}, neg_cond, std::move(if_body), &*parent)}; UpdateTreeUp(if_stmt); body.insert(goto_stmt, *if_stmt); body.erase(goto_stmt); Statement* const new_cond{pool.Create(Variable{}, label_id)}; Statement* const new_goto{pool.Create(Goto{}, new_cond, goto_stmt->label, parent->up)}; Tree& parent_tree{parent->up->children}; return parent_tree.insert(std::next(parent), *new_goto); } Node MoveOutwardLoop(Node goto_stmt) { Statement* const parent{goto_stmt->up}; Tree& body{parent->children}; const u32 label_id{goto_stmt->label->id}; Statement* const goto_cond{goto_stmt->cond}; Statement* const set_goto_var{pool.Create(SetVariable{}, label_id, goto_cond, parent)}; Statement* const cond{pool.Create(Variable{}, label_id)}; Statement* const break_stmt{pool.Create(Break{}, cond, parent)}; body.insert(goto_stmt, *set_goto_var); body.insert(goto_stmt, *break_stmt); body.erase(goto_stmt); const Node loop{Tree::s_iterator_to(*goto_stmt->up)}; Statement* const new_goto_cond{pool.Create(Variable{}, label_id)}; Statement* const new_goto{pool.Create(Goto{}, new_goto_cond, goto_stmt->label, loop->up)}; Tree& parent_tree{loop->up->children}; return parent_tree.insert(std::next(loop), *new_goto); } size_t Offset(ConstNode stmt) const { size_t offset{0}; if (!SearchNode(root_stmt.children, stmt, offset)) { throw LogicError("Node not found in tree"); } return offset; } ObjectPool& inst_pool; ObjectPool& block_pool; ObjectPool& pool; Statement root_stmt{FunctionTag{}}; }; IR::Block* TryFindForwardBlock(const Statement& stmt) { const Tree& tree{stmt.up->children}; const ConstNode end{tree.cend()}; ConstNode forward_node{std::next(Tree::s_iterator_to(stmt))}; while (forward_node != end && !HasChildren(forward_node->type)) { if (forward_node->type == StatementType::Code) { return forward_node->code; } ++forward_node; } return nullptr; } [[nodiscard]] IR::U1 VisitExpr(IR::IREmitter& ir, const Statement& stmt) { switch (stmt.type) { case StatementType::Identity: return ir.Condition(stmt.guest_cond); case StatementType::Not: return ir.LogicalNot(IR::U1{VisitExpr(ir, *stmt.op)}); case StatementType::Or: return ir.LogicalOr(VisitExpr(ir, *stmt.op_a), VisitExpr(ir, *stmt.op_b)); case StatementType::Variable: return ir.GetGotoVariable(stmt.id); default: throw NotImplementedException("Statement type {}", stmt.type); } } class TranslatePass { public: TranslatePass(ObjectPool& inst_pool_, ObjectPool& block_pool_, ObjectPool& stmt_pool_, Environment& env_, Statement& root_stmt, IR::BlockList& block_list_) : stmt_pool{stmt_pool_}, inst_pool{inst_pool_}, block_pool{block_pool_}, env{env_}, block_list{block_list_} { Visit(root_stmt, nullptr, nullptr); IR::Block& first_block{*block_list.front()}; IR::IREmitter ir{first_block, first_block.begin()}; ir.Prologue(); } private: void Visit(Statement& parent, IR::Block* continue_block, IR::Block* break_block) { Tree& tree{parent.children}; IR::Block* current_block{nullptr}; for (auto it = tree.begin(); it != tree.end(); ++it) { Statement& stmt{*it}; switch (stmt.type) { case StatementType::Label: // Labels can be ignored break; case StatementType::Code: { if (current_block && current_block != stmt.code) { IR::IREmitter{*current_block}.Branch(stmt.code); } current_block = stmt.code; Translate(env, stmt.code); block_list.push_back(stmt.code); break; } case StatementType::SetVariable: { if (!current_block) { current_block = MergeBlock(parent, stmt); } IR::IREmitter ir{*current_block}; ir.SetGotoVariable(stmt.id, VisitExpr(ir, *stmt.op)); break; } case StatementType::If: { if (!current_block) { current_block = block_pool.Create(inst_pool); block_list.push_back(current_block); } IR::Block* const merge_block{MergeBlock(parent, stmt)}; // Visit children const size_t first_block_index{block_list.size()}; Visit(stmt, merge_block, break_block); // Implement if header block IR::Block* const first_if_block{block_list.at(first_block_index)}; IR::IREmitter ir{*current_block}; const IR::U1 cond{VisitExpr(ir, *stmt.cond)}; ir.SelectionMerge(merge_block); ir.BranchConditional(cond, first_if_block, merge_block); current_block = merge_block; break; } case StatementType::Loop: { IR::Block* const loop_header_block{block_pool.Create(inst_pool)}; if (current_block) { IR::IREmitter{*current_block}.Branch(loop_header_block); } block_list.push_back(loop_header_block); IR::Block* const new_continue_block{block_pool.Create(inst_pool)}; IR::Block* const merge_block{MergeBlock(parent, stmt)}; // Visit children const size_t first_block_index{block_list.size()}; Visit(stmt, new_continue_block, merge_block); // The continue block is located at the end of the loop block_list.push_back(new_continue_block); // Implement loop header block IR::Block* const first_loop_block{block_list.at(first_block_index)}; IR::IREmitter ir{*loop_header_block}; ir.LoopMerge(merge_block, new_continue_block); ir.Branch(first_loop_block); // Implement continue block IR::IREmitter continue_ir{*new_continue_block}; const IR::U1 continue_cond{VisitExpr(continue_ir, *stmt.cond)}; continue_ir.BranchConditional(continue_cond, ir.block, merge_block); current_block = merge_block; break; } case StatementType::Break: { if (!current_block) { current_block = block_pool.Create(inst_pool); block_list.push_back(current_block); } IR::Block* const skip_block{MergeBlock(parent, stmt)}; IR::IREmitter ir{*current_block}; ir.BranchConditional(VisitExpr(ir, *stmt.cond), break_block, skip_block); current_block = skip_block; break; } case StatementType::Return: { if (!current_block) { current_block = block_pool.Create(inst_pool); block_list.push_back(current_block); } IR::IREmitter ir{*current_block}; ir.Epilogue(); ir.Return(); current_block = nullptr; break; } case StatementType::Kill: { if (!current_block) { current_block = block_pool.Create(inst_pool); block_list.push_back(current_block); } IR::Block* demote_block{MergeBlock(parent, stmt)}; IR::IREmitter{*current_block}.DemoteToHelperInvocation(demote_block); current_block = demote_block; break; } default: throw NotImplementedException("Statement type {}", stmt.type); } } if (current_block && continue_block) { IR::IREmitter{*current_block}.Branch(continue_block); } } IR::Block* MergeBlock(Statement& parent, Statement& stmt) { if (IR::Block* const block{TryFindForwardBlock(stmt)}) { return block; } // Create a merge block we can visit later IR::Block* const block{block_pool.Create(inst_pool)}; Statement* const merge_stmt{stmt_pool.Create(block, &parent)}; parent.children.insert(std::next(Tree::s_iterator_to(stmt)), *merge_stmt); return block; } ObjectPool& stmt_pool; ObjectPool& inst_pool; ObjectPool& block_pool; Environment& env; IR::BlockList& block_list; }; } // Anonymous namespace IR::BlockList VisitAST(ObjectPool& inst_pool, ObjectPool& block_pool, Environment& env, Flow::CFG& cfg) { ObjectPool stmt_pool{64}; GotoPass goto_pass{cfg, inst_pool, block_pool, stmt_pool}; Statement& root{goto_pass.RootStatement()}; IR::BlockList block_list; TranslatePass{inst_pool, block_pool, stmt_pool, env, root, block_list}; return block_list; } } // namespace Shader::Maxwell