// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "common/bit_cast.h" #include "shader_recompiler/frontend/ir/ir_emitter.h" #include "shader_recompiler/frontend/ir/value.h" namespace Shader::IR { namespace { [[noreturn]] void ThrowInvalidType(Type type) { throw InvalidArgument("Invalid type {}", type); } Value MakeLodClampPair(IREmitter& ir, const F32& bias_lod, const F32& lod_clamp) { if (!bias_lod.IsEmpty() && !lod_clamp.IsEmpty()) { return ir.CompositeConstruct(bias_lod, lod_clamp); } else if (!bias_lod.IsEmpty()) { return bias_lod; } else if (!lod_clamp.IsEmpty()) { return lod_clamp; } else { return Value{}; } } } // Anonymous namespace U1 IREmitter::Imm1(bool value) const { return U1{Value{value}}; } U8 IREmitter::Imm8(u8 value) const { return U8{Value{value}}; } U16 IREmitter::Imm16(u16 value) const { return U16{Value{value}}; } U32 IREmitter::Imm32(u32 value) const { return U32{Value{value}}; } U32 IREmitter::Imm32(s32 value) const { return U32{Value{static_cast(value)}}; } F32 IREmitter::Imm32(f32 value) const { return F32{Value{value}}; } U64 IREmitter::Imm64(u64 value) const { return U64{Value{value}}; } U64 IREmitter::Imm64(s64 value) const { return U64{Value{static_cast(value)}}; } F64 IREmitter::Imm64(f64 value) const { return F64{Value{value}}; } U1 IREmitter::ConditionRef(const U1& value) { return Inst(Opcode::ConditionRef, value); } void IREmitter::Reference(const Value& value) { Inst(Opcode::Reference, value); } void IREmitter::PhiMove(IR::Inst& phi, const Value& value) { Inst(Opcode::PhiMove, Value{&phi}, value); } void IREmitter::Prologue() { Inst(Opcode::Prologue); } void IREmitter::Epilogue() { Inst(Opcode::Epilogue); } void IREmitter::DemoteToHelperInvocation() { Inst(Opcode::DemoteToHelperInvocation); } void IREmitter::EmitVertex(const U32& stream) { Inst(Opcode::EmitVertex, stream); } void IREmitter::EndPrimitive(const U32& stream) { Inst(Opcode::EndPrimitive, stream); } void IREmitter::Barrier() { Inst(Opcode::Barrier); } void IREmitter::WorkgroupMemoryBarrier() { Inst(Opcode::WorkgroupMemoryBarrier); } void IREmitter::DeviceMemoryBarrier() { Inst(Opcode::DeviceMemoryBarrier); } U32 IREmitter::GetReg(IR::Reg reg) { return Inst(Opcode::GetRegister, reg); } void IREmitter::SetReg(IR::Reg reg, const U32& value) { Inst(Opcode::SetRegister, reg, value); } U1 IREmitter::GetPred(IR::Pred pred, bool is_negated) { if (pred == Pred::PT) { return Imm1(!is_negated); } const U1 value{Inst(Opcode::GetPred, pred)}; if (is_negated) { return Inst(Opcode::LogicalNot, value); } else { return value; } } void IREmitter::SetPred(IR::Pred pred, const U1& value) { if (pred != IR::Pred::PT) { Inst(Opcode::SetPred, pred, value); } } U1 IREmitter::GetGotoVariable(u32 id) { return Inst(Opcode::GetGotoVariable, id); } void IREmitter::SetGotoVariable(u32 id, const U1& value) { Inst(Opcode::SetGotoVariable, id, value); } U32 IREmitter::GetIndirectBranchVariable() { return Inst(Opcode::GetIndirectBranchVariable); } void IREmitter::SetIndirectBranchVariable(const U32& value) { Inst(Opcode::SetIndirectBranchVariable, value); } U32 IREmitter::GetCbuf(const U32& binding, const U32& byte_offset) { return Inst(Opcode::GetCbufU32, binding, byte_offset); } Value IREmitter::GetCbuf(const U32& binding, const U32& byte_offset, size_t bitsize, bool is_signed) { switch (bitsize) { case 8: return Inst(is_signed ? Opcode::GetCbufS8 : Opcode::GetCbufU8, binding, byte_offset); case 16: return Inst(is_signed ? Opcode::GetCbufS16 : Opcode::GetCbufU16, binding, byte_offset); case 32: return Inst(Opcode::GetCbufU32, binding, byte_offset); case 64: return Inst(Opcode::GetCbufU32x2, binding, byte_offset); default: throw InvalidArgument("Invalid bit size {}", bitsize); } } F32 IREmitter::GetFloatCbuf(const U32& binding, const U32& byte_offset) { return Inst(Opcode::GetCbufF32, binding, byte_offset); } U1 IREmitter::GetZFlag() { return Inst(Opcode::GetZFlag); } U1 IREmitter::GetSFlag() { return Inst(Opcode::GetSFlag); } U1 IREmitter::GetCFlag() { return Inst(Opcode::GetCFlag); } U1 IREmitter::GetOFlag() { return Inst(Opcode::GetOFlag); } void IREmitter::SetZFlag(const U1& value) { Inst(Opcode::SetZFlag, value); } void IREmitter::SetSFlag(const U1& value) { Inst(Opcode::SetSFlag, value); } void IREmitter::SetCFlag(const U1& value) { Inst(Opcode::SetCFlag, value); } void IREmitter::SetOFlag(const U1& value) { Inst(Opcode::SetOFlag, value); } static U1 GetFlowTest(IREmitter& ir, FlowTest flow_test) { switch (flow_test) { case FlowTest::F: return ir.Imm1(false); case FlowTest::LT: return ir.LogicalXor(ir.LogicalAnd(ir.GetSFlag(), ir.LogicalNot(ir.GetZFlag())), ir.GetOFlag()); case FlowTest::EQ: return ir.LogicalAnd(ir.LogicalNot(ir.GetSFlag()), ir.GetZFlag()); case FlowTest::LE: return ir.LogicalXor(ir.GetSFlag(), ir.LogicalOr(ir.GetZFlag(), ir.GetOFlag())); case FlowTest::GT: return ir.LogicalAnd(ir.LogicalXor(ir.LogicalNot(ir.GetSFlag()), ir.GetOFlag()), ir.LogicalNot(ir.GetZFlag())); case FlowTest::NE: return ir.LogicalNot(ir.GetZFlag()); case FlowTest::GE: return ir.LogicalNot(ir.LogicalXor(ir.GetSFlag(), ir.GetOFlag())); case FlowTest::NUM: return ir.LogicalOr(ir.LogicalNot(ir.GetSFlag()), ir.LogicalNot(ir.GetZFlag())); case FlowTest::NaN: return ir.LogicalAnd(ir.GetSFlag(), ir.GetZFlag()); case FlowTest::LTU: return ir.LogicalXor(ir.GetSFlag(), ir.GetOFlag()); case FlowTest::EQU: return ir.GetZFlag(); case FlowTest::LEU: return ir.LogicalOr(ir.LogicalXor(ir.GetSFlag(), ir.GetOFlag()), ir.GetZFlag()); case FlowTest::GTU: return ir.LogicalXor(ir.LogicalNot(ir.GetSFlag()), ir.LogicalOr(ir.GetZFlag(), ir.GetOFlag())); case FlowTest::NEU: return ir.LogicalOr(ir.GetSFlag(), ir.LogicalNot(ir.GetZFlag())); case FlowTest::GEU: return ir.LogicalXor(ir.LogicalOr(ir.LogicalNot(ir.GetSFlag()), ir.GetZFlag()), ir.GetOFlag()); case FlowTest::T: return ir.Imm1(true); case FlowTest::OFF: return ir.LogicalNot(ir.GetOFlag()); case FlowTest::LO: return ir.LogicalNot(ir.GetCFlag()); case FlowTest::SFF: return ir.LogicalNot(ir.GetSFlag()); case FlowTest::LS: return ir.LogicalOr(ir.GetZFlag(), ir.LogicalNot(ir.GetCFlag())); case FlowTest::HI: return ir.LogicalAnd(ir.GetCFlag(), ir.LogicalNot(ir.GetZFlag())); case FlowTest::SFT: return ir.GetSFlag(); case FlowTest::HS: return ir.GetCFlag(); case FlowTest::OFT: return ir.GetOFlag(); case FlowTest::RLE: return ir.LogicalOr(ir.GetSFlag(), ir.GetZFlag()); case FlowTest::RGT: return ir.LogicalAnd(ir.LogicalNot(ir.GetSFlag()), ir.LogicalNot(ir.GetZFlag())); case FlowTest::FCSM_TR: LOG_WARNING(Shader, "(STUBBED) FCSM_TR"); return ir.Imm1(false); case FlowTest::CSM_TA: case FlowTest::CSM_TR: case FlowTest::CSM_MX: case FlowTest::FCSM_TA: case FlowTest::FCSM_MX: default: throw NotImplementedException("Flow test {}", flow_test); } } U1 IREmitter::Condition(IR::Condition cond) { const FlowTest flow_test{cond.GetFlowTest()}; const auto [pred, is_negated]{cond.GetPred()}; if (flow_test == FlowTest::T) { return GetPred(pred, is_negated); } return LogicalAnd(GetPred(pred, is_negated), GetFlowTest(*this, flow_test)); } U1 IREmitter::GetFlowTestResult(FlowTest test) { return GetFlowTest(*this, test); } F32 IREmitter::GetAttribute(IR::Attribute attribute) { return GetAttribute(attribute, Imm32(0)); } F32 IREmitter::GetAttribute(IR::Attribute attribute, const U32& vertex) { return Inst(Opcode::GetAttribute, attribute, vertex); } void IREmitter::SetAttribute(IR::Attribute attribute, const F32& value, const U32& vertex) { Inst(Opcode::SetAttribute, attribute, value, vertex); } F32 IREmitter::GetAttributeIndexed(const U32& phys_address) { return GetAttributeIndexed(phys_address, Imm32(0)); } F32 IREmitter::GetAttributeIndexed(const U32& phys_address, const U32& vertex) { return Inst(Opcode::GetAttributeIndexed, phys_address, vertex); } void IREmitter::SetAttributeIndexed(const U32& phys_address, const F32& value, const U32& vertex) { Inst(Opcode::SetAttributeIndexed, phys_address, value, vertex); } F32 IREmitter::GetPatch(Patch patch) { return Inst(Opcode::GetPatch, patch); } void IREmitter::SetPatch(Patch patch, const F32& value) { Inst(Opcode::SetPatch, patch, value); } void IREmitter::SetFragColor(u32 index, u32 component, const F32& value) { Inst(Opcode::SetFragColor, Imm32(index), Imm32(component), value); } void IREmitter::SetSampleMask(const U32& value) { Inst(Opcode::SetSampleMask, value); } void IREmitter::SetFragDepth(const F32& value) { Inst(Opcode::SetFragDepth, value); } U32 IREmitter::WorkgroupIdX() { return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 0)}; } U32 IREmitter::WorkgroupIdY() { return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 1)}; } U32 IREmitter::WorkgroupIdZ() { return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 2)}; } Value IREmitter::LocalInvocationId() { return Inst(Opcode::LocalInvocationId); } U32 IREmitter::LocalInvocationIdX() { return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 0)}; } U32 IREmitter::LocalInvocationIdY() { return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 1)}; } U32 IREmitter::LocalInvocationIdZ() { return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 2)}; } U32 IREmitter::InvocationId() { return Inst(Opcode::InvocationId); } U32 IREmitter::SampleId() { return Inst(Opcode::SampleId); } U1 IREmitter::IsHelperInvocation() { return Inst(Opcode::IsHelperInvocation); } F32 IREmitter::YDirection() { return Inst(Opcode::YDirection); } F32 IREmitter::ResolutionDownFactor() { return Inst(Opcode::ResolutionDownFactor); } F32 IREmitter::RenderAreaWidth() { return F32(CompositeExtract(Inst(Opcode::RenderArea), 0)); } F32 IREmitter::RenderAreaHeight() { return F32(CompositeExtract(Inst(Opcode::RenderArea), 1)); } U32 IREmitter::LaneId() { return Inst(Opcode::LaneId); } U32 IREmitter::LoadGlobalU8(const U64& address) { return Inst(Opcode::LoadGlobalU8, address); } U32 IREmitter::LoadGlobalS8(const U64& address) { return Inst(Opcode::LoadGlobalS8, address); } U32 IREmitter::LoadGlobalU16(const U64& address) { return Inst(Opcode::LoadGlobalU16, address); } U32 IREmitter::LoadGlobalS16(const U64& address) { return Inst(Opcode::LoadGlobalS16, address); } U32 IREmitter::LoadGlobal32(const U64& address) { return Inst(Opcode::LoadGlobal32, address); } Value IREmitter::LoadGlobal64(const U64& address) { return Inst(Opcode::LoadGlobal64, address); } Value IREmitter::LoadGlobal128(const U64& address) { return Inst(Opcode::LoadGlobal128, address); } void IREmitter::WriteGlobalU8(const U64& address, const U32& value) { Inst(Opcode::WriteGlobalU8, address, value); } void IREmitter::WriteGlobalS8(const U64& address, const U32& value) { Inst(Opcode::WriteGlobalS8, address, value); } void IREmitter::WriteGlobalU16(const U64& address, const U32& value) { Inst(Opcode::WriteGlobalU16, address, value); } void IREmitter::WriteGlobalS16(const U64& address, const U32& value) { Inst(Opcode::WriteGlobalS16, address, value); } void IREmitter::WriteGlobal32(const U64& address, const U32& value) { Inst(Opcode::WriteGlobal32, address, value); } void IREmitter::WriteGlobal64(const U64& address, const IR::Value& vector) { Inst(Opcode::WriteGlobal64, address, vector); } void IREmitter::WriteGlobal128(const U64& address, const IR::Value& vector) { Inst(Opcode::WriteGlobal128, address, vector); } U32 IREmitter::LoadLocal(const IR::U32& word_offset) { return Inst(Opcode::LoadLocal, word_offset); } void IREmitter::WriteLocal(const IR::U32& word_offset, const IR::U32& value) { Inst(Opcode::WriteLocal, word_offset, value); } Value IREmitter::LoadShared(int bit_size, bool is_signed, const IR::U32& offset) { switch (bit_size) { case 8: return Inst(is_signed ? Opcode::LoadSharedS8 : Opcode::LoadSharedU8, offset); case 16: return Inst(is_signed ? Opcode::LoadSharedS16 : Opcode::LoadSharedU16, offset); case 32: return Inst(Opcode::LoadSharedU32, offset); case 64: return Inst(Opcode::LoadSharedU64, offset); case 128: return Inst(Opcode::LoadSharedU128, offset); } throw InvalidArgument("Invalid bit size {}", bit_size); } void IREmitter::WriteShared(int bit_size, const IR::U32& offset, const IR::Value& value) { switch (bit_size) { case 8: Inst(Opcode::WriteSharedU8, offset, value); break; case 16: Inst(Opcode::WriteSharedU16, offset, value); break; case 32: Inst(Opcode::WriteSharedU32, offset, value); break; case 64: Inst(Opcode::WriteSharedU64, offset, value); break; case 128: Inst(Opcode::WriteSharedU128, offset, value); break; default: throw InvalidArgument("Invalid bit size {}", bit_size); } } U1 IREmitter::GetZeroFromOp(const Value& op) { return Inst(Opcode::GetZeroFromOp, op); } U1 IREmitter::GetSignFromOp(const Value& op) { return Inst(Opcode::GetSignFromOp, op); } U1 IREmitter::GetCarryFromOp(const Value& op) { return Inst(Opcode::GetCarryFromOp, op); } U1 IREmitter::GetOverflowFromOp(const Value& op) { return Inst(Opcode::GetOverflowFromOp, op); } U1 IREmitter::GetSparseFromOp(const Value& op) { return Inst(Opcode::GetSparseFromOp, op); } U1 IREmitter::GetInBoundsFromOp(const Value& op) { return Inst(Opcode::GetInBoundsFromOp, op); } F16F32F64 IREmitter::FPAdd(const F16F32F64& a, const F16F32F64& b, FpControl control) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::F16: return Inst(Opcode::FPAdd16, Flags{control}, a, b); case Type::F32: return Inst(Opcode::FPAdd32, Flags{control}, a, b); case Type::F64: return Inst(Opcode::FPAdd64, Flags{control}, a, b); default: ThrowInvalidType(a.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2) { if (e1.Type() != e2.Type()) { throw InvalidArgument("Mismatching types {} and {}", e1.Type(), e2.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x2, e1, e2); case Type::F16: return Inst(Opcode::CompositeConstructF16x2, e1, e2); case Type::F32: return Inst(Opcode::CompositeConstructF32x2, e1, e2); case Type::F64: return Inst(Opcode::CompositeConstructF64x2, e1, e2); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3) { if (e1.Type() != e2.Type() || e1.Type() != e3.Type()) { throw InvalidArgument("Mismatching types {}, {}, and {}", e1.Type(), e2.Type(), e3.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x3, e1, e2, e3); case Type::F16: return Inst(Opcode::CompositeConstructF16x3, e1, e2, e3); case Type::F32: return Inst(Opcode::CompositeConstructF32x3, e1, e2, e3); case Type::F64: return Inst(Opcode::CompositeConstructF64x3, e1, e2, e3); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3, const Value& e4) { if (e1.Type() != e2.Type() || e1.Type() != e3.Type() || e1.Type() != e4.Type()) { throw InvalidArgument("Mismatching types {}, {}, {}, and {}", e1.Type(), e2.Type(), e3.Type(), e4.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x4, e1, e2, e3, e4); case Type::F16: return Inst(Opcode::CompositeConstructF16x4, e1, e2, e3, e4); case Type::F32: return Inst(Opcode::CompositeConstructF32x4, e1, e2, e3, e4); case Type::F64: return Inst(Opcode::CompositeConstructF64x4, e1, e2, e3, e4); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeExtract(const Value& vector, size_t element) { const auto read{[&](Opcode opcode, size_t limit) -> Value { if (element >= limit) { throw InvalidArgument("Out of bounds element {}", element); } return Inst(opcode, vector, Value{static_cast(element)}); }}; switch (vector.Type()) { case Type::U32x2: return read(Opcode::CompositeExtractU32x2, 2); case Type::U32x3: return read(Opcode::CompositeExtractU32x3, 3); case Type::U32x4: return read(Opcode::CompositeExtractU32x4, 4); case Type::F16x2: return read(Opcode::CompositeExtractF16x2, 2); case Type::F16x3: return read(Opcode::CompositeExtractF16x3, 3); case Type::F16x4: return read(Opcode::CompositeExtractF16x4, 4); case Type::F32x2: return read(Opcode::CompositeExtractF32x2, 2); case Type::F32x3: return read(Opcode::CompositeExtractF32x3, 3); case Type::F32x4: return read(Opcode::CompositeExtractF32x4, 4); case Type::F64x2: return read(Opcode::CompositeExtractF64x2, 2); case Type::F64x3: return read(Opcode::CompositeExtractF64x3, 3); case Type::F64x4: return read(Opcode::CompositeExtractF64x4, 4); default: ThrowInvalidType(vector.Type()); } } Value IREmitter::CompositeInsert(const Value& vector, const Value& object, size_t element) { const auto insert{[&](Opcode opcode, size_t limit) { if (element >= limit) { throw InvalidArgument("Out of bounds element {}", element); } return Inst(opcode, vector, object, Value{static_cast(element)}); }}; switch (vector.Type()) { case Type::U32x2: return insert(Opcode::CompositeInsertU32x2, 2); case Type::U32x3: return insert(Opcode::CompositeInsertU32x3, 3); case Type::U32x4: return insert(Opcode::CompositeInsertU32x4, 4); case Type::F16x2: return insert(Opcode::CompositeInsertF16x2, 2); case Type::F16x3: return insert(Opcode::CompositeInsertF16x3, 3); case Type::F16x4: return insert(Opcode::CompositeInsertF16x4, 4); case Type::F32x2: return insert(Opcode::CompositeInsertF32x2, 2); case Type::F32x3: return insert(Opcode::CompositeInsertF32x3, 3); case Type::F32x4: return insert(Opcode::CompositeInsertF32x4, 4); case Type::F64x2: return insert(Opcode::CompositeInsertF64x2, 2); case Type::F64x3: return insert(Opcode::CompositeInsertF64x3, 3); case Type::F64x4: return insert(Opcode::CompositeInsertF64x4, 4); default: ThrowInvalidType(vector.Type()); } } Value IREmitter::Select(const U1& condition, const Value& true_value, const Value& false_value) { if (true_value.Type() != false_value.Type()) { throw InvalidArgument("Mismatching types {} and {}", true_value.Type(), false_value.Type()); } switch (true_value.Type()) { case Type::U1: return Inst(Opcode::SelectU1, condition, true_value, false_value); case Type::U8: return Inst(Opcode::SelectU8, condition, true_value, false_value); case Type::U16: return Inst(Opcode::SelectU16, condition, true_value, false_value); case Type::U32: return Inst(Opcode::SelectU32, condition, true_value, false_value); case Type::U64: return Inst(Opcode::SelectU64, condition, true_value, false_value); case Type::F32: return Inst(Opcode::SelectF32, condition, true_value, false_value); case Type::F64: return Inst(Opcode::SelectF64, condition, true_value, false_value); default: throw InvalidArgument("Invalid type {}", true_value.Type()); } } template <> IR::U32 IREmitter::BitCast(const IR::F32& value) { return Inst(Opcode::BitCastU32F32, value); } template <> IR::F32 IREmitter::BitCast(const IR::U32& value) { return Inst(Opcode::BitCastF32U32, value); } template <> IR::U16 IREmitter::BitCast(const IR::F16& value) { return Inst(Opcode::BitCastU16F16, value); } template <> IR::F16 IREmitter::BitCast(const IR::U16& value) { return Inst(Opcode::BitCastF16U16, value); } template <> IR::U64 IREmitter::BitCast(const IR::F64& value) { return Inst(Opcode::BitCastU64F64, value); } template <> IR::F64 IREmitter::BitCast(const IR::U64& value) { return Inst(Opcode::BitCastF64U64, value); } U64 IREmitter::PackUint2x32(const Value& vector) { return Inst(Opcode::PackUint2x32, vector); } Value IREmitter::UnpackUint2x32(const U64& value) { return Inst(Opcode::UnpackUint2x32, value); } U32 IREmitter::PackFloat2x16(const Value& vector) { return Inst(Opcode::PackFloat2x16, vector); } Value IREmitter::UnpackFloat2x16(const U32& value) { return Inst(Opcode::UnpackFloat2x16, value); } U32 IREmitter::PackHalf2x16(const Value& vector) { return Inst(Opcode::PackHalf2x16, vector); } Value IREmitter::UnpackHalf2x16(const U32& value) { return Inst(Opcode::UnpackHalf2x16, value); } F64 IREmitter::PackDouble2x32(const Value& vector) { return Inst(Opcode::PackDouble2x32, vector); } Value IREmitter::UnpackDouble2x32(const F64& value) { return Inst(Opcode::UnpackDouble2x32, value); } F16F32F64 IREmitter::FPMul(const F16F32F64& a, const F16F32F64& b, FpControl control) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::F16: return Inst(Opcode::FPMul16, Flags{control}, a, b); case Type::F32: return Inst(Opcode::FPMul32, Flags{control}, a, b); case Type::F64: return Inst(Opcode::FPMul64, Flags{control}, a, b); default: ThrowInvalidType(a.Type()); } } F16F32F64 IREmitter::FPFma(const F16F32F64& a, const F16F32F64& b, const F16F32F64& c, FpControl control) { if (a.Type() != b.Type() || a.Type() != c.Type()) { throw InvalidArgument("Mismatching types {}, {}, and {}", a.Type(), b.Type(), c.Type()); } switch (a.Type()) { case Type::F16: return Inst(Opcode::FPFma16, Flags{control}, a, b, c); case Type::F32: return Inst(Opcode::FPFma32, Flags{control}, a, b, c); case Type::F64: return Inst(Opcode::FPFma64, Flags{control}, a, b, c); default: ThrowInvalidType(a.Type()); } } F16F32F64 IREmitter::FPAbs(const F16F32F64& value) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPAbs16, value); case Type::F32: return Inst(Opcode::FPAbs32, value); case Type::F64: return Inst(Opcode::FPAbs64, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPNeg(const F16F32F64& value) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPNeg16, value); case Type::F32: return Inst(Opcode::FPNeg32, value); case Type::F64: return Inst(Opcode::FPNeg64, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPAbsNeg(const F16F32F64& value, bool abs, bool neg) { F16F32F64 result{value}; if (abs) { result = FPAbs(result); } if (neg) { result = FPNeg(result); } return result; } F32 IREmitter::FPCos(const F32& value) { return Inst(Opcode::FPCos, value); } F32 IREmitter::FPSin(const F32& value) { return Inst(Opcode::FPSin, value); } F32 IREmitter::FPExp2(const F32& value) { return Inst(Opcode::FPExp2, value); } F32 IREmitter::FPLog2(const F32& value) { return Inst(Opcode::FPLog2, value); } F32F64 IREmitter::FPRecip(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPRecip32, value); case Type::F64: return Inst(Opcode::FPRecip64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPRecipSqrt(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPRecipSqrt32, value); case Type::F64: return Inst(Opcode::FPRecipSqrt64, value); default: ThrowInvalidType(value.Type()); } } F32 IREmitter::FPSqrt(const F32& value) { return Inst(Opcode::FPSqrt, value); } F16F32F64 IREmitter::FPSaturate(const F16F32F64& value) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPSaturate16, value); case Type::F32: return Inst(Opcode::FPSaturate32, value); case Type::F64: return Inst(Opcode::FPSaturate64, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPClamp(const F16F32F64& value, const F16F32F64& min_value, const F16F32F64& max_value) { if (value.Type() != min_value.Type() || value.Type() != max_value.Type()) { throw InvalidArgument("Mismatching types {}, {}, and {}", value.Type(), min_value.Type(), max_value.Type()); } switch (value.Type()) { case Type::F16: return Inst(Opcode::FPClamp16, value, min_value, max_value); case Type::F32: return Inst(Opcode::FPClamp32, value, min_value, max_value); case Type::F64: return Inst(Opcode::FPClamp64, value, min_value, max_value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPRoundEven(const F16F32F64& value, FpControl control) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPRoundEven16, Flags{control}, value); case Type::F32: return Inst(Opcode::FPRoundEven32, Flags{control}, value); case Type::F64: return Inst(Opcode::FPRoundEven64, Flags{control}, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPFloor(const F16F32F64& value, FpControl control) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPFloor16, Flags{control}, value); case Type::F32: return Inst(Opcode::FPFloor32, Flags{control}, value); case Type::F64: return Inst(Opcode::FPFloor64, Flags{control}, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPCeil(const F16F32F64& value, FpControl control) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPCeil16, Flags{control}, value); case Type::F32: return Inst(Opcode::FPCeil32, Flags{control}, value); case Type::F64: return Inst(Opcode::FPCeil64, Flags{control}, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPTrunc(const F16F32F64& value, FpControl control) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPTrunc16, Flags{control}, value); case Type::F32: return Inst(Opcode::FPTrunc32, Flags{control}, value); case Type::F64: return Inst(Opcode::FPTrunc64, Flags{control}, value); default: ThrowInvalidType(value.Type()); } } U1 IREmitter::FPEqual(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F16: return Inst(ordered ? Opcode::FPOrdEqual16 : Opcode::FPUnordEqual16, Flags{control}, lhs, rhs); case Type::F32: return Inst(ordered ? Opcode::FPOrdEqual32 : Opcode::FPUnordEqual32, Flags{control}, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdEqual64 : Opcode::FPUnordEqual64, Flags{control}, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPNotEqual(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F16: return Inst(ordered ? Opcode::FPOrdNotEqual16 : Opcode::FPUnordNotEqual16, Flags{control}, lhs, rhs); case Type::F32: return Inst(ordered ? Opcode::FPOrdNotEqual32 : Opcode::FPUnordNotEqual32, Flags{control}, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdNotEqual64 : Opcode::FPUnordNotEqual64, Flags{control}, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPLessThan(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F16: return Inst(ordered ? Opcode::FPOrdLessThan16 : Opcode::FPUnordLessThan16, Flags{control}, lhs, rhs); case Type::F32: return Inst(ordered ? Opcode::FPOrdLessThan32 : Opcode::FPUnordLessThan32, Flags{control}, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdLessThan64 : Opcode::FPUnordLessThan64, Flags{control}, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPGreaterThan(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F16: return Inst(ordered ? Opcode::FPOrdGreaterThan16 : Opcode::FPUnordGreaterThan16, Flags{control}, lhs, rhs); case Type::F32: return Inst(ordered ? Opcode::FPOrdGreaterThan32 : Opcode::FPUnordGreaterThan32, Flags{control}, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdGreaterThan64 : Opcode::FPUnordGreaterThan64, Flags{control}, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPLessThanEqual(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F16: return Inst(ordered ? Opcode::FPOrdLessThanEqual16 : Opcode::FPUnordLessThanEqual16, Flags{control}, lhs, rhs); case Type::F32: return Inst(ordered ? Opcode::FPOrdLessThanEqual32 : Opcode::FPUnordLessThanEqual32, Flags{control}, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdLessThanEqual64 : Opcode::FPUnordLessThanEqual64, Flags{control}, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPGreaterThanEqual(const F16F32F64& lhs, const F16F32F64& rhs, FpControl control, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F16: return Inst(ordered ? Opcode::FPOrdGreaterThanEqual16 : Opcode::FPUnordGreaterThanEqual16, Flags{control}, lhs, rhs); case Type::F32: return Inst(ordered ? Opcode::FPOrdGreaterThanEqual32 : Opcode::FPUnordGreaterThanEqual32, Flags{control}, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdGreaterThanEqual64 : Opcode::FPUnordGreaterThanEqual64, Flags{control}, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPIsNan(const F16F32F64& value) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPIsNan16, value); case Type::F32: return Inst(Opcode::FPIsNan32, value); case Type::F64: return Inst(Opcode::FPIsNan64, value); default: ThrowInvalidType(value.Type()); } } U1 IREmitter::FPOrdered(const F16F32F64& lhs, const F16F32F64& rhs) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } return LogicalAnd(LogicalNot(FPIsNan(lhs)), LogicalNot(FPIsNan(rhs))); } U1 IREmitter::FPUnordered(const F16F32F64& lhs, const F16F32F64& rhs) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } return LogicalOr(FPIsNan(lhs), FPIsNan(rhs)); } F32F64 IREmitter::FPMax(const F32F64& lhs, const F32F64& rhs, FpControl control) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(Opcode::FPMax32, Flags{control}, lhs, rhs); case Type::F64: return Inst(Opcode::FPMax64, Flags{control}, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } F32F64 IREmitter::FPMin(const F32F64& lhs, const F32F64& rhs, FpControl control) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(Opcode::FPMin32, Flags{control}, lhs, rhs); case Type::F64: return Inst(Opcode::FPMin64, Flags{control}, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U32U64 IREmitter::IAdd(const U32U64& a, const U32U64& b) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::U32: return Inst(Opcode::IAdd32, a, b); case Type::U64: return Inst(Opcode::IAdd64, a, b); default: ThrowInvalidType(a.Type()); } } U32U64 IREmitter::ISub(const U32U64& a, const U32U64& b) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::U32: return Inst(Opcode::ISub32, a, b); case Type::U64: return Inst(Opcode::ISub64, a, b); default: ThrowInvalidType(a.Type()); } } U32 IREmitter::IMul(const U32& a, const U32& b) { return Inst(Opcode::IMul32, a, b); } U32 IREmitter::IDiv(const U32& a, const U32& b, bool is_signed) { return Inst(is_signed ? Opcode::SDiv32 : Opcode::UDiv32, a, b); } U32U64 IREmitter::INeg(const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::INeg32, value); case Type::U64: return Inst(Opcode::INeg64, value); default: ThrowInvalidType(value.Type()); } } U32 IREmitter::IAbs(const U32& value) { return Inst(Opcode::IAbs32, value); } U32U64 IREmitter::ShiftLeftLogical(const U32U64& base, const U32& shift) { switch (base.Type()) { case Type::U32: return Inst(Opcode::ShiftLeftLogical32, base, shift); case Type::U64: return Inst(Opcode::ShiftLeftLogical64, base, shift); default: ThrowInvalidType(base.Type()); } } U32U64 IREmitter::ShiftRightLogical(const U32U64& base, const U32& shift) { switch (base.Type()) { case Type::U32: return Inst(Opcode::ShiftRightLogical32, base, shift); case Type::U64: return Inst(Opcode::ShiftRightLogical64, base, shift); default: ThrowInvalidType(base.Type()); } } U32U64 IREmitter::ShiftRightArithmetic(const U32U64& base, const U32& shift) { switch (base.Type()) { case Type::U32: return Inst(Opcode::ShiftRightArithmetic32, base, shift); case Type::U64: return Inst(Opcode::ShiftRightArithmetic64, base, shift); default: ThrowInvalidType(base.Type()); } } U32 IREmitter::BitwiseAnd(const U32& a, const U32& b) { return Inst(Opcode::BitwiseAnd32, a, b); } U32 IREmitter::BitwiseOr(const U32& a, const U32& b) { return Inst(Opcode::BitwiseOr32, a, b); } U32 IREmitter::BitwiseXor(const U32& a, const U32& b) { return Inst(Opcode::BitwiseXor32, a, b); } U32 IREmitter::BitFieldInsert(const U32& base, const U32& insert, const U32& offset, const U32& count) { return Inst(Opcode::BitFieldInsert, base, insert, offset, count); } U32 IREmitter::BitFieldExtract(const U32& base, const U32& offset, const U32& count, bool is_signed) { return Inst(is_signed ? Opcode::BitFieldSExtract : Opcode::BitFieldUExtract, base, offset, count); } U32 IREmitter::BitReverse(const U32& value) { return Inst(Opcode::BitReverse32, value); } U32 IREmitter::BitCount(const U32& value) { return Inst(Opcode::BitCount32, value); } U32 IREmitter::BitwiseNot(const U32& value) { return Inst(Opcode::BitwiseNot32, value); } U32 IREmitter::FindSMsb(const U32& value) { return Inst(Opcode::FindSMsb32, value); } U32 IREmitter::FindUMsb(const U32& value) { return Inst(Opcode::FindUMsb32, value); } U32 IREmitter::SMin(const U32& a, const U32& b) { return Inst(Opcode::SMin32, a, b); } U32 IREmitter::UMin(const U32& a, const U32& b) { return Inst(Opcode::UMin32, a, b); } U32 IREmitter::IMin(const U32& a, const U32& b, bool is_signed) { return is_signed ? SMin(a, b) : UMin(a, b); } U32 IREmitter::SMax(const U32& a, const U32& b) { return Inst(Opcode::SMax32, a, b); } U32 IREmitter::UMax(const U32& a, const U32& b) { return Inst(Opcode::UMax32, a, b); } U32 IREmitter::IMax(const U32& a, const U32& b, bool is_signed) { return is_signed ? SMax(a, b) : UMax(a, b); } U32 IREmitter::SClamp(const U32& value, const U32& min, const U32& max) { return Inst(Opcode::SClamp32, value, min, max); } U32 IREmitter::UClamp(const U32& value, const U32& min, const U32& max) { return Inst(Opcode::UClamp32, value, min, max); } U1 IREmitter::ILessThan(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SLessThan : Opcode::ULessThan, lhs, rhs); } U1 IREmitter::IEqual(const U32U64& lhs, const U32U64& rhs) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::U32: return Inst(Opcode::IEqual, lhs, rhs); case Type::U64: { // Manually compare the unpacked values const Value lhs_vector{UnpackUint2x32(lhs)}; const Value rhs_vector{UnpackUint2x32(rhs)}; return LogicalAnd(IEqual(IR::U32{CompositeExtract(lhs_vector, 0)}, IR::U32{CompositeExtract(rhs_vector, 0)}), IEqual(IR::U32{CompositeExtract(lhs_vector, 1)}, IR::U32{CompositeExtract(rhs_vector, 1)})); } default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::ILessThanEqual(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SLessThanEqual : Opcode::ULessThanEqual, lhs, rhs); } U1 IREmitter::IGreaterThan(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SGreaterThan : Opcode::UGreaterThan, lhs, rhs); } U1 IREmitter::INotEqual(const U32& lhs, const U32& rhs) { return Inst(Opcode::INotEqual, lhs, rhs); } U1 IREmitter::IGreaterThanEqual(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SGreaterThanEqual : Opcode::UGreaterThanEqual, lhs, rhs); } U32 IREmitter::SharedAtomicIAdd(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicIAdd32, pointer_offset, value); } U32 IREmitter::SharedAtomicSMin(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicSMin32, pointer_offset, value); } U32 IREmitter::SharedAtomicUMin(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicUMin32, pointer_offset, value); } U32 IREmitter::SharedAtomicIMin(const U32& pointer_offset, const U32& value, bool is_signed) { return is_signed ? SharedAtomicSMin(pointer_offset, value) : SharedAtomicUMin(pointer_offset, value); } U32 IREmitter::SharedAtomicSMax(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicSMax32, pointer_offset, value); } U32 IREmitter::SharedAtomicUMax(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicUMax32, pointer_offset, value); } U32 IREmitter::SharedAtomicIMax(const U32& pointer_offset, const U32& value, bool is_signed) { return is_signed ? SharedAtomicSMax(pointer_offset, value) : SharedAtomicUMax(pointer_offset, value); } U32 IREmitter::SharedAtomicInc(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicInc32, pointer_offset, value); } U32 IREmitter::SharedAtomicDec(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicDec32, pointer_offset, value); } U32 IREmitter::SharedAtomicAnd(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicAnd32, pointer_offset, value); } U32 IREmitter::SharedAtomicOr(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicOr32, pointer_offset, value); } U32 IREmitter::SharedAtomicXor(const U32& pointer_offset, const U32& value) { return Inst(Opcode::SharedAtomicXor32, pointer_offset, value); } U32U64 IREmitter::SharedAtomicExchange(const U32& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::SharedAtomicExchange32, pointer_offset, value); case Type::U64: return Inst(Opcode::SharedAtomicExchange64, pointer_offset, value); default: ThrowInvalidType(pointer_offset.Type()); } } U32U64 IREmitter::GlobalAtomicIAdd(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicIAdd32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicIAdd64, pointer_offset, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::GlobalAtomicSMin(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicSMin32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicSMin64, pointer_offset, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::GlobalAtomicUMin(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicUMin32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicUMin64, pointer_offset, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::GlobalAtomicIMin(const U64& pointer_offset, const U32U64& value, bool is_signed) { return is_signed ? GlobalAtomicSMin(pointer_offset, value) : GlobalAtomicUMin(pointer_offset, value); } U32U64 IREmitter::GlobalAtomicSMax(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicSMax32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicSMax64, pointer_offset, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::GlobalAtomicUMax(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicUMax32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicUMax64, pointer_offset, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::GlobalAtomicIMax(const U64& pointer_offset, const U32U64& value, bool is_signed) { return is_signed ? GlobalAtomicSMax(pointer_offset, value) : GlobalAtomicUMax(pointer_offset, value); } U32 IREmitter::GlobalAtomicInc(const U64& pointer_offset, const U32& value) { return Inst(Opcode::GlobalAtomicInc32, pointer_offset, value); } U32 IREmitter::GlobalAtomicDec(const U64& pointer_offset, const U32& value) { return Inst(Opcode::GlobalAtomicDec32, pointer_offset, value); } U32U64 IREmitter::GlobalAtomicAnd(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicAnd32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicAnd64, pointer_offset, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::GlobalAtomicOr(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicOr32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicOr64, pointer_offset, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::GlobalAtomicXor(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicXor32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicXor64, pointer_offset, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::GlobalAtomicExchange(const U64& pointer_offset, const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::GlobalAtomicExchange32, pointer_offset, value); case Type::U64: return Inst(Opcode::GlobalAtomicExchange64, pointer_offset, value); default: ThrowInvalidType(pointer_offset.Type()); } } F32 IREmitter::GlobalAtomicF32Add(const U64& pointer_offset, const Value& value, const FpControl control) { return Inst(Opcode::GlobalAtomicAddF32, Flags{control}, pointer_offset, value); } Value IREmitter::GlobalAtomicF16x2Add(const U64& pointer_offset, const Value& value, const FpControl control) { return Inst(Opcode::GlobalAtomicAddF16x2, Flags{control}, pointer_offset, value); } Value IREmitter::GlobalAtomicF16x2Min(const U64& pointer_offset, const Value& value, const FpControl control) { return Inst(Opcode::GlobalAtomicMinF16x2, Flags{control}, pointer_offset, value); } Value IREmitter::GlobalAtomicF16x2Max(const U64& pointer_offset, const Value& value, const FpControl control) { return Inst(Opcode::GlobalAtomicMaxF16x2, Flags{control}, pointer_offset, value); } U1 IREmitter::LogicalOr(const U1& a, const U1& b) { return Inst(Opcode::LogicalOr, a, b); } U1 IREmitter::LogicalAnd(const U1& a, const U1& b) { return Inst(Opcode::LogicalAnd, a, b); } U1 IREmitter::LogicalXor(const U1& a, const U1& b) { return Inst(Opcode::LogicalXor, a, b); } U1 IREmitter::LogicalNot(const U1& value) { return Inst(Opcode::LogicalNot, value); } U32U64 IREmitter::ConvertFToS(size_t bitsize, const F16F32F64& value) { switch (bitsize) { case 16: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertS16F16, value); case Type::F32: return Inst(Opcode::ConvertS16F32, value); case Type::F64: return Inst(Opcode::ConvertS16F64, value); default: ThrowInvalidType(value.Type()); } case 32: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertS32F16, value); case Type::F32: return Inst(Opcode::ConvertS32F32, value); case Type::F64: return Inst(Opcode::ConvertS32F64, value); default: ThrowInvalidType(value.Type()); } case 64: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertS64F16, value); case Type::F32: return Inst(Opcode::ConvertS64F32, value); case Type::F64: return Inst(Opcode::ConvertS64F64, value); default: ThrowInvalidType(value.Type()); } default: throw InvalidArgument("Invalid destination bitsize {}", bitsize); } } U32U64 IREmitter::ConvertFToU(size_t bitsize, const F16F32F64& value) { switch (bitsize) { case 16: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertU16F16, value); case Type::F32: return Inst(Opcode::ConvertU16F32, value); case Type::F64: return Inst(Opcode::ConvertU16F64, value); default: ThrowInvalidType(value.Type()); } case 32: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertU32F16, value); case Type::F32: return Inst(Opcode::ConvertU32F32, value); case Type::F64: return Inst(Opcode::ConvertU32F64, value); default: ThrowInvalidType(value.Type()); } case 64: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertU64F16, value); case Type::F32: return Inst(Opcode::ConvertU64F32, value); case Type::F64: return Inst(Opcode::ConvertU64F64, value); default: ThrowInvalidType(value.Type()); } default: throw InvalidArgument("Invalid destination bitsize {}", bitsize); } } U32U64 IREmitter::ConvertFToI(size_t bitsize, bool is_signed, const F16F32F64& value) { return is_signed ? ConvertFToS(bitsize, value) : ConvertFToU(bitsize, value); } F16F32F64 IREmitter::ConvertSToF(size_t dest_bitsize, size_t src_bitsize, const Value& value, FpControl control) { switch (dest_bitsize) { case 16: switch (src_bitsize) { case 8: return Inst(Opcode::ConvertF16S8, Flags{control}, value); case 16: return Inst(Opcode::ConvertF16S16, Flags{control}, value); case 32: return Inst(Opcode::ConvertF16S32, Flags{control}, value); case 64: return Inst(Opcode::ConvertF16S64, Flags{control}, value); } break; case 32: switch (src_bitsize) { case 8: return Inst(Opcode::ConvertF32S8, Flags{control}, value); case 16: return Inst(Opcode::ConvertF32S16, Flags{control}, value); case 32: return Inst(Opcode::ConvertF32S32, Flags{control}, value); case 64: return Inst(Opcode::ConvertF32S64, Flags{control}, value); } break; case 64: switch (src_bitsize) { case 8: return Inst(Opcode::ConvertF64S8, Flags{control}, value); case 16: return Inst(Opcode::ConvertF64S16, Flags{control}, value); case 32: return Inst(Opcode::ConvertF64S32, Flags{control}, value); case 64: return Inst(Opcode::ConvertF64S64, Flags{control}, value); } break; } throw InvalidArgument("Invalid bit size combination dst={} src={}", dest_bitsize, src_bitsize); } F16F32F64 IREmitter::ConvertUToF(size_t dest_bitsize, size_t src_bitsize, const Value& value, FpControl control) { switch (dest_bitsize) { case 16: switch (src_bitsize) { case 8: return Inst(Opcode::ConvertF16U8, Flags{control}, value); case 16: return Inst(Opcode::ConvertF16U16, Flags{control}, value); case 32: return Inst(Opcode::ConvertF16U32, Flags{control}, value); case 64: return Inst(Opcode::ConvertF16U64, Flags{control}, value); } break; case 32: switch (src_bitsize) { case 8: return Inst(Opcode::ConvertF32U8, Flags{control}, value); case 16: return Inst(Opcode::ConvertF32U16, Flags{control}, value); case 32: return Inst(Opcode::ConvertF32U32, Flags{control}, value); case 64: return Inst(Opcode::ConvertF32U64, Flags{control}, value); } break; case 64: switch (src_bitsize) { case 8: return Inst(Opcode::ConvertF64U8, Flags{control}, value); case 16: return Inst(Opcode::ConvertF64U16, Flags{control}, value); case 32: return Inst(Opcode::ConvertF64U32, Flags{control}, value); case 64: return Inst(Opcode::ConvertF64U64, Flags{control}, value); } break; } throw InvalidArgument("Invalid bit size combination dst={} src={}", dest_bitsize, src_bitsize); } F16F32F64 IREmitter::ConvertIToF(size_t dest_bitsize, size_t src_bitsize, bool is_signed, const Value& value, FpControl control) { return is_signed ? ConvertSToF(dest_bitsize, src_bitsize, value, control) : ConvertUToF(dest_bitsize, src_bitsize, value, control); } U32U64 IREmitter::UConvert(size_t result_bitsize, const U32U64& value) { switch (result_bitsize) { case 32: switch (value.Type()) { case Type::U32: // Nothing to do return value; case Type::U64: return Inst(Opcode::ConvertU32U64, value); default: break; } break; case 64: switch (value.Type()) { case Type::U32: return Inst(Opcode::ConvertU64U32, value); case Type::U64: // Nothing to do return value; default: break; } } throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize); } F16F32F64 IREmitter::FPConvert(size_t result_bitsize, const F16F32F64& value, FpControl control) { switch (result_bitsize) { case 16: switch (value.Type()) { case Type::F16: // Nothing to do return value; case Type::F32: return Inst(Opcode::ConvertF16F32, Flags{control}, value); case Type::F64: throw LogicError("Illegal conversion from F64 to F16"); default: break; } break; case 32: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertF32F16, Flags{control}, value); case Type::F32: // Nothing to do return value; case Type::F64: return Inst(Opcode::ConvertF32F64, Flags{control}, value); default: break; } break; case 64: switch (value.Type()) { case Type::F16: throw LogicError("Illegal conversion from F16 to F64"); case Type::F32: return Inst(Opcode::ConvertF64F32, Flags{control}, value); case Type::F64: // Nothing to do return value; default: break; } break; } throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize); } Value IREmitter::ImageSampleImplicitLod(const Value& handle, const Value& coords, const F32& bias, const Value& offset, const F32& lod_clamp, TextureInstInfo info) { const Value bias_lc{MakeLodClampPair(*this, bias, lod_clamp)}; const Opcode op{handle.IsImmediate() ? Opcode::BoundImageSampleImplicitLod : Opcode::BindlessImageSampleImplicitLod}; return Inst(op, Flags{info}, handle, coords, bias_lc, offset); } Value IREmitter::ImageSampleExplicitLod(const Value& handle, const Value& coords, const F32& lod, const Value& offset, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageSampleExplicitLod : Opcode::BindlessImageSampleExplicitLod}; return Inst(op, Flags{info}, handle, coords, lod, offset); } F32 IREmitter::ImageSampleDrefImplicitLod(const Value& handle, const Value& coords, const F32& dref, const F32& bias, const Value& offset, const F32& lod_clamp, TextureInstInfo info) { const Value bias_lc{MakeLodClampPair(*this, bias, lod_clamp)}; const Opcode op{handle.IsImmediate() ? Opcode::BoundImageSampleDrefImplicitLod : Opcode::BindlessImageSampleDrefImplicitLod}; return Inst(op, Flags{info}, handle, coords, dref, bias_lc, offset); } F32 IREmitter::ImageSampleDrefExplicitLod(const Value& handle, const Value& coords, const F32& dref, const F32& lod, const Value& offset, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageSampleDrefExplicitLod : Opcode::BindlessImageSampleDrefExplicitLod}; return Inst(op, Flags{info}, handle, coords, dref, lod, offset); } Value IREmitter::ImageGather(const Value& handle, const Value& coords, const Value& offset, const Value& offset2, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageGather : Opcode::BindlessImageGather}; return Inst(op, Flags{info}, handle, coords, offset, offset2); } Value IREmitter::ImageGatherDref(const Value& handle, const Value& coords, const Value& offset, const Value& offset2, const F32& dref, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageGatherDref : Opcode::BindlessImageGatherDref}; return Inst(op, Flags{info}, handle, coords, offset, offset2, dref); } Value IREmitter::ImageFetch(const Value& handle, const Value& coords, const Value& offset, const U32& lod, const U32& multisampling, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageFetch : Opcode::BindlessImageFetch}; return Inst(op, Flags{info}, handle, coords, offset, lod, multisampling); } Value IREmitter::ImageQueryDimension(const Value& handle, const IR::U32& lod) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageQueryDimensions : Opcode::BindlessImageQueryDimensions}; return Inst(op, handle, lod); } Value IREmitter::ImageQueryDimension(const Value& handle, const IR::U32& lod, TextureInstInfo info) { return Inst(Opcode::ImageQueryDimensions, Flags{info}, handle, lod); } Value IREmitter::ImageQueryLod(const Value& handle, const Value& coords, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageQueryLod : Opcode::BindlessImageQueryLod}; return Inst(op, Flags{info}, handle, coords); } Value IREmitter::ImageGradient(const Value& handle, const Value& coords, const Value& derivates, const Value& offset, const F32& lod_clamp, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageGradient : Opcode::BindlessImageGradient}; return Inst(op, Flags{info}, handle, coords, derivates, offset, lod_clamp); } Value IREmitter::ImageRead(const Value& handle, const Value& coords, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageRead : Opcode::BindlessImageRead}; return Inst(op, Flags{info}, handle, coords); } void IREmitter::ImageWrite(const Value& handle, const Value& coords, const Value& color, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageWrite : Opcode::BindlessImageWrite}; Inst(op, Flags{info}, handle, coords, color); } Value IREmitter::ImageAtomicIAdd(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicIAdd32 : Opcode::BindlessImageAtomicIAdd32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicSMin(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicSMin32 : Opcode::BindlessImageAtomicSMin32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicUMin(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicUMin32 : Opcode::BindlessImageAtomicUMin32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicIMin(const Value& handle, const Value& coords, const Value& value, bool is_signed, TextureInstInfo info) { return is_signed ? ImageAtomicSMin(handle, coords, value, info) : ImageAtomicUMin(handle, coords, value, info); } Value IREmitter::ImageAtomicSMax(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicSMax32 : Opcode::BindlessImageAtomicSMax32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicUMax(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicUMax32 : Opcode::BindlessImageAtomicUMax32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicIMax(const Value& handle, const Value& coords, const Value& value, bool is_signed, TextureInstInfo info) { return is_signed ? ImageAtomicSMax(handle, coords, value, info) : ImageAtomicUMax(handle, coords, value, info); } Value IREmitter::ImageAtomicInc(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicInc32 : Opcode::BindlessImageAtomicInc32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicDec(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicDec32 : Opcode::BindlessImageAtomicDec32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicAnd(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicAnd32 : Opcode::BindlessImageAtomicAnd32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicOr(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicOr32 : Opcode::BindlessImageAtomicOr32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicXor(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicXor32 : Opcode::BindlessImageAtomicXor32}; return Inst(op, Flags{info}, handle, coords, value); } Value IREmitter::ImageAtomicExchange(const Value& handle, const Value& coords, const Value& value, TextureInstInfo info) { const Opcode op{handle.IsImmediate() ? Opcode::BoundImageAtomicExchange32 : Opcode::BindlessImageAtomicExchange32}; return Inst(op, Flags{info}, handle, coords, value); } U1 IREmitter::IsTextureScaled(const U32& index) { return Inst(Opcode::IsTextureScaled, index); } U1 IREmitter::IsImageScaled(const U32& index) { return Inst(Opcode::IsImageScaled, index); } U1 IREmitter::VoteAll(const U1& value) { return Inst(Opcode::VoteAll, value); } U1 IREmitter::VoteAny(const U1& value) { return Inst(Opcode::VoteAny, value); } U1 IREmitter::VoteEqual(const U1& value) { return Inst(Opcode::VoteEqual, value); } U32 IREmitter::SubgroupBallot(const U1& value) { return Inst(Opcode::SubgroupBallot, value); } U32 IREmitter::SubgroupEqMask() { return Inst(Opcode::SubgroupEqMask); } U32 IREmitter::SubgroupLtMask() { return Inst(Opcode::SubgroupLtMask); } U32 IREmitter::SubgroupLeMask() { return Inst(Opcode::SubgroupLeMask); } U32 IREmitter::SubgroupGtMask() { return Inst(Opcode::SubgroupGtMask); } U32 IREmitter::SubgroupGeMask() { return Inst(Opcode::SubgroupGeMask); } U32 IREmitter::ShuffleIndex(const IR::U32& value, const IR::U32& index, const IR::U32& clamp, const IR::U32& seg_mask) { return Inst(Opcode::ShuffleIndex, value, index, clamp, seg_mask); } U32 IREmitter::ShuffleUp(const IR::U32& value, const IR::U32& index, const IR::U32& clamp, const IR::U32& seg_mask) { return Inst(Opcode::ShuffleUp, value, index, clamp, seg_mask); } U32 IREmitter::ShuffleDown(const IR::U32& value, const IR::U32& index, const IR::U32& clamp, const IR::U32& seg_mask) { return Inst(Opcode::ShuffleDown, value, index, clamp, seg_mask); } U32 IREmitter::ShuffleButterfly(const IR::U32& value, const IR::U32& index, const IR::U32& clamp, const IR::U32& seg_mask) { return Inst(Opcode::ShuffleButterfly, value, index, clamp, seg_mask); } F32 IREmitter::FSwizzleAdd(const F32& a, const F32& b, const U32& swizzle, FpControl control) { return Inst(Opcode::FSwizzleAdd, Flags{control}, a, b, swizzle); } F32 IREmitter::DPdxFine(const F32& a) { return Inst(Opcode::DPdxFine, a); } F32 IREmitter::DPdyFine(const F32& a) { return Inst(Opcode::DPdyFine, a); } F32 IREmitter::DPdxCoarse(const F32& a) { return Inst(Opcode::DPdxCoarse, a); } F32 IREmitter::DPdyCoarse(const F32& a) { return Inst(Opcode::DPdyCoarse, a); } } // namespace Shader::IR