// Copyright 2021 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/bit_cast.h" #include "shader_recompiler/frontend/ir/ir_emitter.h" #include "shader_recompiler/frontend/ir/value.h" namespace Shader::IR { [[noreturn]] static void ThrowInvalidType(Type type) { throw InvalidArgument("Invalid type {}", type); } U1 IREmitter::Imm1(bool value) const { return U1{Value{value}}; } U8 IREmitter::Imm8(u8 value) const { return U8{Value{value}}; } U16 IREmitter::Imm16(u16 value) const { return U16{Value{value}}; } U32 IREmitter::Imm32(u32 value) const { return U32{Value{value}}; } U32 IREmitter::Imm32(s32 value) const { return U32{Value{static_cast(value)}}; } F32 IREmitter::Imm32(f32 value) const { return F32{Value{value}}; } U64 IREmitter::Imm64(u64 value) const { return U64{Value{value}}; } F64 IREmitter::Imm64(f64 value) const { return F64{Value{value}}; } void IREmitter::Branch(Block* label) { label->AddImmediatePredecessor(block); block->SetBranch(label); Inst(Opcode::Branch, label); } void IREmitter::BranchConditional(const U1& condition, Block* true_label, Block* false_label) { block->SetBranches(IR::Condition{true}, true_label, false_label); true_label->AddImmediatePredecessor(block); false_label->AddImmediatePredecessor(block); Inst(Opcode::BranchConditional, condition, true_label, false_label); } void IREmitter::LoopMerge(Block* merge_block, Block* continue_target) { Inst(Opcode::LoopMerge, merge_block, continue_target); } void IREmitter::SelectionMerge(Block* merge_block) { Inst(Opcode::SelectionMerge, merge_block); } void IREmitter::Return() { Inst(Opcode::Return); } U32 IREmitter::GetReg(IR::Reg reg) { return Inst(Opcode::GetRegister, reg); } void IREmitter::SetReg(IR::Reg reg, const U32& value) { Inst(Opcode::SetRegister, reg, value); } U1 IREmitter::GetPred(IR::Pred pred, bool is_negated) { const U1 value{Inst(Opcode::GetPred, pred)}; if (is_negated) { return Inst(Opcode::LogicalNot, value); } else { return value; } } U1 IREmitter::GetGotoVariable(u32 id) { return Inst(Opcode::GetGotoVariable, id); } void IREmitter::SetGotoVariable(u32 id, const U1& value) { Inst(Opcode::SetGotoVariable, id, value); } void IREmitter::SetPred(IR::Pred pred, const U1& value) { Inst(Opcode::SetPred, pred, value); } U32 IREmitter::GetCbuf(const U32& binding, const U32& byte_offset) { return Inst(Opcode::GetCbuf, binding, byte_offset); } U1 IREmitter::GetZFlag() { return Inst(Opcode::GetZFlag); } U1 IREmitter::GetSFlag() { return Inst(Opcode::GetSFlag); } U1 IREmitter::GetCFlag() { return Inst(Opcode::GetCFlag); } U1 IREmitter::GetOFlag() { return Inst(Opcode::GetOFlag); } void IREmitter::SetZFlag(const U1& value) { Inst(Opcode::SetZFlag, value); } void IREmitter::SetSFlag(const U1& value) { Inst(Opcode::SetSFlag, value); } void IREmitter::SetCFlag(const U1& value) { Inst(Opcode::SetCFlag, value); } void IREmitter::SetOFlag(const U1& value) { Inst(Opcode::SetOFlag, value); } U1 IREmitter::Condition(IR::Condition cond) { if (cond == IR::Condition{true}) { return Imm1(true); } else if (cond == IR::Condition{false}) { return Imm1(false); } const FlowTest flow_test{cond.FlowTest()}; const auto [pred, is_negated]{cond.Pred()}; if (flow_test == FlowTest::T) { return GetPred(pred, is_negated); } throw NotImplementedException("Condition {}", cond); } F32 IREmitter::GetAttribute(IR::Attribute attribute) { return Inst(Opcode::GetAttribute, attribute); } void IREmitter::SetAttribute(IR::Attribute attribute, const F32& value) { Inst(Opcode::SetAttribute, attribute, value); } U32 IREmitter::WorkgroupIdX() { return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 0)}; } U32 IREmitter::WorkgroupIdY() { return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 1)}; } U32 IREmitter::WorkgroupIdZ() { return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 2)}; } U32 IREmitter::LocalInvocationIdX() { return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 0)}; } U32 IREmitter::LocalInvocationIdY() { return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 1)}; } U32 IREmitter::LocalInvocationIdZ() { return U32{CompositeExtract(Inst(Opcode::LocalInvocationId), 2)}; } U32 IREmitter::LoadGlobalU8(const U64& address) { return Inst(Opcode::LoadGlobalU8, address); } U32 IREmitter::LoadGlobalS8(const U64& address) { return Inst(Opcode::LoadGlobalS8, address); } U32 IREmitter::LoadGlobalU16(const U64& address) { return Inst(Opcode::LoadGlobalU16, address); } U32 IREmitter::LoadGlobalS16(const U64& address) { return Inst(Opcode::LoadGlobalS16, address); } U32 IREmitter::LoadGlobal32(const U64& address) { return Inst(Opcode::LoadGlobal32, address); } Value IREmitter::LoadGlobal64(const U64& address) { return Inst(Opcode::LoadGlobal64, address); } Value IREmitter::LoadGlobal128(const U64& address) { return Inst(Opcode::LoadGlobal128, address); } void IREmitter::WriteGlobalU8(const U64& address, const U32& value) { Inst(Opcode::WriteGlobalU8, address, value); } void IREmitter::WriteGlobalS8(const U64& address, const U32& value) { Inst(Opcode::WriteGlobalS8, address, value); } void IREmitter::WriteGlobalU16(const U64& address, const U32& value) { Inst(Opcode::WriteGlobalU16, address, value); } void IREmitter::WriteGlobalS16(const U64& address, const U32& value) { Inst(Opcode::WriteGlobalS16, address, value); } void IREmitter::WriteGlobal32(const U64& address, const U32& value) { Inst(Opcode::WriteGlobal32, address, value); } void IREmitter::WriteGlobal64(const U64& address, const IR::Value& vector) { Inst(Opcode::WriteGlobal64, address, vector); } void IREmitter::WriteGlobal128(const U64& address, const IR::Value& vector) { Inst(Opcode::WriteGlobal128, address, vector); } U1 IREmitter::GetZeroFromOp(const Value& op) { return Inst(Opcode::GetZeroFromOp, op); } U1 IREmitter::GetSignFromOp(const Value& op) { return Inst(Opcode::GetSignFromOp, op); } U1 IREmitter::GetCarryFromOp(const Value& op) { return Inst(Opcode::GetCarryFromOp, op); } U1 IREmitter::GetOverflowFromOp(const Value& op) { return Inst(Opcode::GetOverflowFromOp, op); } F16F32F64 IREmitter::FPAdd(const F16F32F64& a, const F16F32F64& b, FpControl control) { if (a.Type() != a.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::F16: return Inst(Opcode::FPAdd16, Flags{control}, a, b); case Type::F32: return Inst(Opcode::FPAdd32, Flags{control}, a, b); case Type::F64: return Inst(Opcode::FPAdd64, Flags{control}, a, b); default: ThrowInvalidType(a.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2) { if (e1.Type() != e2.Type()) { throw InvalidArgument("Mismatching types {} and {}", e1.Type(), e2.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x2, e1, e2); case Type::F16: return Inst(Opcode::CompositeConstructF16x2, e1, e2); case Type::F32: return Inst(Opcode::CompositeConstructF32x2, e1, e2); case Type::F64: return Inst(Opcode::CompositeConstructF64x2, e1, e2); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3) { if (e1.Type() != e2.Type() || e1.Type() != e3.Type()) { throw InvalidArgument("Mismatching types {}, {}, and {}", e1.Type(), e2.Type(), e3.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x3, e1, e2, e3); case Type::F16: return Inst(Opcode::CompositeConstructF16x3, e1, e2, e3); case Type::F32: return Inst(Opcode::CompositeConstructF32x3, e1, e2, e3); case Type::F64: return Inst(Opcode::CompositeConstructF64x3, e1, e2, e3); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3, const Value& e4) { if (e1.Type() != e2.Type() || e1.Type() != e3.Type() || e1.Type() != e4.Type()) { throw InvalidArgument("Mismatching types {}, {}, {}, and {}", e1.Type(), e2.Type(), e3.Type(), e4.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x4, e1, e2, e3, e4); case Type::F16: return Inst(Opcode::CompositeConstructF16x4, e1, e2, e3, e4); case Type::F32: return Inst(Opcode::CompositeConstructF32x4, e1, e2, e3, e4); case Type::F64: return Inst(Opcode::CompositeConstructF64x4, e1, e2, e3, e4); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeExtract(const Value& vector, size_t element) { const auto read = [&](Opcode opcode, size_t limit) -> Value { if (element >= limit) { throw InvalidArgument("Out of bounds element {}", element); } return Inst(opcode, vector, Value{static_cast(element)}); }; switch (vector.Type()) { case Type::U32x2: return read(Opcode::CompositeExtractU32x2, 2); case Type::U32x3: return read(Opcode::CompositeExtractU32x3, 3); case Type::U32x4: return read(Opcode::CompositeExtractU32x4, 4); case Type::F16x2: return read(Opcode::CompositeExtractF16x2, 2); case Type::F16x3: return read(Opcode::CompositeExtractF16x3, 3); case Type::F16x4: return read(Opcode::CompositeExtractF16x4, 4); case Type::F32x2: return read(Opcode::CompositeExtractF32x2, 2); case Type::F32x3: return read(Opcode::CompositeExtractF32x3, 3); case Type::F32x4: return read(Opcode::CompositeExtractF32x4, 4); case Type::F64x2: return read(Opcode::CompositeExtractF64x2, 2); case Type::F64x3: return read(Opcode::CompositeExtractF64x3, 3); case Type::F64x4: return read(Opcode::CompositeExtractF64x4, 4); default: ThrowInvalidType(vector.Type()); } } UAny IREmitter::Select(const U1& condition, const UAny& true_value, const UAny& false_value) { if (true_value.Type() != false_value.Type()) { throw InvalidArgument("Mismatching types {} and {}", true_value.Type(), false_value.Type()); } switch (true_value.Type()) { case Type::U8: return Inst(Opcode::Select8, condition, true_value, false_value); case Type::U16: return Inst(Opcode::Select16, condition, true_value, false_value); case Type::U32: return Inst(Opcode::Select32, condition, true_value, false_value); case Type::U64: return Inst(Opcode::Select64, condition, true_value, false_value); default: throw InvalidArgument("Invalid type {}", true_value.Type()); } } template <> IR::U32 IREmitter::BitCast(const IR::F32& value) { return Inst(Opcode::BitCastU32F32, value); } template <> IR::F32 IREmitter::BitCast(const IR::U32& value) { return Inst(Opcode::BitCastF32U32, value); } template <> IR::U16 IREmitter::BitCast(const IR::F16& value) { return Inst(Opcode::BitCastU16F16, value); } template <> IR::F16 IREmitter::BitCast(const IR::U16& value) { return Inst(Opcode::BitCastF16U16, value); } template <> IR::U64 IREmitter::BitCast(const IR::F64& value) { return Inst(Opcode::BitCastU64F64, value); } template <> IR::F64 IREmitter::BitCast(const IR::U64& value) { return Inst(Opcode::BitCastF64U64, value); } U64 IREmitter::PackUint2x32(const Value& vector) { return Inst(Opcode::PackUint2x32, vector); } Value IREmitter::UnpackUint2x32(const U64& value) { return Inst(Opcode::UnpackUint2x32, value); } U32 IREmitter::PackFloat2x16(const Value& vector) { return Inst(Opcode::PackFloat2x16, vector); } Value IREmitter::UnpackFloat2x16(const U32& value) { return Inst(Opcode::UnpackFloat2x16, value); } F64 IREmitter::PackDouble2x32(const Value& vector) { return Inst(Opcode::PackDouble2x32, vector); } Value IREmitter::UnpackDouble2x32(const F64& value) { return Inst(Opcode::UnpackDouble2x32, value); } F16F32F64 IREmitter::FPMul(const F16F32F64& a, const F16F32F64& b, FpControl control) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::F16: return Inst(Opcode::FPMul16, Flags{control}, a, b); case Type::F32: return Inst(Opcode::FPMul32, Flags{control}, a, b); case Type::F64: return Inst(Opcode::FPMul64, Flags{control}, a, b); default: ThrowInvalidType(a.Type()); } } F16F32F64 IREmitter::FPFma(const F16F32F64& a, const F16F32F64& b, const F16F32F64& c, FpControl control) { if (a.Type() != b.Type() || a.Type() != c.Type()) { throw InvalidArgument("Mismatching types {}, {}, and {}", a.Type(), b.Type(), c.Type()); } switch (a.Type()) { case Type::F16: return Inst(Opcode::FPFma16, Flags{control}, a, b, c); case Type::F32: return Inst(Opcode::FPFma32, Flags{control}, a, b, c); case Type::F64: return Inst(Opcode::FPFma64, Flags{control}, a, b, c); default: ThrowInvalidType(a.Type()); } } F16F32F64 IREmitter::FPAbs(const F16F32F64& value) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPAbs16, value); case Type::F32: return Inst(Opcode::FPAbs32, value); case Type::F64: return Inst(Opcode::FPAbs64, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPNeg(const F16F32F64& value) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPNeg16, value); case Type::F32: return Inst(Opcode::FPNeg32, value); case Type::F64: return Inst(Opcode::FPNeg64, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPAbsNeg(const F16F32F64& value, bool abs, bool neg) { F16F32F64 result{value}; if (abs) { result = FPAbs(result); } if (neg) { result = FPNeg(result); } return result; } F32 IREmitter::FPCosNotReduced(const F32& value) { return Inst(Opcode::FPCosNotReduced, value); } F32 IREmitter::FPExp2NotReduced(const F32& value) { return Inst(Opcode::FPExp2NotReduced, value); } F32 IREmitter::FPLog2(const F32& value) { return Inst(Opcode::FPLog2, value); } F32F64 IREmitter::FPRecip(const F32F64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::FPRecip32, value); case Type::U64: return Inst(Opcode::FPRecip64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPRecipSqrt(const F32F64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::FPRecipSqrt32, value); case Type::U64: return Inst(Opcode::FPRecipSqrt64, value); default: ThrowInvalidType(value.Type()); } } F32 IREmitter::FPSinNotReduced(const F32& value) { return Inst(Opcode::FPSinNotReduced, value); } F32 IREmitter::FPSqrt(const F32& value) { return Inst(Opcode::FPSqrt, value); } F16F32F64 IREmitter::FPSaturate(const F16F32F64& value) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPSaturate16, value); case Type::F32: return Inst(Opcode::FPSaturate32, value); case Type::F64: return Inst(Opcode::FPSaturate64, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPRoundEven(const F16F32F64& value, FpControl control) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPRoundEven16, Flags{control}, value); case Type::F32: return Inst(Opcode::FPRoundEven32, Flags{control}, value); case Type::F64: return Inst(Opcode::FPRoundEven64, Flags{control}, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPFloor(const F16F32F64& value, FpControl control) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPFloor16, Flags{control}, value); case Type::F32: return Inst(Opcode::FPFloor32, Flags{control}, value); case Type::F64: return Inst(Opcode::FPFloor64, Flags{control}, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPCeil(const F16F32F64& value, FpControl control) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPCeil16, Flags{control}, value); case Type::F32: return Inst(Opcode::FPCeil32, Flags{control}, value); case Type::F64: return Inst(Opcode::FPCeil64, Flags{control}, value); default: ThrowInvalidType(value.Type()); } } F16F32F64 IREmitter::FPTrunc(const F16F32F64& value, FpControl control) { switch (value.Type()) { case Type::F16: return Inst(Opcode::FPTrunc16, Flags{control}, value); case Type::F32: return Inst(Opcode::FPTrunc32, Flags{control}, value); case Type::F64: return Inst(Opcode::FPTrunc64, Flags{control}, value); default: ThrowInvalidType(value.Type()); } } U32U64 IREmitter::IAdd(const U32U64& a, const U32U64& b) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::U32: return Inst(Opcode::IAdd32, a, b); case Type::U64: return Inst(Opcode::IAdd64, a, b); default: ThrowInvalidType(a.Type()); } } U32U64 IREmitter::ISub(const U32U64& a, const U32U64& b) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::U32: return Inst(Opcode::ISub32, a, b); case Type::U64: return Inst(Opcode::ISub64, a, b); default: ThrowInvalidType(a.Type()); } } U32 IREmitter::IMul(const U32& a, const U32& b) { return Inst(Opcode::IMul32, a, b); } U32 IREmitter::INeg(const U32& value) { return Inst(Opcode::INeg32, value); } U32 IREmitter::IAbs(const U32& value) { return Inst(Opcode::IAbs32, value); } U32 IREmitter::ShiftLeftLogical(const U32& base, const U32& shift) { return Inst(Opcode::ShiftLeftLogical32, base, shift); } U32 IREmitter::ShiftRightLogical(const U32& base, const U32& shift) { return Inst(Opcode::ShiftRightLogical32, base, shift); } U32 IREmitter::ShiftRightArithmetic(const U32& base, const U32& shift) { return Inst(Opcode::ShiftRightArithmetic32, base, shift); } U32 IREmitter::BitwiseAnd(const U32& a, const U32& b) { return Inst(Opcode::BitwiseAnd32, a, b); } U32 IREmitter::BitwiseOr(const U32& a, const U32& b) { return Inst(Opcode::BitwiseOr32, a, b); } U32 IREmitter::BitwiseXor(const U32& a, const U32& b) { return Inst(Opcode::BitwiseXor32, a, b); } U32 IREmitter::BitFieldInsert(const U32& base, const U32& insert, const U32& offset, const U32& count) { return Inst(Opcode::BitFieldInsert, base, insert, offset, count); } U32 IREmitter::BitFieldExtract(const U32& base, const U32& offset, const U32& count, bool is_signed) { return Inst(is_signed ? Opcode::BitFieldSExtract : Opcode::BitFieldUExtract, base, offset, count); } U1 IREmitter::ILessThan(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SLessThan : Opcode::ULessThan, lhs, rhs); } U1 IREmitter::IEqual(const U32& lhs, const U32& rhs) { return Inst(Opcode::IEqual, lhs, rhs); } U1 IREmitter::ILessThanEqual(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SLessThanEqual : Opcode::ULessThanEqual, lhs, rhs); } U1 IREmitter::IGreaterThan(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SGreaterThan : Opcode::UGreaterThan, lhs, rhs); } U1 IREmitter::INotEqual(const U32& lhs, const U32& rhs) { return Inst(Opcode::INotEqual, lhs, rhs); } U1 IREmitter::IGreaterThanEqual(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SGreaterThanEqual : Opcode::UGreaterThanEqual, lhs, rhs); } U1 IREmitter::LogicalOr(const U1& a, const U1& b) { return Inst(Opcode::LogicalOr, a, b); } U1 IREmitter::LogicalAnd(const U1& a, const U1& b) { return Inst(Opcode::LogicalAnd, a, b); } U1 IREmitter::LogicalXor(const U1& a, const U1& b) { return Inst(Opcode::LogicalXor, a, b); } U1 IREmitter::LogicalNot(const U1& value) { return Inst(Opcode::LogicalNot, value); } U32U64 IREmitter::ConvertFToS(size_t bitsize, const F16F32F64& value) { switch (bitsize) { case 16: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertS16F16, value); case Type::F32: return Inst(Opcode::ConvertS16F32, value); case Type::F64: return Inst(Opcode::ConvertS16F64, value); default: ThrowInvalidType(value.Type()); } case 32: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertS32F16, value); case Type::F32: return Inst(Opcode::ConvertS32F32, value); case Type::F64: return Inst(Opcode::ConvertS32F64, value); default: ThrowInvalidType(value.Type()); } case 64: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertS64F16, value); case Type::F32: return Inst(Opcode::ConvertS64F32, value); case Type::F64: return Inst(Opcode::ConvertS64F64, value); default: ThrowInvalidType(value.Type()); } default: throw InvalidArgument("Invalid destination bitsize {}", bitsize); } } U32U64 IREmitter::ConvertFToU(size_t bitsize, const F16F32F64& value) { switch (bitsize) { case 16: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertU16F16, value); case Type::F32: return Inst(Opcode::ConvertU16F32, value); case Type::F64: return Inst(Opcode::ConvertU16F64, value); default: ThrowInvalidType(value.Type()); } case 32: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertU32F16, value); case Type::F32: return Inst(Opcode::ConvertU32F32, value); case Type::F64: return Inst(Opcode::ConvertU32F64, value); default: ThrowInvalidType(value.Type()); } case 64: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertU64F16, value); case Type::F32: return Inst(Opcode::ConvertU64F32, value); case Type::F64: return Inst(Opcode::ConvertU64F64, value); default: ThrowInvalidType(value.Type()); } default: throw InvalidArgument("Invalid destination bitsize {}", bitsize); } } U32U64 IREmitter::ConvertFToI(size_t bitsize, bool is_signed, const F16F32F64& value) { if (is_signed) { return ConvertFToS(bitsize, value); } else { return ConvertFToU(bitsize, value); } } U32U64 IREmitter::ConvertU(size_t result_bitsize, const U32U64& value) { switch (result_bitsize) { case 32: switch (value.Type()) { case Type::U32: // Nothing to do return value; case Type::U64: return Inst(Opcode::ConvertU32U64, value); default: break; } break; case 64: switch (value.Type()) { case Type::U32: return Inst(Opcode::ConvertU64U32, value); case Type::U64: // Nothing to do return value; default: break; } } throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize); } } // namespace Shader::IR