// Copyright 2021 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include "shader_recompiler/backend/spirv/emit_spirv.h" #include "shader_recompiler/frontend/ir/basic_block.h" #include "shader_recompiler/frontend/ir/microinstruction.h" #include "shader_recompiler/frontend/ir/program.h" namespace Shader::Backend::SPIRV { namespace { template struct FuncTraits {}; template struct FuncTraits { using ReturnType = ReturnType_; static constexpr size_t NUM_ARGS = sizeof...(Args); template using ArgType = std::tuple_element_t>; }; template void SetDefinition(EmitContext& ctx, IR::Inst* inst, Args... args) { inst->SetDefinition(func(ctx, std::forward(args)...)); } template ArgType Arg(EmitContext& ctx, const IR::Value& arg) { if constexpr (std::is_same_v) { return ctx.Def(arg); } else if constexpr (std::is_same_v) { return arg; } else if constexpr (std::is_same_v) { return arg.U32(); } else if constexpr (std::is_same_v) { return arg.Label(); } else if constexpr (std::is_same_v) { return arg.Attribute(); } else if constexpr (std::is_same_v) { return arg.Patch(); } else if constexpr (std::is_same_v) { return arg.Reg(); } } template void Invoke(EmitContext& ctx, IR::Inst* inst, std::index_sequence) { using Traits = FuncTraits; if constexpr (std::is_same_v) { if constexpr (is_first_arg_inst) { SetDefinition( ctx, inst, inst, Arg>(ctx, inst->Arg(I))...); } else { SetDefinition( ctx, inst, Arg>(ctx, inst->Arg(I))...); } } else { if constexpr (is_first_arg_inst) { func(ctx, inst, Arg>(ctx, inst->Arg(I))...); } else { func(ctx, Arg>(ctx, inst->Arg(I))...); } } } template void Invoke(EmitContext& ctx, IR::Inst* inst) { using Traits = FuncTraits; static_assert(Traits::NUM_ARGS >= 1, "Insufficient arguments"); if constexpr (Traits::NUM_ARGS == 1) { Invoke(ctx, inst, std::make_index_sequence<0>{}); } else { using FirstArgType = typename Traits::template ArgType<1>; static constexpr bool is_first_arg_inst = std::is_same_v; using Indices = std::make_index_sequence; Invoke(ctx, inst, Indices{}); } } void EmitInst(EmitContext& ctx, IR::Inst* inst) { switch (inst->GetOpcode()) { #define OPCODE(name, result_type, ...) \ case IR::Opcode::name: \ return Invoke<&Emit##name>(ctx, inst); #include "shader_recompiler/frontend/ir/opcodes.inc" #undef OPCODE } throw LogicError("Invalid opcode {}", inst->GetOpcode()); } Id TypeId(const EmitContext& ctx, IR::Type type) { switch (type) { case IR::Type::U1: return ctx.U1; case IR::Type::U32: return ctx.U32[1]; default: throw NotImplementedException("Phi node type {}", type); } } Id DefineMain(EmitContext& ctx, IR::Program& program) { const Id void_function{ctx.TypeFunction(ctx.void_id)}; const Id main{ctx.OpFunction(ctx.void_id, spv::FunctionControlMask::MaskNone, void_function)}; for (IR::Block* const block : program.blocks) { ctx.AddLabel(block->Definition()); for (IR::Inst& inst : block->Instructions()) { EmitInst(ctx, &inst); } } ctx.OpFunctionEnd(); return main; } spv::ExecutionMode ExecutionMode(TessPrimitive primitive) { switch (primitive) { case TessPrimitive::Isolines: return spv::ExecutionMode::Isolines; case TessPrimitive::Triangles: return spv::ExecutionMode::Triangles; case TessPrimitive::Quads: return spv::ExecutionMode::Quads; } throw InvalidArgument("Tessellation primitive {}", primitive); } spv::ExecutionMode ExecutionMode(TessSpacing spacing) { switch (spacing) { case TessSpacing::Equal: return spv::ExecutionMode::SpacingEqual; case TessSpacing::FractionalOdd: return spv::ExecutionMode::SpacingFractionalOdd; case TessSpacing::FractionalEven: return spv::ExecutionMode::SpacingFractionalEven; } throw InvalidArgument("Tessellation spacing {}", spacing); } void DefineEntryPoint(const IR::Program& program, EmitContext& ctx, Id main) { const std::span interfaces(ctx.interfaces.data(), ctx.interfaces.size()); spv::ExecutionModel execution_model{}; switch (program.stage) { case Stage::Compute: { const std::array workgroup_size{program.workgroup_size}; execution_model = spv::ExecutionModel::GLCompute; ctx.AddExecutionMode(main, spv::ExecutionMode::LocalSize, workgroup_size[0], workgroup_size[1], workgroup_size[2]); break; } case Stage::VertexB: execution_model = spv::ExecutionModel::Vertex; break; case Stage::TessellationControl: execution_model = spv::ExecutionModel::TessellationControl; ctx.AddCapability(spv::Capability::Tessellation); ctx.AddExecutionMode(main, spv::ExecutionMode::OutputVertices, program.invocations); break; case Stage::TessellationEval: execution_model = spv::ExecutionModel::TessellationEvaluation; ctx.AddCapability(spv::Capability::Tessellation); ctx.AddExecutionMode(main, ExecutionMode(ctx.profile.tess_primitive)); ctx.AddExecutionMode(main, ExecutionMode(ctx.profile.tess_spacing)); ctx.AddExecutionMode(main, ctx.profile.tess_clockwise ? spv::ExecutionMode::VertexOrderCw : spv::ExecutionMode::VertexOrderCcw); break; case Stage::Geometry: execution_model = spv::ExecutionModel::Geometry; ctx.AddCapability(spv::Capability::Geometry); ctx.AddCapability(spv::Capability::GeometryStreams); switch (ctx.profile.input_topology) { case InputTopology::Points: ctx.AddExecutionMode(main, spv::ExecutionMode::InputPoints); break; case InputTopology::Lines: ctx.AddExecutionMode(main, spv::ExecutionMode::InputLines); break; case InputTopology::LinesAdjacency: ctx.AddExecutionMode(main, spv::ExecutionMode::InputLinesAdjacency); break; case InputTopology::Triangles: ctx.AddExecutionMode(main, spv::ExecutionMode::Triangles); break; case InputTopology::TrianglesAdjacency: ctx.AddExecutionMode(main, spv::ExecutionMode::InputTrianglesAdjacency); break; } switch (program.output_topology) { case OutputTopology::PointList: ctx.AddExecutionMode(main, spv::ExecutionMode::OutputPoints); break; case OutputTopology::LineStrip: ctx.AddExecutionMode(main, spv::ExecutionMode::OutputLineStrip); break; case OutputTopology::TriangleStrip: ctx.AddExecutionMode(main, spv::ExecutionMode::OutputTriangleStrip); break; } if (program.info.stores_point_size) { ctx.AddCapability(spv::Capability::GeometryPointSize); } ctx.AddExecutionMode(main, spv::ExecutionMode::OutputVertices, program.output_vertices); ctx.AddExecutionMode(main, spv::ExecutionMode::Invocations, program.invocations); break; case Stage::Fragment: execution_model = spv::ExecutionModel::Fragment; ctx.AddExecutionMode(main, spv::ExecutionMode::OriginUpperLeft); if (program.info.stores_frag_depth) { ctx.AddExecutionMode(main, spv::ExecutionMode::DepthReplacing); } if (ctx.profile.force_early_z) { ctx.AddExecutionMode(main, spv::ExecutionMode::EarlyFragmentTests); } break; default: throw NotImplementedException("Stage {}", program.stage); } ctx.AddEntryPoint(execution_model, main, "main", interfaces); } void SetupDenormControl(const Profile& profile, const IR::Program& program, EmitContext& ctx, Id main_func) { const Info& info{program.info}; if (info.uses_fp32_denorms_flush && info.uses_fp32_denorms_preserve) { // LOG_ERROR(HW_GPU, "Fp32 denorm flush and preserve on the same shader"); } else if (info.uses_fp32_denorms_flush) { if (profile.support_fp32_denorm_flush) { ctx.AddCapability(spv::Capability::DenormFlushToZero); ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormFlushToZero, 32U); } else { // Drivers will most likely flush denorms by default, no need to warn } } else if (info.uses_fp32_denorms_preserve) { if (profile.support_fp32_denorm_preserve) { ctx.AddCapability(spv::Capability::DenormPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormPreserve, 32U); } else { // LOG_WARNING(HW_GPU, "Fp32 denorm preserve used in shader without host support"); } } if (!profile.support_separate_denorm_behavior) { // No separate denorm behavior return; } if (info.uses_fp16_denorms_flush && info.uses_fp16_denorms_preserve) { // LOG_ERROR(HW_GPU, "Fp16 denorm flush and preserve on the same shader"); } else if (info.uses_fp16_denorms_flush) { if (profile.support_fp16_denorm_flush) { ctx.AddCapability(spv::Capability::DenormFlushToZero); ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormFlushToZero, 16U); } else { // Same as fp32, no need to warn as most drivers will flush by default } } else if (info.uses_fp16_denorms_preserve) { if (profile.support_fp16_denorm_preserve) { ctx.AddCapability(spv::Capability::DenormPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormPreserve, 16U); } else { // LOG_WARNING(HW_GPU, "Fp16 denorm preserve used in shader without host support"); } } } void SetupSignedNanCapabilities(const Profile& profile, const IR::Program& program, EmitContext& ctx, Id main_func) { if (program.info.uses_fp16 && profile.support_fp16_signed_zero_nan_preserve) { ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 16U); } if (profile.support_fp32_signed_zero_nan_preserve) { ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 32U); } if (program.info.uses_fp64 && profile.support_fp64_signed_zero_nan_preserve) { ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 64U); } } void SetupCapabilities(const Profile& profile, const Info& info, EmitContext& ctx) { if (info.uses_sampled_1d) { ctx.AddCapability(spv::Capability::Sampled1D); } if (info.uses_sparse_residency) { ctx.AddCapability(spv::Capability::SparseResidency); } if (info.uses_demote_to_helper_invocation) { ctx.AddExtension("SPV_EXT_demote_to_helper_invocation"); ctx.AddCapability(spv::Capability::DemoteToHelperInvocationEXT); } if (info.stores_layer) { ctx.AddCapability(spv::Capability::ShaderLayer); } if (info.stores_viewport_index) { ctx.AddCapability(spv::Capability::MultiViewport); } if (info.stores_viewport_mask && profile.support_viewport_mask) { ctx.AddExtension("SPV_NV_viewport_array2"); ctx.AddCapability(spv::Capability::ShaderViewportMaskNV); } if (info.stores_layer || info.stores_viewport_index) { if (profile.support_viewport_index_layer_non_geometry && ctx.stage != Stage::Geometry) { ctx.AddExtension("SPV_EXT_shader_viewport_index_layer"); ctx.AddCapability(spv::Capability::ShaderViewportIndexLayerEXT); } } if (!profile.support_vertex_instance_id && (info.loads_instance_id || info.loads_vertex_id)) { ctx.AddExtension("SPV_KHR_shader_draw_parameters"); ctx.AddCapability(spv::Capability::DrawParameters); } if ((info.uses_subgroup_vote || info.uses_subgroup_invocation_id) && profile.support_vote) { ctx.AddExtension("SPV_KHR_shader_ballot"); ctx.AddCapability(spv::Capability::SubgroupBallotKHR); if (!profile.warp_size_potentially_larger_than_guest) { // vote ops are only used when not taking the long path ctx.AddExtension("SPV_KHR_subgroup_vote"); ctx.AddCapability(spv::Capability::SubgroupVoteKHR); } } if (info.uses_int64_bit_atomics && profile.support_int64_atomics) { ctx.AddCapability(spv::Capability::Int64Atomics); } if (info.uses_typeless_image_reads && profile.support_typeless_image_loads) { ctx.AddCapability(spv::Capability::StorageImageReadWithoutFormat); } if (info.uses_typeless_image_writes) { ctx.AddCapability(spv::Capability::StorageImageWriteWithoutFormat); } if (!ctx.profile.xfb_varyings.empty()) { ctx.AddCapability(spv::Capability::TransformFeedback); } // TODO: Track this usage ctx.AddCapability(spv::Capability::ImageGatherExtended); ctx.AddCapability(spv::Capability::ImageQuery); ctx.AddCapability(spv::Capability::SampledBuffer); } void PatchPhiNodes(IR::Program& program, EmitContext& ctx) { auto inst{program.blocks.front()->begin()}; size_t block_index{0}; ctx.PatchDeferredPhi([&](size_t phi_arg) { if (phi_arg == 0) { ++inst; if (inst == program.blocks[block_index]->end() || inst->GetOpcode() != IR::Opcode::Phi) { do { ++block_index; inst = program.blocks[block_index]->begin(); } while (inst->GetOpcode() != IR::Opcode::Phi); } } return ctx.Def(inst->Arg(phi_arg)); }); } } // Anonymous namespace std::vector EmitSPIRV(const Profile& profile, IR::Program& program, u32& binding) { EmitContext ctx{profile, program, binding}; const Id main{DefineMain(ctx, program)}; DefineEntryPoint(program, ctx, main); if (profile.support_float_controls) { ctx.AddExtension("SPV_KHR_float_controls"); SetupDenormControl(profile, program, ctx, main); SetupSignedNanCapabilities(profile, program, ctx, main); } SetupCapabilities(profile, program.info, ctx); PatchPhiNodes(program, ctx); return ctx.Assemble(); } Id EmitPhi(EmitContext& ctx, IR::Inst* inst) { const size_t num_args{inst->NumArgs()}; boost::container::small_vector blocks; blocks.reserve(num_args); for (size_t index = 0; index < num_args; ++index) { blocks.push_back(inst->PhiBlock(index)->Definition()); } // The type of a phi instruction is stored in its flags const Id result_type{TypeId(ctx, inst->Flags())}; return ctx.DeferredOpPhi(result_type, std::span(blocks.data(), blocks.size())); } void EmitVoid(EmitContext&) {} Id EmitIdentity(EmitContext& ctx, const IR::Value& value) { const Id id{ctx.Def(value)}; if (!Sirit::ValidId(id)) { throw NotImplementedException("Forward identity declaration"); } return id; } void EmitGetZeroFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetSignFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetCarryFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetOverflowFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetSparseFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetInBoundsFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } } // namespace Shader::Backend::SPIRV