// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include "shader_recompiler/backend/glsl/emit_glsl_instructions.h" #include "shader_recompiler/backend/glsl/glsl_emit_context.h" #include "shader_recompiler/frontend/ir/modifiers.h" #include "shader_recompiler/frontend/ir/value.h" #include "shader_recompiler/profile.h" namespace Shader::Backend::GLSL { namespace { std::string Texture(EmitContext& ctx, const IR::TextureInstInfo& info, const IR::Value& index) { const auto def{info.type == TextureType::Buffer ? ctx.texture_buffers.at(info.descriptor_index) : ctx.textures.at(info.descriptor_index)}; const auto index_offset{def.count > 1 ? fmt::format("[{}]", ctx.var_alloc.Consume(index)) : ""}; return fmt::format("tex{}{}", def.binding, index_offset); } std::string Image(EmitContext& ctx, const IR::TextureInstInfo& info, const IR::Value& index) { const auto def{info.type == TextureType::Buffer ? ctx.image_buffers.at(info.descriptor_index) : ctx.images.at(info.descriptor_index)}; const auto index_offset{def.count > 1 ? fmt::format("[{}]", ctx.var_alloc.Consume(index)) : ""}; return fmt::format("img{}{}", def.binding, index_offset); } std::string CastToIntVec(std::string_view value, const IR::TextureInstInfo& info) { switch (info.type) { case TextureType::Color1D: case TextureType::Buffer: return fmt::format("int({})", value); case TextureType::ColorArray1D: case TextureType::Color2D: case TextureType::ColorArray2D: return fmt::format("ivec2({})", value); case TextureType::Color3D: case TextureType::ColorCube: return fmt::format("ivec3({})", value); case TextureType::ColorArrayCube: return fmt::format("ivec4({})", value); default: throw NotImplementedException("Integer cast for TextureType {}", info.type.Value()); } } std::string CoordsCastToInt(std::string_view value, const IR::TextureInstInfo& info) { switch (info.type) { case TextureType::Color1D: case TextureType::Buffer: return fmt::format("int({})", value); case TextureType::ColorArray1D: case TextureType::Color2D: return fmt::format("ivec2({})", value); case TextureType::ColorArray2D: case TextureType::Color3D: case TextureType::ColorCube: return fmt::format("ivec3({})", value); case TextureType::ColorArrayCube: return fmt::format("ivec4({})", value); default: throw NotImplementedException("TexelFetchCast type {}", info.type.Value()); } } bool NeedsShadowLodExt(TextureType type) { switch (type) { case TextureType::ColorArray2D: case TextureType::ColorCube: case TextureType::ColorArrayCube: return true; default: return false; } } std::string GetOffsetVec(EmitContext& ctx, const IR::Value& offset) { if (offset.IsImmediate()) { return fmt::format("int({})", offset.U32()); } IR::Inst* const inst{offset.InstRecursive()}; if (inst->AreAllArgsImmediates()) { switch (inst->GetOpcode()) { case IR::Opcode::CompositeConstructU32x2: return fmt::format("ivec2({},{})", inst->Arg(0).U32(), inst->Arg(1).U32()); case IR::Opcode::CompositeConstructU32x3: return fmt::format("ivec3({},{},{})", inst->Arg(0).U32(), inst->Arg(1).U32(), inst->Arg(2).U32()); case IR::Opcode::CompositeConstructU32x4: return fmt::format("ivec4({},{},{},{})", inst->Arg(0).U32(), inst->Arg(1).U32(), inst->Arg(2).U32(), inst->Arg(3).U32()); default: break; } } const bool has_var_aoffi{ctx.profile.support_gl_variable_aoffi}; if (!has_var_aoffi) { LOG_WARNING(Shader_GLSL, "Device does not support variable texture offsets, STUBBING"); } const auto offset_str{has_var_aoffi ? ctx.var_alloc.Consume(offset) : "0"}; switch (offset.Type()) { case IR::Type::U32: return fmt::format("int({})", offset_str); case IR::Type::U32x2: return fmt::format("ivec2({})", offset_str); case IR::Type::U32x3: return fmt::format("ivec3({})", offset_str); case IR::Type::U32x4: return fmt::format("ivec4({})", offset_str); default: throw NotImplementedException("Offset type {}", offset.Type()); } } std::string PtpOffsets(const IR::Value& offset, const IR::Value& offset2) { const std::array values{offset.InstRecursive(), offset2.InstRecursive()}; if (!values[0]->AreAllArgsImmediates() || !values[1]->AreAllArgsImmediates()) { LOG_WARNING(Shader_GLSL, "Not all arguments in PTP are immediate, STUBBING"); return "ivec2[](ivec2(0), ivec2(1), ivec2(2), ivec2(3))"; } const IR::Opcode opcode{values[0]->GetOpcode()}; if (opcode != values[1]->GetOpcode() || opcode != IR::Opcode::CompositeConstructU32x4) { throw LogicError("Invalid PTP arguments"); } auto read{[&](unsigned int a, unsigned int b) { return values[a]->Arg(b).U32(); }}; return fmt::format("ivec2[](ivec2({},{}),ivec2({},{}),ivec2({},{}),ivec2({},{}))", read(0, 0), read(0, 1), read(0, 2), read(0, 3), read(1, 0), read(1, 1), read(1, 2), read(1, 3)); } IR::Inst* PrepareSparse(IR::Inst& inst) { const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)}; if (sparse_inst) { sparse_inst->Invalidate(); } return sparse_inst; } } // Anonymous namespace void EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view bias_lc, const IR::Value& offset) { const auto info{inst.Flags()}; if (info.has_lod_clamp) { throw NotImplementedException("EmitImageSampleImplicitLod Lod clamp samples"); } const auto texture{Texture(ctx, info, index)}; const auto bias{info.has_bias ? fmt::format(",{}", bias_lc) : ""}; const auto texel{ctx.var_alloc.Define(inst, GlslVarType::F32x4)}; const auto sparse_inst{PrepareSparse(inst)}; const bool supports_sparse{ctx.profile.support_gl_sparse_textures}; if (sparse_inst && !supports_sparse) { LOG_WARNING(Shader_GLSL, "Device does not support sparse texture queries. STUBBING"); ctx.AddU1("{}=true;", *sparse_inst); } if (!sparse_inst || !supports_sparse) { if (!offset.IsEmpty()) { const auto offset_str{GetOffsetVec(ctx, offset)}; if (ctx.stage == Stage::Fragment) { ctx.Add("{}=textureOffset({},{},{}{});", texel, texture, coords, offset_str, bias); } else { ctx.Add("{}=textureLodOffset({},{},0.0,{});", texel, texture, coords, offset_str); } } else { if (ctx.stage == Stage::Fragment) { ctx.Add("{}=texture({},{}{});", texel, texture, coords, bias); } else { ctx.Add("{}=textureLod({},{},0.0);", texel, texture, coords); } } return; } if (!offset.IsEmpty()) { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureOffsetARB({},{},{},{}{}));", *sparse_inst, texture, coords, GetOffsetVec(ctx, offset), texel, bias); } else { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureARB({},{},{}{}));", *sparse_inst, texture, coords, texel, bias); } } void EmitImageSampleExplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view lod_lc, const IR::Value& offset) { const auto info{inst.Flags()}; if (info.has_bias) { throw NotImplementedException("EmitImageSampleExplicitLod Bias texture samples"); } if (info.has_lod_clamp) { throw NotImplementedException("EmitImageSampleExplicitLod Lod clamp samples"); } const auto texture{Texture(ctx, info, index)}; const auto texel{ctx.var_alloc.Define(inst, GlslVarType::F32x4)}; const auto sparse_inst{PrepareSparse(inst)}; const bool supports_sparse{ctx.profile.support_gl_sparse_textures}; if (sparse_inst && !supports_sparse) { LOG_WARNING(Shader_GLSL, "Device does not support sparse texture queries. STUBBING"); ctx.AddU1("{}=true;", *sparse_inst); } if (!sparse_inst || !supports_sparse) { if (!offset.IsEmpty()) { ctx.Add("{}=textureLodOffset({},{},{},{});", texel, texture, coords, lod_lc, GetOffsetVec(ctx, offset)); } else { ctx.Add("{}=textureLod({},{},{});", texel, texture, coords, lod_lc); } return; } if (!offset.IsEmpty()) { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTexelFetchOffsetARB({},{},int({}),{},{}));", *sparse_inst, texture, CastToIntVec(coords, info), lod_lc, GetOffsetVec(ctx, offset), texel); } else { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureLodARB({},{},{},{}));", *sparse_inst, texture, coords, lod_lc, texel); } } void EmitImageSampleDrefImplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view dref, std::string_view bias_lc, const IR::Value& offset) { const auto info{inst.Flags()}; const auto sparse_inst{PrepareSparse(inst)}; if (sparse_inst) { throw NotImplementedException("EmitImageSampleDrefImplicitLod Sparse texture samples"); } if (info.has_bias) { throw NotImplementedException("EmitImageSampleDrefImplicitLod Bias texture samples"); } if (info.has_lod_clamp) { throw NotImplementedException("EmitImageSampleDrefImplicitLod Lod clamp samples"); } const auto texture{Texture(ctx, info, index)}; const auto bias{info.has_bias ? fmt::format(",{}", bias_lc) : ""}; const bool needs_shadow_ext{NeedsShadowLodExt(info.type)}; const auto cast{needs_shadow_ext ? "vec4" : "vec3"}; const bool use_grad{!ctx.profile.support_gl_texture_shadow_lod && ctx.stage != Stage::Fragment && needs_shadow_ext}; if (use_grad) { LOG_WARNING(Shader_GLSL, "Device lacks GL_EXT_texture_shadow_lod. Using textureGrad fallback"); if (info.type == TextureType::ColorArrayCube) { LOG_WARNING(Shader_GLSL, "textureGrad does not support ColorArrayCube. Stubbing"); ctx.AddF32("{}=0.0f;", inst); return; } const auto d_cast{info.type == TextureType::ColorArray2D ? "vec2" : "vec3"}; ctx.AddF32("{}=textureGrad({},{}({},{}),{}(0),{}(0));", inst, texture, cast, coords, dref, d_cast, d_cast); return; } if (!offset.IsEmpty()) { const auto offset_str{GetOffsetVec(ctx, offset)}; if (ctx.stage == Stage::Fragment) { ctx.AddF32("{}=textureOffset({},{}({},{}),{}{});", inst, texture, cast, coords, dref, offset_str, bias); } else { ctx.AddF32("{}=textureLodOffset({},{}({},{}),0.0,{});", inst, texture, cast, coords, dref, offset_str); } } else { if (ctx.stage == Stage::Fragment) { if (info.type == TextureType::ColorArrayCube) { ctx.AddF32("{}=texture({},vec4({}),{});", inst, texture, coords, dref); } else { ctx.AddF32("{}=texture({},{}({},{}){});", inst, texture, cast, coords, dref, bias); } } else { ctx.AddF32("{}=textureLod({},{}({},{}),0.0);", inst, texture, cast, coords, dref); } } } void EmitImageSampleDrefExplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view dref, std::string_view lod_lc, const IR::Value& offset) { const auto info{inst.Flags()}; const auto sparse_inst{PrepareSparse(inst)}; if (sparse_inst) { throw NotImplementedException("EmitImageSampleDrefExplicitLod Sparse texture samples"); } if (info.has_bias) { throw NotImplementedException("EmitImageSampleDrefExplicitLod Bias texture samples"); } if (info.has_lod_clamp) { throw NotImplementedException("EmitImageSampleDrefExplicitLod Lod clamp samples"); } const auto texture{Texture(ctx, info, index)}; const bool needs_shadow_ext{NeedsShadowLodExt(info.type)}; const bool use_grad{!ctx.profile.support_gl_texture_shadow_lod && needs_shadow_ext}; const auto cast{needs_shadow_ext ? "vec4" : "vec3"}; if (use_grad) { LOG_WARNING(Shader_GLSL, "Device lacks GL_EXT_texture_shadow_lod. Using textureGrad fallback"); if (info.type == TextureType::ColorArrayCube) { LOG_WARNING(Shader_GLSL, "textureGrad does not support ColorArrayCube. Stubbing"); ctx.AddF32("{}=0.0f;", inst); return; } const auto d_cast{info.type == TextureType::ColorArray2D ? "vec2" : "vec3"}; ctx.AddF32("{}=textureGrad({},{}({},{}),{}(0),{}(0));", inst, texture, cast, coords, dref, d_cast, d_cast); return; } if (!offset.IsEmpty()) { const auto offset_str{GetOffsetVec(ctx, offset)}; if (info.type == TextureType::ColorArrayCube) { ctx.AddF32("{}=textureLodOffset({},{},{},{},{});", inst, texture, coords, dref, lod_lc, offset_str); } else { ctx.AddF32("{}=textureLodOffset({},{}({},{}),{},{});", inst, texture, cast, coords, dref, lod_lc, offset_str); } } else { if (info.type == TextureType::ColorArrayCube) { ctx.AddF32("{}=textureLod({},{},{},{});", inst, texture, coords, dref, lod_lc); } else { ctx.AddF32("{}=textureLod({},{}({},{}),{});", inst, texture, cast, coords, dref, lod_lc); } } } void EmitImageGather(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, const IR::Value& offset, const IR::Value& offset2) { const auto info{inst.Flags()}; const auto texture{Texture(ctx, info, index)}; const auto texel{ctx.var_alloc.Define(inst, GlslVarType::F32x4)}; const auto sparse_inst{PrepareSparse(inst)}; const bool supports_sparse{ctx.profile.support_gl_sparse_textures}; if (sparse_inst && !supports_sparse) { LOG_WARNING(Shader_GLSL, "Device does not support sparse texture queries. STUBBING"); ctx.AddU1("{}=true;", *sparse_inst); } if (!sparse_inst || !supports_sparse) { if (offset.IsEmpty()) { ctx.Add("{}=textureGather({},{},int({}));", texel, texture, coords, info.gather_component); return; } if (offset2.IsEmpty()) { ctx.Add("{}=textureGatherOffset({},{},{},int({}));", texel, texture, coords, GetOffsetVec(ctx, offset), info.gather_component); return; } // PTP const auto offsets{PtpOffsets(offset, offset2)}; ctx.Add("{}=textureGatherOffsets({},{},{},int({}));", texel, texture, coords, offsets, info.gather_component); return; } if (offset.IsEmpty()) { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureGatherARB({},{},{},int({})));", *sparse_inst, texture, coords, texel, info.gather_component); return; } if (offset2.IsEmpty()) { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureGatherOffsetARB({},{},{},{},int({})));", *sparse_inst, texture, CastToIntVec(coords, info), GetOffsetVec(ctx, offset), texel, info.gather_component); return; } // PTP const auto offsets{PtpOffsets(offset, offset2)}; ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureGatherOffsetARB({},{},{},{},int({})));", *sparse_inst, texture, CastToIntVec(coords, info), offsets, texel, info.gather_component); } void EmitImageGatherDref(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, const IR::Value& offset, const IR::Value& offset2, std::string_view dref) { const auto info{inst.Flags()}; const auto texture{Texture(ctx, info, index)}; const auto texel{ctx.var_alloc.Define(inst, GlslVarType::F32x4)}; const auto sparse_inst{PrepareSparse(inst)}; const bool supports_sparse{ctx.profile.support_gl_sparse_textures}; if (sparse_inst && !supports_sparse) { LOG_WARNING(Shader_GLSL, "Device does not support sparse texture queries. STUBBING"); ctx.AddU1("{}=true;", *sparse_inst); } if (!sparse_inst || !supports_sparse) { if (offset.IsEmpty()) { ctx.Add("{}=textureGather({},{},{});", texel, texture, coords, dref); return; } if (offset2.IsEmpty()) { ctx.Add("{}=textureGatherOffset({},{},{},{});", texel, texture, coords, dref, GetOffsetVec(ctx, offset)); return; } // PTP const auto offsets{PtpOffsets(offset, offset2)}; ctx.Add("{}=textureGatherOffsets({},{},{},{});", texel, texture, coords, dref, offsets); return; } if (offset.IsEmpty()) { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureGatherARB({},{},{},{}));", *sparse_inst, texture, coords, dref, texel); return; } if (offset2.IsEmpty()) { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureGatherOffsetARB({},{},{},,{},{}));", *sparse_inst, texture, CastToIntVec(coords, info), dref, GetOffsetVec(ctx, offset), texel); return; } // PTP const auto offsets{PtpOffsets(offset, offset2)}; ctx.AddU1("{}=sparseTexelsResidentARB(sparseTextureGatherOffsetARB({},{},{},,{},{}));", *sparse_inst, texture, CastToIntVec(coords, info), dref, offsets, texel); } void EmitImageFetch(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view offset, std::string_view lod, [[maybe_unused]] std::string_view ms) { const auto info{inst.Flags()}; if (info.has_bias) { throw NotImplementedException("EmitImageFetch Bias texture samples"); } if (info.has_lod_clamp) { throw NotImplementedException("EmitImageFetch Lod clamp samples"); } const auto texture{Texture(ctx, info, index)}; const auto sparse_inst{PrepareSparse(inst)}; const auto texel{ctx.var_alloc.Define(inst, GlslVarType::F32x4)}; const bool supports_sparse{ctx.profile.support_gl_sparse_textures}; if (sparse_inst && !supports_sparse) { LOG_WARNING(Shader_GLSL, "Device does not support sparse texture queries. STUBBING"); ctx.AddU1("{}=true;", *sparse_inst); } if (!sparse_inst || !supports_sparse) { if (!offset.empty()) { ctx.Add("{}=texelFetchOffset({},{},int({}),{});", texel, texture, CoordsCastToInt(coords, info), lod, CoordsCastToInt(offset, info)); } else { if (info.type == TextureType::Buffer) { ctx.Add("{}=texelFetch({},int({}));", texel, texture, coords); } else { ctx.Add("{}=texelFetch({},{},int({}));", texel, texture, CoordsCastToInt(coords, info), lod); } } return; } if (!offset.empty()) { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTexelFetchOffsetARB({},{},int({}),{},{}));", *sparse_inst, texture, CastToIntVec(coords, info), lod, CastToIntVec(offset, info), texel); } else { ctx.AddU1("{}=sparseTexelsResidentARB(sparseTexelFetchARB({},{},int({}),{}));", *sparse_inst, texture, CastToIntVec(coords, info), lod, texel); } } void EmitImageQueryDimensions(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view lod) { const auto info{inst.Flags()}; const auto texture{Texture(ctx, info, index)}; switch (info.type) { case TextureType::Color1D: return ctx.AddU32x4( "{}=uvec4(uint(textureSize({},int({}))),0u,0u,uint(textureQueryLevels({})));", inst, texture, lod, texture); case TextureType::ColorArray1D: case TextureType::Color2D: case TextureType::ColorCube: case TextureType::Color2DRect: return ctx.AddU32x4( "{}=uvec4(uvec2(textureSize({},int({}))),0u,uint(textureQueryLevels({})));", inst, texture, lod, texture); case TextureType::ColorArray2D: case TextureType::Color3D: case TextureType::ColorArrayCube: return ctx.AddU32x4( "{}=uvec4(uvec3(textureSize({},int({}))),uint(textureQueryLevels({})));", inst, texture, lod, texture); case TextureType::Buffer: throw NotImplementedException("EmitImageQueryDimensions Texture buffers"); } throw LogicError("Unspecified image type {}", info.type.Value()); } void EmitImageQueryLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords) { const auto info{inst.Flags()}; const auto texture{Texture(ctx, info, index)}; return ctx.AddF32x4("{}=vec4(textureQueryLod({},{}),0.0,0.0);", inst, texture, coords); } void EmitImageGradient(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, const IR::Value& derivatives, const IR::Value& offset, [[maybe_unused]] const IR::Value& lod_clamp) { const auto info{inst.Flags()}; if (info.has_lod_clamp) { throw NotImplementedException("EmitImageGradient Lod clamp samples"); } const auto sparse_inst{PrepareSparse(inst)}; if (sparse_inst) { throw NotImplementedException("EmitImageGradient Sparse"); } if (!offset.IsEmpty()) { throw NotImplementedException("EmitImageGradient offset"); } const auto texture{Texture(ctx, info, index)}; const auto texel{ctx.var_alloc.Define(inst, GlslVarType::F32x4)}; const bool multi_component{info.num_derivates > 1 || info.has_lod_clamp}; const auto derivatives_vec{ctx.var_alloc.Consume(derivatives)}; if (multi_component) { ctx.Add("{}=textureGrad({},{},vec2({}.xz),vec2({}.yz));", texel, texture, coords, derivatives_vec, derivatives_vec); } else { ctx.Add("{}=textureGrad({},{},float({}.x),float({}.y));", texel, texture, coords, derivatives_vec, derivatives_vec); } } void EmitImageRead(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords) { const auto info{inst.Flags()}; const auto sparse_inst{PrepareSparse(inst)}; if (sparse_inst) { throw NotImplementedException("EmitImageRead Sparse"); } const auto image{Image(ctx, info, index)}; ctx.AddU32x4("{}=uvec4(imageLoad({},{}));", inst, image, CoordsCastToInt(coords, info)); } void EmitImageWrite(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view color) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.Add("imageStore({},{},{});", image, CoordsCastToInt(coords, info), color); } void EmitImageAtomicIAdd32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicAdd({},{},{});", inst, image, CoordsCastToInt(coords, info), value); } void EmitImageAtomicSMin32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicMin({},{},int({}));", inst, image, CoordsCastToInt(coords, info), value); } void EmitImageAtomicUMin32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicMin({},{},uint({}));", inst, image, CoordsCastToInt(coords, info), value); } void EmitImageAtomicSMax32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicMax({},{},int({}));", inst, image, CoordsCastToInt(coords, info), value); } void EmitImageAtomicUMax32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicMax({},{},uint({}));", inst, image, CoordsCastToInt(coords, info), value); } void EmitImageAtomicInc32(EmitContext&, IR::Inst&, const IR::Value&, std::string_view, std::string_view) { NotImplemented(); } void EmitImageAtomicDec32(EmitContext&, IR::Inst&, const IR::Value&, std::string_view, std::string_view) { NotImplemented(); } void EmitImageAtomicAnd32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicAnd({},{},{});", inst, image, CoordsCastToInt(coords, info), value); } void EmitImageAtomicOr32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicOr({},{},{});", inst, image, CoordsCastToInt(coords, info), value); } void EmitImageAtomicXor32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicXor({},{},{});", inst, image, CoordsCastToInt(coords, info), value); } void EmitImageAtomicExchange32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, std::string_view coords, std::string_view value) { const auto info{inst.Flags()}; const auto image{Image(ctx, info, index)}; ctx.AddU32("{}=imageAtomicExchange({},{},{});", inst, image, CoordsCastToInt(coords, info), value); } void EmitIsTextureScaled(EmitContext& ctx, IR::Inst& inst, const IR::Value& index) { if (!index.IsImmediate()) { throw NotImplementedException("Non-constant texture rescaling"); } const u32 image_index{index.U32()}; ctx.AddU1("{}=(ftou(scaling.x)&{})!=0;", inst, 1u << image_index); } void EmitIsImageScaled(EmitContext& ctx, IR::Inst& inst, const IR::Value& index) { if (!index.IsImmediate()) { throw NotImplementedException("Non-constant texture rescaling"); } const u32 image_index{index.U32()}; ctx.AddU1("{}=(ftou(scaling.y)&{})!=0;", inst, 1u << image_index); } void EmitBindlessImageSampleImplicitLod(EmitContext&) { NotImplemented(); } void EmitBindlessImageSampleExplicitLod(EmitContext&) { NotImplemented(); } void EmitBindlessImageSampleDrefImplicitLod(EmitContext&) { NotImplemented(); } void EmitBindlessImageSampleDrefExplicitLod(EmitContext&) { NotImplemented(); } void EmitBindlessImageGather(EmitContext&) { NotImplemented(); } void EmitBindlessImageGatherDref(EmitContext&) { NotImplemented(); } void EmitBindlessImageFetch(EmitContext&) { NotImplemented(); } void EmitBindlessImageQueryDimensions(EmitContext&) { NotImplemented(); } void EmitBindlessImageQueryLod(EmitContext&) { NotImplemented(); } void EmitBindlessImageGradient(EmitContext&) { NotImplemented(); } void EmitBindlessImageRead(EmitContext&) { NotImplemented(); } void EmitBindlessImageWrite(EmitContext&) { NotImplemented(); } void EmitBoundImageSampleImplicitLod(EmitContext&) { NotImplemented(); } void EmitBoundImageSampleExplicitLod(EmitContext&) { NotImplemented(); } void EmitBoundImageSampleDrefImplicitLod(EmitContext&) { NotImplemented(); } void EmitBoundImageSampleDrefExplicitLod(EmitContext&) { NotImplemented(); } void EmitBoundImageGather(EmitContext&) { NotImplemented(); } void EmitBoundImageGatherDref(EmitContext&) { NotImplemented(); } void EmitBoundImageFetch(EmitContext&) { NotImplemented(); } void EmitBoundImageQueryDimensions(EmitContext&) { NotImplemented(); } void EmitBoundImageQueryLod(EmitContext&) { NotImplemented(); } void EmitBoundImageGradient(EmitContext&) { NotImplemented(); } void EmitBoundImageRead(EmitContext&) { NotImplemented(); } void EmitBoundImageWrite(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicIAdd32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicSMin32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicUMin32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicSMax32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicUMax32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicInc32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicDec32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicAnd32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicOr32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicXor32(EmitContext&) { NotImplemented(); } void EmitBindlessImageAtomicExchange32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicIAdd32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicSMin32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicUMin32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicSMax32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicUMax32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicInc32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicDec32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicAnd32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicOr32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicXor32(EmitContext&) { NotImplemented(); } void EmitBoundImageAtomicExchange32(EmitContext&) { NotImplemented(); } } // namespace Shader::Backend::GLSL