// Copyright 2021 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "shader_recompiler/backend/glasm/emit_context.h" #include "shader_recompiler/backend/glasm/emit_glasm_instructions.h" #include "shader_recompiler/frontend/ir/modifiers.h" #include "shader_recompiler/frontend/ir/value.h" namespace Shader::Backend::GLASM { namespace { struct ScopedRegister { ScopedRegister() = default; ScopedRegister(RegAlloc& reg_alloc_) : reg_alloc{®_alloc_}, reg{reg_alloc->AllocReg()} {} ~ScopedRegister() { if (reg_alloc) { reg_alloc->FreeReg(reg); } } ScopedRegister& operator=(ScopedRegister&& rhs) noexcept { if (reg_alloc) { reg_alloc->FreeReg(reg); } reg_alloc = std::exchange(rhs.reg_alloc, nullptr); reg = rhs.reg; return *this; } ScopedRegister(ScopedRegister&& rhs) noexcept : reg_alloc{std::exchange(rhs.reg_alloc, nullptr)}, reg{rhs.reg} {} ScopedRegister& operator=(const ScopedRegister&) = delete; ScopedRegister(const ScopedRegister&) = delete; RegAlloc* reg_alloc{}; Register reg; }; std::string Texture([[maybe_unused]] EmitContext& ctx, IR::TextureInstInfo info, [[maybe_unused]] const IR::Value& index) { // FIXME return fmt::format("texture[{}]", info.descriptor_index); } std::string_view TextureType(IR::TextureInstInfo info) { switch (info.type) { case TextureType::Color1D: return "1D"; case TextureType::ColorArray1D: return "ARRAY1D"; case TextureType::Color2D: return "2D"; case TextureType::ColorArray2D: return "ARRAY2D"; case TextureType::Color3D: return "3D"; case TextureType::ColorCube: return "CUBE"; case TextureType::ColorArrayCube: return "ARRAYCUBE"; case TextureType::Buffer: return "BUFFER"; } throw InvalidArgument("Invalid texture type {}", info.type.Value()); } std::string_view ShadowTextureType(IR::TextureInstInfo info) { switch (info.type) { case TextureType::Color1D: return "SHADOW1D"; case TextureType::ColorArray1D: return "SHADOWARRAY1D"; case TextureType::Color2D: return "SHADOW2D"; case TextureType::ColorArray2D: return "SHADOWARRAY2D"; case TextureType::Color3D: return "SHADOW3D"; case TextureType::ColorCube: return "SHADOWCUBE"; case TextureType::ColorArrayCube: return "SHADOWARRAYCUBE"; case TextureType::Buffer: return "SHADOWBUFFER"; } throw InvalidArgument("Invalid texture type {}", info.type.Value()); } std::string Offset(EmitContext& ctx, const IR::Value& offset) { if (offset.IsEmpty()) { return ""; } return fmt::format(",offset({})", Register{ctx.reg_alloc.Consume(offset)}); } std::pair AllocOffsetsRegs(EmitContext& ctx, const IR::Value& offset2) { if (offset2.IsEmpty()) { return {}; } else { return {ctx.reg_alloc, ctx.reg_alloc}; } } void SwizzleOffsets(EmitContext& ctx, Register off_x, Register off_y, const IR::Value& offset1, const IR::Value& offset2) { const Register offsets_a{ctx.reg_alloc.Consume(offset1)}; const Register offsets_b{ctx.reg_alloc.Consume(offset2)}; // Input swizzle: [XYXY] [XYXY] // Output swizzle: [XXXX] [YYYY] ctx.Add("MOV {}.x,{}.x;" "MOV {}.y,{}.z;" "MOV {}.z,{}.x;" "MOV {}.w,{}.z;" "MOV {}.x,{}.y;" "MOV {}.y,{}.w;" "MOV {}.z,{}.y;" "MOV {}.w,{}.w;", off_x, offsets_a, off_x, offsets_a, off_x, offsets_b, off_x, offsets_b, off_y, offsets_a, off_y, offsets_a, off_y, offsets_b, off_y, offsets_b); } std::pair Coord(EmitContext& ctx, const IR::Value& coord) { if (coord.IsImmediate()) { ScopedRegister scoped_reg(ctx.reg_alloc); return {fmt::to_string(scoped_reg.reg), std::move(scoped_reg)}; } std::string coord_vec{fmt::to_string(Register{ctx.reg_alloc.Consume(coord)})}; if (coord.InstRecursive()->HasUses()) { // Move non-dead coords to a separate register, although this should never happen because // vectors are only assembled for immediate texture instructions ctx.Add("MOV.F RC,{};", coord_vec); coord_vec = "RC"; } return {std::move(coord_vec), ScopedRegister{}}; } void StoreSparse(EmitContext& ctx, IR::Inst* sparse_inst) { if (!sparse_inst) { return; } const Register sparse_ret{ctx.reg_alloc.Define(*sparse_inst)}; ctx.Add("MOV.S {},-1;" "MOV.S {}(NONRESIDENT),0;", sparse_ret, sparse_ret); sparse_inst->Invalidate(); } } // Anonymous namespace void EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, const IR::Value& coord, Register bias_lc, const IR::Value& offset) { const auto info{inst.Flags()}; const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)}; const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""}; const std::string_view lod_clamp_mod{info.has_lod_clamp ? ".LODCLAMP" : ""}; const std::string_view type{TextureType(info)}; const std::string texture{Texture(ctx, info, index)}; const std::string offset_vec{Offset(ctx, offset)}; const auto [coord_vec, coord_alloc]{Coord(ctx, coord)}; const Register ret{ctx.reg_alloc.Define(inst)}; if (info.has_bias) { if (info.type == TextureType::ColorArrayCube) { ctx.Add("TXB.F{}{} {},{},{},{},ARRAYCUBE{};", lod_clamp_mod, sparse_mod, ret, coord_vec, bias_lc, texture, offset_vec); } else { if (info.has_lod_clamp) { ctx.Add("MOV.F {}.w,{}.x;" "TXB.F.LODCLAMP{} {},{},{}.y,{},{}{};", coord_vec, bias_lc, sparse_mod, ret, coord_vec, bias_lc, texture, type, offset_vec); } else { ctx.Add("MOV.F {}.w,{}.x;" "TXB.F{} {},{},{},{}{};", coord_vec, bias_lc, sparse_mod, ret, coord_vec, texture, type, offset_vec); } } } else { if (info.has_lod_clamp && info.type == TextureType::ColorArrayCube) { ctx.Add("TEX.F.LODCLAMP{} {},{},{},{},ARRAYCUBE{};", sparse_mod, ret, coord_vec, bias_lc, texture, offset_vec); } else { ctx.Add("TEX.F{}{} {},{},{},{}{};", lod_clamp_mod, sparse_mod, ret, coord_vec, texture, type, offset_vec); } } StoreSparse(ctx, sparse_inst); } void EmitImageSampleExplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, const IR::Value& coord, ScalarF32 lod, const IR::Value& offset) { const auto info{inst.Flags()}; const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)}; const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""}; const std::string_view type{TextureType(info)}; const std::string texture{Texture(ctx, info, index)}; const std::string offset_vec{Offset(ctx, offset)}; const auto [coord_vec, coord_alloc]{Coord(ctx, coord)}; const Register ret{ctx.reg_alloc.Define(inst)}; if (info.type == TextureType::ColorArrayCube) { ctx.Add("TXL.F{} {},{},{},{},ARRAYCUBE{};", sparse_mod, ret, coord_vec, lod, texture, offset_vec); } else { ctx.Add("MOV.F {}.w,{};" "TXL.F{} {},{},{},{}{};", coord_vec, lod, sparse_mod, ret, coord_vec, texture, type, offset_vec); } StoreSparse(ctx, sparse_inst); } void EmitImageSampleDrefImplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, const IR::Value& coord, ScalarF32 dref, Register bias_lc, const IR::Value& offset) { const auto info{inst.Flags()}; const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)}; const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""}; const std::string_view type{ShadowTextureType(info)}; const std::string texture{Texture(ctx, info, index)}; const std::string offset_vec{Offset(ctx, offset)}; const auto [coord_vec, coord_alloc]{Coord(ctx, coord)}; const Register ret{ctx.reg_alloc.Define(inst)}; if (info.has_bias) { if (info.has_lod_clamp) { switch (info.type) { case TextureType::Color1D: case TextureType::ColorArray1D: case TextureType::Color2D: ctx.Add("MOV.F {}.z,{};" "MOV.F {}.w,{}.x;" "TXB.F.LODCLAMP{} {},{},{}.y,{},{}{};", coord_vec, dref, coord_vec, bias_lc, sparse_mod, ret, coord_vec, bias_lc, texture, type, offset_vec); break; case TextureType::ColorArray2D: case TextureType::ColorCube: ctx.Add("MOV.F {}.w,{};" "TXB.F.LODCLAMP{} {},{},{},{},{}{};", coord_vec, dref, sparse_mod, ret, coord_vec, bias_lc, texture, type, offset_vec); break; default: throw NotImplementedException("Invalid type {} with bias and lod clamp", info.type.Value()); } } else { switch (info.type) { case TextureType::Color1D: case TextureType::ColorArray1D: case TextureType::Color2D: ctx.Add("MOV.F {}.z,{};" "MOV.F {}.w,{}.x;" "TXB.F{} {},{},{},{}{};", coord_vec, dref, coord_vec, bias_lc, sparse_mod, ret, coord_vec, texture, type, offset_vec); break; case TextureType::ColorArray2D: case TextureType::ColorCube: ctx.Add("MOV.F {}.w,{};" "TXB.F{} {},{},{},{},{}{};", coord_vec, dref, sparse_mod, ret, coord_vec, bias_lc, texture, type, offset_vec); break; case TextureType::ColorArrayCube: { const ScopedRegister pair{ctx.reg_alloc}; ctx.Add("MOV.F {}.x,{};" "MOV.F {}.y,{}.x;" "TXB.F{} {},{},{},{},{}{};", pair.reg, dref, pair.reg, bias_lc, sparse_mod, ret, coord_vec, pair.reg, texture, type, offset_vec); break; } default: throw NotImplementedException("Invalid type {}", info.type.Value()); } } } else { if (info.has_lod_clamp) { if (info.type != TextureType::ColorArrayCube) { const bool w_swizzle{info.type == TextureType::ColorArray2D || info.type == TextureType::ColorCube}; const char dref_swizzle{w_swizzle ? 'w' : 'z'}; ctx.Add("MOV.F {}.{},{};" "TEX.F.LODCLAMP{} {},{},{},{},{}{};", coord_vec, dref_swizzle, dref, sparse_mod, ret, coord_vec, bias_lc, texture, type, offset_vec); } else { const ScopedRegister pair{ctx.reg_alloc}; ctx.Add("MOV.F {}.x,{};" "MOV.F {}.y,{};" "TEX.F.LODCLAMP{} {},{},{},{},{}{};", pair.reg, dref, pair.reg, bias_lc, sparse_mod, ret, coord_vec, pair.reg, texture, type, offset_vec); } } else { if (info.type != TextureType::ColorArrayCube) { const bool w_swizzle{info.type == TextureType::ColorArray2D || info.type == TextureType::ColorCube}; const char dref_swizzle{w_swizzle ? 'w' : 'z'}; ctx.Add("MOV.F {}.{},{};" "TEX.F{} {},{},{},{}{};", coord_vec, dref_swizzle, dref, sparse_mod, ret, coord_vec, texture, type, offset_vec); } else { const ScopedRegister pair{ctx.reg_alloc}; ctx.Add("TEX.F{} {},{},{},{},{}{};", sparse_mod, ret, coord_vec, dref, texture, type, offset_vec); } } } StoreSparse(ctx, sparse_inst); } void EmitImageSampleDrefExplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, const IR::Value& coord, ScalarF32 dref, ScalarF32 lod, const IR::Value& offset) { const auto info{inst.Flags()}; const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)}; const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""}; const std::string_view type{ShadowTextureType(info)}; const std::string texture{Texture(ctx, info, index)}; const std::string offset_vec{Offset(ctx, offset)}; const auto [coord_vec, coord_alloc]{Coord(ctx, coord)}; const Register ret{ctx.reg_alloc.Define(inst)}; switch (info.type) { case TextureType::Color1D: case TextureType::ColorArray1D: case TextureType::Color2D: ctx.Add("MOV.F {}.z,{};" "MOV.F {}.w,{};" "TXL.F{} {},{},{},{}{};", coord_vec, dref, coord_vec, lod, sparse_mod, ret, coord_vec, texture, type, offset_vec); break; case TextureType::ColorArray2D: case TextureType::ColorCube: ctx.Add("MOV.F {}.w,{};" "TXL.F{} {},{},{},{},{}{};", coord_vec, dref, sparse_mod, ret, coord_vec, lod, texture, type, offset_vec); break; case TextureType::ColorArrayCube: { const ScopedRegister pair{ctx.reg_alloc}; ctx.Add("MOV.F {}.x,{};" "MOV.F {}.y,{};" "TXL.F{} {},{},{},{},{}{};", pair.reg, dref, pair.reg, lod, sparse_mod, ret, coord_vec, pair.reg, texture, type, offset_vec); break; } default: throw NotImplementedException("Invalid type {}", info.type.Value()); } StoreSparse(ctx, sparse_inst); } void EmitImageGather(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, const IR::Value& coord, const IR::Value& offset, const IR::Value& offset2) { // Allocate offsets early so they don't overwrite any consumed register const auto [off_x, off_y]{AllocOffsetsRegs(ctx, offset2)}; const auto info{inst.Flags()}; const char comp{"xyzw"[info.gather_component]}; const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)}; const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""}; const std::string_view type{TextureType(info)}; const std::string texture{Texture(ctx, info, index)}; const Register coord_vec{ctx.reg_alloc.Consume(coord)}; const Register ret{ctx.reg_alloc.Define(inst)}; if (offset2.IsEmpty()) { const std::string offset_vec{Offset(ctx, offset)}; ctx.Add("TXG.F{} {},{},{}.{},{}{};", sparse_mod, ret, coord_vec, texture, comp, type, offset_vec); } else { SwizzleOffsets(ctx, off_x.reg, off_y.reg, offset, offset2); ctx.Add("TXGO.F{} {},{},{},{},{}.{},{};", sparse_mod, ret, coord_vec, off_x.reg, off_y.reg, texture, comp, type); } StoreSparse(ctx, sparse_inst); } void EmitImageGatherDref(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, const IR::Value& coord, const IR::Value& offset, const IR::Value& offset2, const IR::Value& dref) { // FIXME: This instruction is not working as expected // Allocate offsets early so they don't overwrite any consumed register const auto [off_x, off_y]{AllocOffsetsRegs(ctx, offset2)}; const auto info{inst.Flags()}; const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)}; const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""}; const std::string_view type{ShadowTextureType(info)}; const std::string texture{Texture(ctx, info, index)}; const Register coord_vec{ctx.reg_alloc.Consume(coord)}; const ScalarF32 dref_value{ctx.reg_alloc.Consume(dref)}; const Register ret{ctx.reg_alloc.Define(inst)}; std::string args; switch (info.type) { case TextureType::Color2D: ctx.Add("MOV.F {}.z,{};", coord_vec, dref_value); args = fmt::to_string(coord_vec); break; case TextureType::ColorArray2D: case TextureType::ColorCube: ctx.Add("MOV.F {}.w,{};", coord_vec, dref_value); args = fmt::to_string(coord_vec); break; case TextureType::ColorArrayCube: args = fmt::format("{},{}", coord_vec, dref_value); break; default: throw NotImplementedException("Invalid type {}", info.type.Value()); } if (offset2.IsEmpty()) { const std::string offset_vec{Offset(ctx, offset)}; ctx.Add("TXG.F{} {},{},{},{}{};", sparse_mod, ret, args, texture, type, offset_vec); } else { SwizzleOffsets(ctx, off_x.reg, off_y.reg, offset, offset2); ctx.Add("TXGO.F{} {},{},{},{},{},{};", sparse_mod, ret, args, off_x.reg, off_y.reg, texture, type); } StoreSparse(ctx, sparse_inst); } void EmitImageFetch([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst, [[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register coord, [[maybe_unused]] Register offset, [[maybe_unused]] Register lod, [[maybe_unused]] Register ms) { throw NotImplementedException("GLASM instruction"); } void EmitImageQueryDimensions([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst, [[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register lod) { throw NotImplementedException("GLASM instruction"); } void EmitImageQueryLod([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst, [[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register coord) { throw NotImplementedException("GLASM instruction"); } void EmitImageGradient([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst, [[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register coord, [[maybe_unused]] Register derivates, [[maybe_unused]] Register offset, [[maybe_unused]] Register lod_clamp) { throw NotImplementedException("GLASM instruction"); } void EmitImageRead([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst, [[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register coord) { throw NotImplementedException("GLASM instruction"); } void EmitImageWrite([[maybe_unused]] EmitContext& ctx, [[maybe_unused]] IR::Inst& inst, [[maybe_unused]] const IR::Value& index, [[maybe_unused]] Register coord, [[maybe_unused]] Register color) { throw NotImplementedException("GLASM instruction"); } void EmitBindlessImageSampleImplicitLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageSampleExplicitLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageSampleDrefImplicitLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageSampleDrefExplicitLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageGather(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageGatherDref(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageFetch(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageQueryDimensions(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageQueryLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageGradient(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageRead(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBindlessImageWrite(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageSampleImplicitLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageSampleExplicitLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageSampleDrefImplicitLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageSampleDrefExplicitLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageGather(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageGatherDref(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageFetch(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageQueryDimensions(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageQueryLod(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageGradient(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageRead(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitBoundImageWrite(EmitContext&) { throw LogicError("Unreachable instruction"); } } // namespace Shader::Backend::GLASM