#include "input_common/motion_input.h" namespace InputCommon { MotionInput::MotionInput(f32 new_kp, f32 new_ki, f32 new_kd) : kp(new_kp), ki(new_ki), kd(new_kd), quat{{0, 0, -1}, 0} {} void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) { accel = acceleration; } void MotionInput::SetGyroscope(const Common::Vec3f& gyroscope) { gyro = gyroscope - gyro_drift; if (gyro.Length2() < gyro_threshold) { gyro = {}; } } void MotionInput::SetQuaternion(const Common::Quaternion& quaternion) { quat = quaternion; } void MotionInput::SetGyroDrift(const Common::Vec3f& drift) { gyro_drift = drift; } void MotionInput::SetGyroThreshold(f32 threshold) { gyro_threshold = threshold; } void MotionInput::EnableReset(bool reset) { reset_enabled = reset; } void MotionInput::ResetRotations() { rotations = {}; } bool MotionInput::IsMoving(f32 sensitivity) const { return gyro.Length2() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f; } bool MotionInput::IsCalibrated(f32 sensitivity) const { return real_error.Length() > sensitivity; } void MotionInput::UpdateRotation(u64 elapsed_time) { rotations += gyro * elapsed_time; } void MotionInput::UpdateOrientation(u64 elapsed_time) { // Short name local variable for readability f32 q1 = quat.w; f32 q2 = quat.xyz[0]; f32 q3 = quat.xyz[1]; f32 q4 = quat.xyz[2]; const f32 sample_period = elapsed_time / 1000000.0f; const auto normal_accel = accel.Normalized(); auto rad_gyro = gyro * 3.1415926535f; rad_gyro.z = -rad_gyro.z; // Ignore drift correction if acceleration is not present if (normal_accel.Length() == 1.0f) { const f32 ax = -normal_accel.x; const f32 ay = normal_accel.y; const f32 az = -normal_accel.z; // Estimated direction of gravity const f32 vx = 2.0f * (q2 * q4 - q1 * q3); const f32 vy = 2.0f * (q1 * q2 + q3 * q4); const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4; // Error is cross product between estimated direction and measured direction of gravity const Common::Vec3f new_real_error = {ay * vz - az * vy, az * vx - ax * vz, ax * vy - ay * vx}; derivative_error = new_real_error - real_error; real_error = new_real_error; // Prevent integral windup if (ki != 0.0f) { integral_error += real_error; } else { integral_error = {}; } // Apply feedback terms rad_gyro += kp * real_error; rad_gyro += ki * integral_error; rad_gyro += kd * derivative_error; } const f32 gx = rad_gyro.y; const f32 gy = rad_gyro.x; const f32 gz = rad_gyro.z; // Integrate rate of change of quaternion const f32 pa = q2; const f32 pb = q3; const f32 pc = q4; q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period); q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period); q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period); q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period); quat.w = q1; quat.xyz[0] = q2; quat.xyz[1] = q3; quat.xyz[2] = q4; quat = quat.Normalized(); } std::array MotionInput::GetOrientation() const { const Common::Quaternion quad{.xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w}, .w = -quat.xyz[2]}; const std::array matrix4x4 = quad.ToMatrix(); return {Common::Vec3f(matrix4x4[0], matrix4x4[1], matrix4x4[2]), Common::Vec3f(matrix4x4[4], matrix4x4[5], matrix4x4[6]), Common::Vec3f(matrix4x4[8], matrix4x4[9], matrix4x4[10])}; } Common::Vec3f MotionInput::GetAcceleration() const { return accel; } Common::Vec3f MotionInput::GetGyroscope() const { return gyro; } Common::Quaternion MotionInput::GetQuaternion() const { return quat; } Common::Vec3f MotionInput::GetRotations() const { return rotations; } void MotionInput::ResetOrientation() { if (!reset_enabled) { return; } if (!IsMoving(0.5f) && accel.z <= -0.9f) { ++reset_counter; if (reset_counter > 900) { // TODO: calculate quaternion from gravity vector quat.w = 0; quat.xyz[0] = 0; quat.xyz[1] = 0; quat.xyz[2] = -1; integral_error = {}; reset_counter = 0; } } else { reset_counter = 0; } } } // namespace InputCommon