// Copyright 2014 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4200) // nonstandard extension used : zero-sized array in struct/union #endif #include #ifdef _MSC_VER #pragma warning(pop) #endif #include "common/logging/log.h" #include "common/param_package.h" #include "input_common/gcadapter/gc_adapter.h" #include "input_common/settings.h" namespace GCAdapter { /// Used to loop through and assign button in poller constexpr std::array PadButtonArray{ PadButton::PAD_BUTTON_LEFT, PadButton::PAD_BUTTON_RIGHT, PadButton::PAD_BUTTON_DOWN, PadButton::PAD_BUTTON_UP, PadButton::PAD_TRIGGER_Z, PadButton::PAD_TRIGGER_R, PadButton::PAD_TRIGGER_L, PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B, PadButton::PAD_BUTTON_X, PadButton::PAD_BUTTON_Y, PadButton::PAD_BUTTON_START, }; Adapter::Adapter() { if (usb_adapter_handle != nullptr) { return; } LOG_INFO(Input, "GC Adapter Initialization started"); const int init_res = libusb_init(&libusb_ctx); if (init_res == LIBUSB_SUCCESS) { Setup(); } else { LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res); } } GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array& adapter_payload) { GCPadStatus pad = {}; const std::size_t offset = 1 + (9 * port); adapter_controllers_status[port] = static_cast(adapter_payload[offset] >> 4); static constexpr std::array b1_buttons{ PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B, PadButton::PAD_BUTTON_X, PadButton::PAD_BUTTON_Y, PadButton::PAD_BUTTON_LEFT, PadButton::PAD_BUTTON_RIGHT, PadButton::PAD_BUTTON_DOWN, PadButton::PAD_BUTTON_UP, }; static constexpr std::array b2_buttons{ PadButton::PAD_BUTTON_START, PadButton::PAD_TRIGGER_Z, PadButton::PAD_TRIGGER_R, PadButton::PAD_TRIGGER_L, }; static constexpr std::array axes{ PadAxes::StickX, PadAxes::StickY, PadAxes::SubstickX, PadAxes::SubstickY, PadAxes::TriggerLeft, PadAxes::TriggerRight, }; if (adapter_controllers_status[port] == ControllerTypes::None && !get_origin[port]) { // Controller may have been disconnected, recalibrate if reconnected. get_origin[port] = true; } if (adapter_controllers_status[port] != ControllerTypes::None) { const u8 b1 = adapter_payload[offset + 1]; const u8 b2 = adapter_payload[offset + 2]; for (std::size_t i = 0; i < b1_buttons.size(); ++i) { if ((b1 & (1U << i)) != 0) { pad.button |= static_cast(b1_buttons[i]); } } for (std::size_t j = 0; j < b2_buttons.size(); ++j) { if ((b2 & (1U << j)) != 0) { pad.button |= static_cast(b2_buttons[j]); } } for (PadAxes axis : axes) { const std::size_t index = static_cast(axis); pad.axis_values[index] = adapter_payload[offset + 3 + index]; } if (get_origin[port]) { origin_status[port].axis_values = pad.axis_values; get_origin[port] = false; } } return pad; } void Adapter::PadToState(const GCPadStatus& pad, GCState& state) { for (const auto& button : PadButtonArray) { const u16 button_value = static_cast(button); state.buttons.insert_or_assign(button_value, pad.button & button_value); } for (size_t i = 0; i < pad.axis_values.size(); ++i) { state.axes.insert_or_assign(static_cast(i), pad.axis_values[i]); } } void Adapter::Read() { LOG_DEBUG(Input, "GC Adapter Read() thread started"); int payload_size; std::array adapter_payload; std::array pads; while (adapter_thread_running) { libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(), sizeof(adapter_payload), &payload_size, 16); if (payload_size != sizeof(adapter_payload) || adapter_payload[0] != LIBUSB_DT_HID) { LOG_ERROR(Input, "Error reading payload (size: {}, type: {:02x}) Is the adapter connected?", payload_size, adapter_payload[0]); adapter_thread_running = false; // error reading from adapter, stop reading. break; } for (std::size_t port = 0; port < pads.size(); ++port) { pads[port] = GetPadStatus(port, adapter_payload); if (DeviceConnected(port) && configuring) { if (pads[port].button != 0) { pad_queue[port].Push(pads[port]); } // Accounting for a threshold here to ensure an intentional press for (size_t i = 0; i < pads[port].axis_values.size(); ++i) { const u8 value = pads[port].axis_values[i]; const u8 origin = origin_status[port].axis_values[i]; if (value > origin + pads[port].THRESHOLD || value < origin - pads[port].THRESHOLD) { pads[port].axis = static_cast(i); pads[port].axis_value = pads[port].axis_values[i]; pad_queue[port].Push(pads[port]); } } } PadToState(pads[port], state[port]); } std::this_thread::yield(); } } void Adapter::Setup() { // Initialize all controllers as unplugged adapter_controllers_status.fill(ControllerTypes::None); // Initialize all ports to store axis origin values get_origin.fill(true); // pointer to list of connected usb devices libusb_device** devices{}; // populate the list of devices, get the count const ssize_t device_count = libusb_get_device_list(libusb_ctx, &devices); if (device_count < 0) { LOG_ERROR(Input, "libusb_get_device_list failed with error: {}", device_count); return; } if (devices != nullptr) { for (std::size_t index = 0; index < static_cast(device_count); ++index) { if (CheckDeviceAccess(devices[index])) { // GC Adapter found and accessible, registering it GetGCEndpoint(devices[index]); break; } } libusb_free_device_list(devices, 1); } } bool Adapter::CheckDeviceAccess(libusb_device* device) { libusb_device_descriptor desc; const int get_descriptor_error = libusb_get_device_descriptor(device, &desc); if (get_descriptor_error) { // could not acquire the descriptor, no point in trying to use it. LOG_ERROR(Input, "libusb_get_device_descriptor failed with error: {}", get_descriptor_error); return false; } if (desc.idVendor != 0x057e || desc.idProduct != 0x0337) { // This isn't the device we are looking for. return false; } const int open_error = libusb_open(device, &usb_adapter_handle); if (open_error == LIBUSB_ERROR_ACCESS) { LOG_ERROR(Input, "Yuzu can not gain access to this device: ID {:04X}:{:04X}.", desc.idVendor, desc.idProduct); return false; } if (open_error) { LOG_ERROR(Input, "libusb_open failed to open device with error = {}", open_error); return false; } int kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0); if (kernel_driver_error == 1) { kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle, 0); if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) { LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = {}", kernel_driver_error); } } if (kernel_driver_error && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) { libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; return false; } const int interface_claim_error = libusb_claim_interface(usb_adapter_handle, 0); if (interface_claim_error) { LOG_ERROR(Input, "libusb_claim_interface failed with error = {}", interface_claim_error); libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; return false; } return true; } void Adapter::GetGCEndpoint(libusb_device* device) { libusb_config_descriptor* config = nullptr; const int config_descriptor_return = libusb_get_config_descriptor(device, 0, &config); if (config_descriptor_return != LIBUSB_SUCCESS) { LOG_ERROR(Input, "libusb_get_config_descriptor failed with error = {}", config_descriptor_return); return; } for (u8 ic = 0; ic < config->bNumInterfaces; ic++) { const libusb_interface* interfaceContainer = &config->interface[ic]; for (int i = 0; i < interfaceContainer->num_altsetting; i++) { const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i]; for (u8 e = 0; e < interface->bNumEndpoints; e++) { const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e]; if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) { input_endpoint = endpoint->bEndpointAddress; } else { output_endpoint = endpoint->bEndpointAddress; } } } } // This transfer seems to be responsible for clearing the state of the adapter // Used to clear the "busy" state of when the device is unexpectedly unplugged unsigned char clear_payload = 0x13; libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, &clear_payload, sizeof(clear_payload), nullptr, 16); adapter_thread_running = true; adapter_input_thread = std::thread(&Adapter::Read, this); } Adapter::~Adapter() { Reset(); } void Adapter::Reset() { if (adapter_thread_running) { adapter_thread_running = false; } if (adapter_input_thread.joinable()) { adapter_input_thread.join(); } adapter_controllers_status.fill(ControllerTypes::None); get_origin.fill(true); if (usb_adapter_handle) { libusb_release_interface(usb_adapter_handle, 1); libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; } if (libusb_ctx) { libusb_exit(libusb_ctx); } } std::vector Adapter::GetInputDevices() const { std::vector devices; for (std::size_t port = 0; port < state.size(); ++port) { if (!DeviceConnected(port)) { continue; } std::string name = fmt::format("Gamecube Controller {}", port); devices.emplace_back(Common::ParamPackage{ {"class", "gcpad"}, {"display", std::move(name)}, {"port", std::to_string(port)}, }); } return devices; } InputCommon::ButtonMapping Adapter::GetButtonMappingForDevice( const Common::ParamPackage& params) const { // This list is missing ZL/ZR since those are not considered buttons. // We will add those afterwards // This list also excludes any button that can't be really mapped static constexpr std::array, 12> switch_to_gcadapter_button = { std::pair{Settings::NativeButton::A, PadButton::PAD_BUTTON_A}, {Settings::NativeButton::B, PadButton::PAD_BUTTON_B}, {Settings::NativeButton::X, PadButton::PAD_BUTTON_X}, {Settings::NativeButton::Y, PadButton::PAD_BUTTON_Y}, {Settings::NativeButton::Plus, PadButton::PAD_BUTTON_START}, {Settings::NativeButton::DLeft, PadButton::PAD_BUTTON_LEFT}, {Settings::NativeButton::DUp, PadButton::PAD_BUTTON_UP}, {Settings::NativeButton::DRight, PadButton::PAD_BUTTON_RIGHT}, {Settings::NativeButton::DDown, PadButton::PAD_BUTTON_DOWN}, {Settings::NativeButton::SL, PadButton::PAD_TRIGGER_L}, {Settings::NativeButton::SR, PadButton::PAD_TRIGGER_R}, {Settings::NativeButton::R, PadButton::PAD_TRIGGER_Z}, }; if (!params.Has("port")) { return {}; } InputCommon::ButtonMapping mapping{}; for (const auto& [switch_button, gcadapter_button] : switch_to_gcadapter_button) { Common::ParamPackage button_params({{"engine", "gcpad"}}); button_params.Set("port", params.Get("port", 0)); button_params.Set("button", static_cast(gcadapter_button)); mapping.insert_or_assign(switch_button, std::move(button_params)); } // Add the missing bindings for ZL/ZR static constexpr std::array, 2> switch_to_gcadapter_axis = { std::pair{Settings::NativeButton::ZL, PadAxes::TriggerLeft}, {Settings::NativeButton::ZR, PadAxes::TriggerRight}, }; for (const auto& [switch_button, gcadapter_axis] : switch_to_gcadapter_axis) { Common::ParamPackage button_params({{"engine", "gcpad"}}); button_params.Set("port", params.Get("port", 0)); button_params.Set("button", static_cast(PadButton::PAD_STICK)); button_params.Set("axis", static_cast(gcadapter_axis)); mapping.insert_or_assign(switch_button, std::move(button_params)); } return mapping; } InputCommon::AnalogMapping Adapter::GetAnalogMappingForDevice( const Common::ParamPackage& params) const { if (!params.Has("port")) { return {}; } InputCommon::AnalogMapping mapping = {}; Common::ParamPackage left_analog_params; left_analog_params.Set("engine", "gcpad"); left_analog_params.Set("port", params.Get("port", 0)); left_analog_params.Set("axis_x", static_cast(PadAxes::StickX)); left_analog_params.Set("axis_y", static_cast(PadAxes::StickY)); mapping.insert_or_assign(Settings::NativeAnalog::LStick, std::move(left_analog_params)); Common::ParamPackage right_analog_params; right_analog_params.Set("engine", "gcpad"); right_analog_params.Set("port", params.Get("port", 0)); right_analog_params.Set("axis_x", static_cast(PadAxes::SubstickX)); right_analog_params.Set("axis_y", static_cast(PadAxes::SubstickY)); mapping.insert_or_assign(Settings::NativeAnalog::RStick, std::move(right_analog_params)); return mapping; } bool Adapter::DeviceConnected(std::size_t port) const { return adapter_controllers_status[port] != ControllerTypes::None; } void Adapter::ResetDeviceType(std::size_t port) { adapter_controllers_status[port] = ControllerTypes::None; } void Adapter::BeginConfiguration() { get_origin.fill(true); for (auto& pq : pad_queue) { pq.Clear(); } configuring = true; } void Adapter::EndConfiguration() { for (auto& pq : pad_queue) { pq.Clear(); } configuring = false; } std::array, 4>& Adapter::GetPadQueue() { return pad_queue; } const std::array, 4>& Adapter::GetPadQueue() const { return pad_queue; } std::array& Adapter::GetPadState() { return state; } const std::array& Adapter::GetPadState() const { return state; } int Adapter::GetOriginValue(int port, int axis) const { return origin_status[port].axis_values[axis]; } } // namespace GCAdapter