// Copyright 2014 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include "common/logging/log.h" #include "common/param_package.h" #include "common/settings_input.h" #include "input_common/gcadapter/gc_adapter.h" namespace GCAdapter { Adapter::Adapter() { if (usb_adapter_handle != nullptr) { return; } LOG_INFO(Input, "GC Adapter Initialization started"); const int init_res = libusb_init(&libusb_ctx); if (init_res == LIBUSB_SUCCESS) { adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this); } else { LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res); } } Adapter::~Adapter() { Reset(); } void Adapter::AdapterInputThread() { LOG_DEBUG(Input, "GC Adapter input thread started"); s32 payload_size{}; AdapterPayload adapter_payload{}; if (adapter_scan_thread.joinable()) { adapter_scan_thread.join(); } while (adapter_input_thread_running) { libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(), static_cast(adapter_payload.size()), &payload_size, 16); if (IsPayloadCorrect(adapter_payload, payload_size)) { UpdateControllers(adapter_payload); UpdateVibrations(); } std::this_thread::yield(); } if (restart_scan_thread) { adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this); restart_scan_thread = false; } } bool Adapter::IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size) { if (payload_size != static_cast(adapter_payload.size()) || adapter_payload[0] != LIBUSB_DT_HID) { LOG_DEBUG(Input, "Error reading payload (size: {}, type: {:02x})", payload_size, adapter_payload[0]); if (input_error_counter++ > 20) { LOG_ERROR(Input, "GC adapter timeout, Is the adapter connected?"); adapter_input_thread_running = false; restart_scan_thread = true; } return false; } input_error_counter = 0; return true; } void Adapter::UpdateControllers(const AdapterPayload& adapter_payload) { for (std::size_t port = 0; port < pads.size(); ++port) { const std::size_t offset = 1 + (9 * port); const auto type = static_cast(adapter_payload[offset] >> 4); UpdatePadType(port, type); if (DeviceConnected(port)) { const u8 b1 = adapter_payload[offset + 1]; const u8 b2 = adapter_payload[offset + 2]; UpdateStateButtons(port, b1, b2); UpdateStateAxes(port, adapter_payload); if (configuring) { UpdateYuzuSettings(port); } } } } void Adapter::UpdatePadType(std::size_t port, ControllerTypes pad_type) { if (pads[port].type == pad_type) { return; } // Device changed reset device and set new type ResetDevice(port); pads[port].type = pad_type; } void Adapter::UpdateStateButtons(std::size_t port, u8 b1, u8 b2) { if (port >= pads.size()) { return; } static constexpr std::array b1_buttons{ PadButton::ButtonA, PadButton::ButtonB, PadButton::ButtonX, PadButton::ButtonY, PadButton::ButtonLeft, PadButton::ButtonRight, PadButton::ButtonDown, PadButton::ButtonUp, }; static constexpr std::array b2_buttons{ PadButton::ButtonStart, PadButton::TriggerZ, PadButton::TriggerR, PadButton::TriggerL, }; pads[port].buttons = 0; for (std::size_t i = 0; i < b1_buttons.size(); ++i) { if ((b1 & (1U << i)) != 0) { pads[port].buttons = static_cast(pads[port].buttons | static_cast(b1_buttons[i])); pads[port].last_button = b1_buttons[i]; } } for (std::size_t j = 0; j < b2_buttons.size(); ++j) { if ((b2 & (1U << j)) != 0) { pads[port].buttons = static_cast(pads[port].buttons | static_cast(b2_buttons[j])); pads[port].last_button = b2_buttons[j]; } } } void Adapter::UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload) { if (port >= pads.size()) { return; } const std::size_t offset = 1 + (9 * port); static constexpr std::array axes{ PadAxes::StickX, PadAxes::StickY, PadAxes::SubstickX, PadAxes::SubstickY, PadAxes::TriggerLeft, PadAxes::TriggerRight, }; for (const PadAxes axis : axes) { const auto index = static_cast(axis); const u8 axis_value = adapter_payload[offset + 3 + index]; if (pads[port].reset_origin_counter <= 18) { if (pads[port].axis_origin[index] != axis_value) { pads[port].reset_origin_counter = 0; } pads[port].axis_origin[index] = axis_value; pads[port].reset_origin_counter++; } pads[port].axis_values[index] = static_cast(axis_value - pads[port].axis_origin[index]); } } void Adapter::UpdateYuzuSettings(std::size_t port) { if (port >= pads.size()) { return; } constexpr u8 axis_threshold = 50; GCPadStatus pad_status = {.port = port}; if (pads[port].buttons != 0) { pad_status.button = pads[port].last_button; pad_queue.Push(pad_status); } // Accounting for a threshold here to ensure an intentional press for (std::size_t i = 0; i < pads[port].axis_values.size(); ++i) { const s16 value = pads[port].axis_values[i]; if (value > axis_threshold || value < -axis_threshold) { pad_status.axis = static_cast(i); pad_status.axis_value = value; pad_status.axis_threshold = axis_threshold; pad_queue.Push(pad_status); } } } void Adapter::UpdateVibrations() { // Use 8 states to keep the switching between on/off fast enough for // a human to not notice the difference between switching from on/off // More states = more rumble strengths = slower update time constexpr u8 vibration_states = 8; vibration_counter = (vibration_counter + 1) % vibration_states; for (GCController& pad : pads) { const bool vibrate = pad.rumble_amplitude > vibration_counter; vibration_changed |= vibrate != pad.enable_vibration; pad.enable_vibration = vibrate; } SendVibrations(); } void Adapter::SendVibrations() { if (!rumble_enabled || !vibration_changed) { return; } s32 size{}; constexpr u8 rumble_command = 0x11; const u8 p1 = pads[0].enable_vibration; const u8 p2 = pads[1].enable_vibration; const u8 p3 = pads[2].enable_vibration; const u8 p4 = pads[3].enable_vibration; std::array payload = {rumble_command, p1, p2, p3, p4}; const int err = libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, payload.data(), static_cast(payload.size()), &size, 16); if (err) { LOG_DEBUG(Input, "Adapter libusb write failed: {}", libusb_error_name(err)); if (output_error_counter++ > 5) { LOG_ERROR(Input, "GC adapter output timeout, Rumble disabled"); rumble_enabled = false; } return; } output_error_counter = 0; vibration_changed = false; } bool Adapter::RumblePlay(std::size_t port, u8 amplitude) { pads[port].rumble_amplitude = amplitude; return rumble_enabled; } void Adapter::AdapterScanThread() { adapter_scan_thread_running = true; adapter_input_thread_running = false; if (adapter_input_thread.joinable()) { adapter_input_thread.join(); } ClearLibusbHandle(); ResetDevices(); while (adapter_scan_thread_running && !adapter_input_thread_running) { Setup(); std::this_thread::sleep_for(std::chrono::seconds(1)); } } void Adapter::Setup() { usb_adapter_handle = libusb_open_device_with_vid_pid(libusb_ctx, 0x057e, 0x0337); if (usb_adapter_handle == NULL) { return; } if (!CheckDeviceAccess()) { ClearLibusbHandle(); return; } libusb_device* device = libusb_get_device(usb_adapter_handle); LOG_INFO(Input, "GC adapter is now connected"); // GC Adapter found and accessible, registering it if (GetGCEndpoint(device)) { adapter_scan_thread_running = false; adapter_input_thread_running = true; rumble_enabled = true; input_error_counter = 0; output_error_counter = 0; adapter_input_thread = std::thread(&Adapter::AdapterInputThread, this); } } bool Adapter::CheckDeviceAccess() { // This fixes payload problems from offbrand GCAdapters const s32 control_transfer_error = libusb_control_transfer(usb_adapter_handle, 0x21, 11, 0x0001, 0, nullptr, 0, 1000); if (control_transfer_error < 0) { LOG_ERROR(Input, "libusb_control_transfer failed with error= {}", control_transfer_error); } s32 kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0); if (kernel_driver_error == 1) { kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle, 0); if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) { LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = {}", kernel_driver_error); } } if (kernel_driver_error && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) { libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; return false; } const int interface_claim_error = libusb_claim_interface(usb_adapter_handle, 0); if (interface_claim_error) { LOG_ERROR(Input, "libusb_claim_interface failed with error = {}", interface_claim_error); libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; return false; } return true; } bool Adapter::GetGCEndpoint(libusb_device* device) { libusb_config_descriptor* config = nullptr; const int config_descriptor_return = libusb_get_config_descriptor(device, 0, &config); if (config_descriptor_return != LIBUSB_SUCCESS) { LOG_ERROR(Input, "libusb_get_config_descriptor failed with error = {}", config_descriptor_return); return false; } for (u8 ic = 0; ic < config->bNumInterfaces; ic++) { const libusb_interface* interfaceContainer = &config->interface[ic]; for (int i = 0; i < interfaceContainer->num_altsetting; i++) { const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i]; for (u8 e = 0; e < interface->bNumEndpoints; e++) { const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e]; if ((endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) != 0) { input_endpoint = endpoint->bEndpointAddress; } else { output_endpoint = endpoint->bEndpointAddress; } } } } // This transfer seems to be responsible for clearing the state of the adapter // Used to clear the "busy" state of when the device is unexpectedly unplugged unsigned char clear_payload = 0x13; libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, &clear_payload, sizeof(clear_payload), nullptr, 16); return true; } void Adapter::JoinThreads() { restart_scan_thread = false; adapter_input_thread_running = false; adapter_scan_thread_running = false; if (adapter_scan_thread.joinable()) { adapter_scan_thread.join(); } if (adapter_input_thread.joinable()) { adapter_input_thread.join(); } } void Adapter::ClearLibusbHandle() { if (usb_adapter_handle) { libusb_release_interface(usb_adapter_handle, 1); libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; } } void Adapter::ResetDevices() { for (std::size_t i = 0; i < pads.size(); ++i) { ResetDevice(i); } } void Adapter::ResetDevice(std::size_t port) { pads[port].type = ControllerTypes::None; pads[port].enable_vibration = false; pads[port].rumble_amplitude = 0; pads[port].buttons = 0; pads[port].last_button = PadButton::Undefined; pads[port].axis_values.fill(0); pads[port].reset_origin_counter = 0; } void Adapter::Reset() { JoinThreads(); ClearLibusbHandle(); ResetDevices(); if (libusb_ctx) { libusb_exit(libusb_ctx); } } std::vector Adapter::GetInputDevices() const { std::vector devices; for (std::size_t port = 0; port < pads.size(); ++port) { if (!DeviceConnected(port)) { continue; } std::string name = fmt::format("Gamecube Controller {}", port + 1); devices.emplace_back(Common::ParamPackage{ {"class", "gcpad"}, {"display", std::move(name)}, {"port", std::to_string(port)}, }); } return devices; } InputCommon::ButtonMapping Adapter::GetButtonMappingForDevice( const Common::ParamPackage& params) const { // This list is missing ZL/ZR since those are not considered buttons. // We will add those afterwards // This list also excludes any button that can't be really mapped static constexpr std::array, 12> switch_to_gcadapter_button = { std::pair{Settings::NativeButton::A, PadButton::ButtonA}, {Settings::NativeButton::B, PadButton::ButtonB}, {Settings::NativeButton::X, PadButton::ButtonX}, {Settings::NativeButton::Y, PadButton::ButtonY}, {Settings::NativeButton::Plus, PadButton::ButtonStart}, {Settings::NativeButton::DLeft, PadButton::ButtonLeft}, {Settings::NativeButton::DUp, PadButton::ButtonUp}, {Settings::NativeButton::DRight, PadButton::ButtonRight}, {Settings::NativeButton::DDown, PadButton::ButtonDown}, {Settings::NativeButton::SL, PadButton::TriggerL}, {Settings::NativeButton::SR, PadButton::TriggerR}, {Settings::NativeButton::R, PadButton::TriggerZ}, }; if (!params.Has("port")) { return {}; } InputCommon::ButtonMapping mapping{}; for (const auto& [switch_button, gcadapter_button] : switch_to_gcadapter_button) { Common::ParamPackage button_params({{"engine", "gcpad"}}); button_params.Set("port", params.Get("port", 0)); button_params.Set("button", static_cast(gcadapter_button)); mapping.insert_or_assign(switch_button, std::move(button_params)); } // Add the missing bindings for ZL/ZR static constexpr std::array, 2> switch_to_gcadapter_axis = { std::pair{Settings::NativeButton::ZL, PadAxes::TriggerLeft}, {Settings::NativeButton::ZR, PadAxes::TriggerRight}, }; for (const auto& [switch_button, gcadapter_axis] : switch_to_gcadapter_axis) { Common::ParamPackage button_params({{"engine", "gcpad"}}); button_params.Set("port", params.Get("port", 0)); button_params.Set("button", static_cast(PadButton::Stick)); button_params.Set("axis", static_cast(gcadapter_axis)); button_params.Set("threshold", 0.5f); button_params.Set("direction", "+"); mapping.insert_or_assign(switch_button, std::move(button_params)); } return mapping; } InputCommon::AnalogMapping Adapter::GetAnalogMappingForDevice( const Common::ParamPackage& params) const { if (!params.Has("port")) { return {}; } InputCommon::AnalogMapping mapping = {}; Common::ParamPackage left_analog_params; left_analog_params.Set("engine", "gcpad"); left_analog_params.Set("port", params.Get("port", 0)); left_analog_params.Set("axis_x", static_cast(PadAxes::StickX)); left_analog_params.Set("axis_y", static_cast(PadAxes::StickY)); mapping.insert_or_assign(Settings::NativeAnalog::LStick, std::move(left_analog_params)); Common::ParamPackage right_analog_params; right_analog_params.Set("engine", "gcpad"); right_analog_params.Set("port", params.Get("port", 0)); right_analog_params.Set("axis_x", static_cast(PadAxes::SubstickX)); right_analog_params.Set("axis_y", static_cast(PadAxes::SubstickY)); mapping.insert_or_assign(Settings::NativeAnalog::RStick, std::move(right_analog_params)); return mapping; } bool Adapter::DeviceConnected(std::size_t port) const { return pads[port].type != ControllerTypes::None; } void Adapter::BeginConfiguration() { pad_queue.Clear(); configuring = true; } void Adapter::EndConfiguration() { pad_queue.Clear(); configuring = false; } Common::SPSCQueue& Adapter::GetPadQueue() { return pad_queue; } const Common::SPSCQueue& Adapter::GetPadQueue() const { return pad_queue; } GCController& Adapter::GetPadState(std::size_t port) { return pads.at(port); } const GCController& Adapter::GetPadState(std::size_t port) const { return pads.at(port); } } // namespace GCAdapter