// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/logging/log.h" #include "common/string_util.h" #include "common/swap.h" #include "core/core.h" #include "core/file_sys/archive_selfncch.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/service/cfg/cfg.h" #include "core/hle/service/fs/archive.h" #include "core/loader/ncch.h" #include "core/loader/smdh.h" #include "core/memory.h" //////////////////////////////////////////////////////////////////////////////////////////////////// // Loader namespace namespace Loader { static const int kMaxSections = 8; ///< Maximum number of sections (files) in an ExeFs static const int kBlockSize = 0x200; ///< Size of ExeFS blocks (in bytes) /** * Get the decompressed size of an LZSS compressed ExeFS file * @param buffer Buffer of compressed file * @param size Size of compressed buffer * @return Size of decompressed buffer */ static u32 LZSS_GetDecompressedSize(const u8* buffer, u32 size) { u32 offset_size = *(u32*)(buffer + size - 4); return offset_size + size; } /** * Decompress ExeFS file (compressed with LZSS) * @param compressed Compressed buffer * @param compressed_size Size of compressed buffer * @param decompressed Decompressed buffer * @param decompressed_size Size of decompressed buffer * @return True on success, otherwise false */ static bool LZSS_Decompress(const u8* compressed, u32 compressed_size, u8* decompressed, u32 decompressed_size) { const u8* footer = compressed + compressed_size - 8; u32 buffer_top_and_bottom = *reinterpret_cast(footer); u32 out = decompressed_size; u32 index = compressed_size - ((buffer_top_and_bottom >> 24) & 0xFF); u32 stop_index = compressed_size - (buffer_top_and_bottom & 0xFFFFFF); memset(decompressed, 0, decompressed_size); memcpy(decompressed, compressed, compressed_size); while (index > stop_index) { u8 control = compressed[--index]; for (unsigned i = 0; i < 8; i++) { if (index <= stop_index) break; if (index <= 0) break; if (out <= 0) break; if (control & 0x80) { // Check if compression is out of bounds if (index < 2) return false; index -= 2; u32 segment_offset = compressed[index] | (compressed[index + 1] << 8); u32 segment_size = ((segment_offset >> 12) & 15) + 3; segment_offset &= 0x0FFF; segment_offset += 2; // Check if compression is out of bounds if (out < segment_size) return false; for (unsigned j = 0; j < segment_size; j++) { // Check if compression is out of bounds if (out + segment_offset >= decompressed_size) return false; u8 data = decompressed[out + segment_offset]; decompressed[--out] = data; } } else { // Check if compression is out of bounds if (out < 1) return false; decompressed[--out] = compressed[--index]; } control <<= 1; } } return true; } //////////////////////////////////////////////////////////////////////////////////////////////////// // AppLoader_NCCH class FileType AppLoader_NCCH::IdentifyType(FileUtil::IOFile& file) { u32 magic; file.Seek(0x100, SEEK_SET); if (1 != file.ReadArray(&magic, 1)) return FileType::Error; if (MakeMagic('N', 'C', 'S', 'D') == magic) return FileType::CCI; if (MakeMagic('N', 'C', 'C', 'H') == magic) return FileType::CXI; return FileType::Error; } std::pair, ResultStatus> AppLoader_NCCH::LoadKernelSystemMode() { if (!is_loaded) { ResultStatus res = LoadExeFS(); if (res != ResultStatus::Success) { return std::make_pair(boost::none, res); } } // Set the system mode as the one from the exheader. return std::make_pair(exheader_header.arm11_system_local_caps.system_mode.Value(), ResultStatus::Success); } ResultStatus AppLoader_NCCH::LoadExec() { using Kernel::SharedPtr; using Kernel::CodeSet; if (!is_loaded) return ResultStatus::ErrorNotLoaded; std::vector code; if (ResultStatus::Success == ReadCode(code)) { std::string process_name = Common::StringFromFixedZeroTerminatedBuffer( (const char*)exheader_header.codeset_info.name, 8); SharedPtr codeset = CodeSet::Create(process_name, ncch_header.program_id); codeset->code.offset = 0; codeset->code.addr = exheader_header.codeset_info.text.address; codeset->code.size = exheader_header.codeset_info.text.num_max_pages * Memory::PAGE_SIZE; codeset->rodata.offset = codeset->code.offset + codeset->code.size; codeset->rodata.addr = exheader_header.codeset_info.ro.address; codeset->rodata.size = exheader_header.codeset_info.ro.num_max_pages * Memory::PAGE_SIZE; // TODO(yuriks): Not sure if the bss size is added to the page-aligned .data size or just // to the regular size. Playing it safe for now. u32 bss_page_size = (exheader_header.codeset_info.bss_size + 0xFFF) & ~0xFFF; code.resize(code.size() + bss_page_size, 0); codeset->data.offset = codeset->rodata.offset + codeset->rodata.size; codeset->data.addr = exheader_header.codeset_info.data.address; codeset->data.size = exheader_header.codeset_info.data.num_max_pages * Memory::PAGE_SIZE + bss_page_size; codeset->entrypoint = codeset->code.addr; codeset->memory = std::make_shared>(std::move(code)); Kernel::g_current_process = Kernel::Process::Create(std::move(codeset)); // Attach a resource limit to the process based on the resource limit category Kernel::g_current_process->resource_limit = Kernel::ResourceLimit::GetForCategory(static_cast( exheader_header.arm11_system_local_caps.resource_limit_category)); // Set the default CPU core for this process Kernel::g_current_process->ideal_processor = exheader_header.arm11_system_local_caps.ideal_processor; // Copy data while converting endianness std::array kernel_caps; std::copy_n(exheader_header.arm11_kernel_caps.descriptors, kernel_caps.size(), begin(kernel_caps)); Kernel::g_current_process->ParseKernelCaps(kernel_caps.data(), kernel_caps.size()); s32 priority = exheader_header.arm11_system_local_caps.priority; u32 stack_size = exheader_header.codeset_info.stack_size; Kernel::g_current_process->Run(priority, stack_size); return ResultStatus::Success; } return ResultStatus::Error; } ResultStatus AppLoader_NCCH::LoadSectionExeFS(const char* name, std::vector& buffer) { if (!file.IsOpen()) return ResultStatus::Error; ResultStatus result = LoadExeFS(); if (result != ResultStatus::Success) return result; LOG_DEBUG(Loader, "%d sections:", kMaxSections); // Iterate through the ExeFs archive until we find a section with the specified name... for (unsigned section_number = 0; section_number < kMaxSections; section_number++) { const auto& section = exefs_header.section[section_number]; // Load the specified section... if (strcmp(section.name, name) == 0) { LOG_DEBUG(Loader, "%d - offset: 0x%08X, size: 0x%08X, name: %s", section_number, section.offset, section.size, section.name); s64 section_offset = (section.offset + exefs_offset + sizeof(ExeFs_Header) + ncch_offset); file.Seek(section_offset, SEEK_SET); if (strcmp(section.name, ".code") == 0 && is_compressed) { // Section is compressed, read compressed .code section... std::unique_ptr temp_buffer; try { temp_buffer.reset(new u8[section.size]); } catch (std::bad_alloc&) { return ResultStatus::ErrorMemoryAllocationFailed; } if (file.ReadBytes(&temp_buffer[0], section.size) != section.size) return ResultStatus::Error; // Decompress .code section... u32 decompressed_size = LZSS_GetDecompressedSize(&temp_buffer[0], section.size); buffer.resize(decompressed_size); if (!LZSS_Decompress(&temp_buffer[0], section.size, &buffer[0], decompressed_size)) return ResultStatus::ErrorInvalidFormat; } else { // Section is uncompressed... buffer.resize(section.size); if (file.ReadBytes(&buffer[0], section.size) != section.size) return ResultStatus::Error; } return ResultStatus::Success; } } return ResultStatus::ErrorNotUsed; } ResultStatus AppLoader_NCCH::LoadExeFS() { if (is_exefs_loaded) return ResultStatus::Success; if (!file.IsOpen()) return ResultStatus::Error; // Reset read pointer in case this file has been read before. file.Seek(0, SEEK_SET); if (file.ReadBytes(&ncch_header, sizeof(NCCH_Header)) != sizeof(NCCH_Header)) return ResultStatus::Error; // Skip NCSD header and load first NCCH (NCSD is just a container of NCCH files)... if (MakeMagic('N', 'C', 'S', 'D') == ncch_header.magic) { LOG_DEBUG(Loader, "Only loading the first (bootable) NCCH within the NCSD file!"); ncch_offset = 0x4000; file.Seek(ncch_offset, SEEK_SET); file.ReadBytes(&ncch_header, sizeof(NCCH_Header)); } // Verify we are loading the correct file type... if (MakeMagic('N', 'C', 'C', 'H') != ncch_header.magic) return ResultStatus::ErrorInvalidFormat; // Read ExHeader... if (file.ReadBytes(&exheader_header, sizeof(ExHeader_Header)) != sizeof(ExHeader_Header)) return ResultStatus::Error; is_compressed = (exheader_header.codeset_info.flags.flag & 1) == 1; entry_point = exheader_header.codeset_info.text.address; code_size = exheader_header.codeset_info.text.code_size; stack_size = exheader_header.codeset_info.stack_size; bss_size = exheader_header.codeset_info.bss_size; core_version = exheader_header.arm11_system_local_caps.core_version; priority = exheader_header.arm11_system_local_caps.priority; resource_limit_category = exheader_header.arm11_system_local_caps.resource_limit_category; LOG_DEBUG(Loader, "Name: %s", exheader_header.codeset_info.name); LOG_DEBUG(Loader, "Program ID: %016" PRIX64, ncch_header.program_id); LOG_DEBUG(Loader, "Code compressed: %s", is_compressed ? "yes" : "no"); LOG_DEBUG(Loader, "Entry point: 0x%08X", entry_point); LOG_DEBUG(Loader, "Code size: 0x%08X", code_size); LOG_DEBUG(Loader, "Stack size: 0x%08X", stack_size); LOG_DEBUG(Loader, "Bss size: 0x%08X", bss_size); LOG_DEBUG(Loader, "Core version: %d", core_version); LOG_DEBUG(Loader, "Thread priority: 0x%X", priority); LOG_DEBUG(Loader, "Resource limit category: %d", resource_limit_category); LOG_DEBUG(Loader, "System Mode: %d", static_cast(exheader_header.arm11_system_local_caps.system_mode)); if (exheader_header.arm11_system_local_caps.program_id != ncch_header.program_id) { LOG_ERROR(Loader, "ExHeader Program ID mismatch: the ROM is probably encrypted."); return ResultStatus::ErrorEncrypted; } // Read ExeFS... exefs_offset = ncch_header.exefs_offset * kBlockSize; u32 exefs_size = ncch_header.exefs_size * kBlockSize; LOG_DEBUG(Loader, "ExeFS offset: 0x%08X", exefs_offset); LOG_DEBUG(Loader, "ExeFS size: 0x%08X", exefs_size); file.Seek(exefs_offset + ncch_offset, SEEK_SET); if (file.ReadBytes(&exefs_header, sizeof(ExeFs_Header)) != sizeof(ExeFs_Header)) return ResultStatus::Error; is_exefs_loaded = true; return ResultStatus::Success; } void AppLoader_NCCH::ParseRegionLockoutInfo() { std::vector smdh_buffer; if (ReadIcon(smdh_buffer) == ResultStatus::Success && smdh_buffer.size() >= sizeof(SMDH)) { SMDH smdh; memcpy(&smdh, smdh_buffer.data(), sizeof(SMDH)); u32 region_lockout = smdh.region_lockout; constexpr u32 REGION_COUNT = 7; for (u32 region = 0; region < REGION_COUNT; ++region) { if (region_lockout & 1) { Service::CFG::SetPreferredRegionCode(region); break; } region_lockout >>= 1; } } } ResultStatus AppLoader_NCCH::Load() { if (is_loaded) return ResultStatus::ErrorAlreadyLoaded; ResultStatus result = LoadExeFS(); if (result != ResultStatus::Success) return result; LOG_INFO(Loader, "Program ID: %016" PRIX64, ncch_header.program_id); Core::Telemetry().AddField(Telemetry::FieldType::Session, "ProgramId", ncch_header.program_id); is_loaded = true; // Set state to loaded result = LoadExec(); // Load the executable into memory for booting if (ResultStatus::Success != result) return result; Service::FS::RegisterArchiveType(std::make_unique(*this), Service::FS::ArchiveIdCode::SelfNCCH); ParseRegionLockoutInfo(); return ResultStatus::Success; } ResultStatus AppLoader_NCCH::ReadCode(std::vector& buffer) { return LoadSectionExeFS(".code", buffer); } ResultStatus AppLoader_NCCH::ReadIcon(std::vector& buffer) { return LoadSectionExeFS("icon", buffer); } ResultStatus AppLoader_NCCH::ReadBanner(std::vector& buffer) { return LoadSectionExeFS("banner", buffer); } ResultStatus AppLoader_NCCH::ReadLogo(std::vector& buffer) { return LoadSectionExeFS("logo", buffer); } ResultStatus AppLoader_NCCH::ReadProgramId(u64& out_program_id) { if (!file.IsOpen()) return ResultStatus::Error; ResultStatus result = LoadExeFS(); if (result != ResultStatus::Success) return result; out_program_id = ncch_header.program_id; return ResultStatus::Success; } ResultStatus AppLoader_NCCH::ReadRomFS(std::shared_ptr& romfs_file, u64& offset, u64& size) { if (!file.IsOpen()) return ResultStatus::Error; // Check if the NCCH has a RomFS... if (ncch_header.romfs_offset != 0 && ncch_header.romfs_size != 0) { u32 romfs_offset = ncch_offset + (ncch_header.romfs_offset * kBlockSize) + 0x1000; u32 romfs_size = (ncch_header.romfs_size * kBlockSize) - 0x1000; LOG_DEBUG(Loader, "RomFS offset: 0x%08X", romfs_offset); LOG_DEBUG(Loader, "RomFS size: 0x%08X", romfs_size); if (file.GetSize() < romfs_offset + romfs_size) return ResultStatus::Error; // We reopen the file, to allow its position to be independent from file's romfs_file = std::make_shared(filepath, "rb"); if (!romfs_file->IsOpen()) return ResultStatus::Error; offset = romfs_offset; size = romfs_size; return ResultStatus::Success; } LOG_DEBUG(Loader, "NCCH has no RomFS"); return ResultStatus::ErrorNotUsed; } } // namespace Loader