// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/color.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/math_util.h" #include "common/microprofile.h" #include "common/thread.h" #include "common/timer.h" #include "common/vector_math.h" #include "core/core_timing.h" #include "core/hle/service/gsp_gpu.h" #include "core/hle/service/hid/hid.h" #include "core/hw/gpu.h" #include "core/hw/hw.h" #include "core/memory.h" #include "core/settings.h" #include "core/tracer/recorder.h" #include "video_core/command_processor.h" #include "video_core/debug_utils/debug_utils.h" #include "video_core/rasterizer_interface.h" #include "video_core/renderer_base.h" #include "video_core/utils.h" #include "video_core/video_core.h" namespace GPU { Regs g_regs; /// 268MHz CPU clocks / 60Hz frames per second const u64 frame_ticks = 268123480ull / 60; /// Event id for CoreTiming static int vblank_event; /// Total number of frames drawn static u64 frame_count; /// Start clock for frame limiter static u32 time_point; /// Total delay caused by slow frames static float time_delay; constexpr float FIXED_FRAME_TIME = 1000.0f / 60; // Max lag caused by slow frames. Can be adjusted to compensate for too many slow frames. Higher // values increases time needed to limit frame rate after spikes constexpr float MAX_LAG_TIME = 18; template inline void Read(T& var, const u32 raw_addr) { u32 addr = raw_addr - HW::VADDR_GPU; u32 index = addr / 4; // Reads other than u32 are untested, so I'd rather have them abort than silently fail if (index >= Regs::NumIds() || !std::is_same::value) { LOG_ERROR(HW_GPU, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, addr); return; } var = g_regs[addr / 4]; } static Math::Vec4 DecodePixel(Regs::PixelFormat input_format, const u8* src_pixel) { switch (input_format) { case Regs::PixelFormat::RGBA8: return Color::DecodeRGBA8(src_pixel); case Regs::PixelFormat::RGB8: return Color::DecodeRGB8(src_pixel); case Regs::PixelFormat::RGB565: return Color::DecodeRGB565(src_pixel); case Regs::PixelFormat::RGB5A1: return Color::DecodeRGB5A1(src_pixel); case Regs::PixelFormat::RGBA4: return Color::DecodeRGBA4(src_pixel); default: LOG_ERROR(HW_GPU, "Unknown source framebuffer format %x", input_format); return {0, 0, 0, 0}; } } MICROPROFILE_DEFINE(GPU_DisplayTransfer, "GPU", "DisplayTransfer", MP_RGB(100, 100, 255)); MICROPROFILE_DEFINE(GPU_CmdlistProcessing, "GPU", "Cmdlist Processing", MP_RGB(100, 255, 100)); static void MemoryFill(const Regs::MemoryFillConfig& config) { const PAddr start_addr = config.GetStartAddress(); const PAddr end_addr = config.GetEndAddress(); // TODO: do hwtest with these cases if (!Memory::IsValidPhysicalAddress(start_addr)) { LOG_CRITICAL(HW_GPU, "invalid start address 0x%08X", start_addr); return; } if (!Memory::IsValidPhysicalAddress(end_addr)) { LOG_CRITICAL(HW_GPU, "invalid end address 0x%08X", end_addr); return; } if (end_addr <= start_addr) { LOG_CRITICAL(HW_GPU, "invalid memory range from 0x%08X to 0x%08X", start_addr, end_addr); return; } u8* start = Memory::GetPhysicalPointer(start_addr); u8* end = Memory::GetPhysicalPointer(end_addr); // TODO: Consider always accelerating and returning vector of // regions that the accelerated fill did not cover to // reduce/eliminate the fill that the cpu has to do. // This would also mean that the flush below is not needed. // Fill should first flush all surfaces that touch but are // not completely within the fill range. // Then fill all completely covered surfaces, and return the // regions that were between surfaces or within the touching // ones for cpu to manually fill here. if (VideoCore::g_renderer->Rasterizer()->AccelerateFill(config)) return; Memory::RasterizerFlushAndInvalidateRegion(config.GetStartAddress(), config.GetEndAddress() - config.GetStartAddress()); if (config.fill_24bit) { // fill with 24-bit values for (u8* ptr = start; ptr < end; ptr += 3) { ptr[0] = config.value_24bit_r; ptr[1] = config.value_24bit_g; ptr[2] = config.value_24bit_b; } } else if (config.fill_32bit) { // fill with 32-bit values if (end > start) { u32 value = config.value_32bit; size_t len = (end - start) / sizeof(u32); for (size_t i = 0; i < len; ++i) memcpy(&start[i * sizeof(u32)], &value, sizeof(u32)); } } else { // fill with 16-bit values u16 value_16bit = config.value_16bit.Value(); for (u8* ptr = start; ptr < end; ptr += sizeof(u16)) memcpy(ptr, &value_16bit, sizeof(u16)); } } static void DisplayTransfer(const Regs::DisplayTransferConfig& config) { const PAddr src_addr = config.GetPhysicalInputAddress(); const PAddr dst_addr = config.GetPhysicalOutputAddress(); // TODO: do hwtest with these cases if (!Memory::IsValidPhysicalAddress(src_addr)) { LOG_CRITICAL(HW_GPU, "invalid input address 0x%08X", src_addr); return; } if (!Memory::IsValidPhysicalAddress(dst_addr)) { LOG_CRITICAL(HW_GPU, "invalid output address 0x%08X", dst_addr); return; } if (config.input_width == 0) { LOG_CRITICAL(HW_GPU, "zero input width"); return; } if (config.input_height == 0) { LOG_CRITICAL(HW_GPU, "zero input height"); return; } if (config.output_width == 0) { LOG_CRITICAL(HW_GPU, "zero output width"); return; } if (config.output_height == 0) { LOG_CRITICAL(HW_GPU, "zero output height"); return; } if (VideoCore::g_renderer->Rasterizer()->AccelerateDisplayTransfer(config)) return; u8* src_pointer = Memory::GetPhysicalPointer(src_addr); u8* dst_pointer = Memory::GetPhysicalPointer(dst_addr); if (config.scaling > config.ScaleXY) { LOG_CRITICAL(HW_GPU, "Unimplemented display transfer scaling mode %u", config.scaling.Value()); UNIMPLEMENTED(); return; } if (config.input_linear && config.scaling != config.NoScale) { LOG_CRITICAL(HW_GPU, "Scaling is only implemented on tiled input"); UNIMPLEMENTED(); return; } int horizontal_scale = config.scaling != config.NoScale ? 1 : 0; int vertical_scale = config.scaling == config.ScaleXY ? 1 : 0; u32 output_width = config.output_width >> horizontal_scale; u32 output_height = config.output_height >> vertical_scale; u32 input_size = config.input_width * config.input_height * GPU::Regs::BytesPerPixel(config.input_format); u32 output_size = output_width * output_height * GPU::Regs::BytesPerPixel(config.output_format); Memory::RasterizerFlushRegion(config.GetPhysicalInputAddress(), input_size); Memory::RasterizerFlushAndInvalidateRegion(config.GetPhysicalOutputAddress(), output_size); for (u32 y = 0; y < output_height; ++y) { for (u32 x = 0; x < output_width; ++x) { Math::Vec4 src_color; // Calculate the [x,y] position of the input image // based on the current output position and the scale u32 input_x = x << horizontal_scale; u32 input_y = y << vertical_scale; u32 output_y; if (config.flip_vertically) { // Flip the y value of the output data, // we do this after calculating the [x,y] position of the input image // to account for the scaling options. output_y = output_height - y - 1; } else { output_y = y; } u32 dst_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.output_format); u32 src_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.input_format); u32 src_offset; u32 dst_offset; if (config.input_linear) { if (!config.dont_swizzle) { // Interpret the input as linear and the output as tiled u32 coarse_y = output_y & ~7; u32 stride = output_width * dst_bytes_per_pixel; src_offset = (input_x + input_y * config.input_width) * src_bytes_per_pixel; dst_offset = VideoCore::GetMortonOffset(x, output_y, dst_bytes_per_pixel) + coarse_y * stride; } else { // Both input and output are linear src_offset = (input_x + input_y * config.input_width) * src_bytes_per_pixel; dst_offset = (x + output_y * output_width) * dst_bytes_per_pixel; } } else { if (!config.dont_swizzle) { // Interpret the input as tiled and the output as linear u32 coarse_y = input_y & ~7; u32 stride = config.input_width * src_bytes_per_pixel; src_offset = VideoCore::GetMortonOffset(input_x, input_y, src_bytes_per_pixel) + coarse_y * stride; dst_offset = (x + output_y * output_width) * dst_bytes_per_pixel; } else { // Both input and output are tiled u32 out_coarse_y = output_y & ~7; u32 out_stride = output_width * dst_bytes_per_pixel; u32 in_coarse_y = input_y & ~7; u32 in_stride = config.input_width * src_bytes_per_pixel; src_offset = VideoCore::GetMortonOffset(input_x, input_y, src_bytes_per_pixel) + in_coarse_y * in_stride; dst_offset = VideoCore::GetMortonOffset(x, output_y, dst_bytes_per_pixel) + out_coarse_y * out_stride; } } const u8* src_pixel = src_pointer + src_offset; src_color = DecodePixel(config.input_format, src_pixel); if (config.scaling == config.ScaleX) { Math::Vec4 pixel = DecodePixel(config.input_format, src_pixel + src_bytes_per_pixel); src_color = ((src_color + pixel) / 2).Cast(); } else if (config.scaling == config.ScaleXY) { Math::Vec4 pixel1 = DecodePixel(config.input_format, src_pixel + 1 * src_bytes_per_pixel); Math::Vec4 pixel2 = DecodePixel(config.input_format, src_pixel + 2 * src_bytes_per_pixel); Math::Vec4 pixel3 = DecodePixel(config.input_format, src_pixel + 3 * src_bytes_per_pixel); src_color = (((src_color + pixel1) + (pixel2 + pixel3)) / 4).Cast(); } u8* dst_pixel = dst_pointer + dst_offset; switch (config.output_format) { case Regs::PixelFormat::RGBA8: Color::EncodeRGBA8(src_color, dst_pixel); break; case Regs::PixelFormat::RGB8: Color::EncodeRGB8(src_color, dst_pixel); break; case Regs::PixelFormat::RGB565: Color::EncodeRGB565(src_color, dst_pixel); break; case Regs::PixelFormat::RGB5A1: Color::EncodeRGB5A1(src_color, dst_pixel); break; case Regs::PixelFormat::RGBA4: Color::EncodeRGBA4(src_color, dst_pixel); break; default: LOG_ERROR(HW_GPU, "Unknown destination framebuffer format %x", config.output_format.Value()); break; } } } } static void TextureCopy(const Regs::DisplayTransferConfig& config) { const PAddr src_addr = config.GetPhysicalInputAddress(); const PAddr dst_addr = config.GetPhysicalOutputAddress(); // TODO: do hwtest with these cases if (!Memory::IsValidPhysicalAddress(src_addr)) { LOG_CRITICAL(HW_GPU, "invalid input address 0x%08X", src_addr); return; } if (!Memory::IsValidPhysicalAddress(dst_addr)) { LOG_CRITICAL(HW_GPU, "invalid output address 0x%08X", dst_addr); return; } if (config.texture_copy.input_width == 0) { LOG_CRITICAL(HW_GPU, "zero input width"); return; } if (config.texture_copy.output_width == 0) { LOG_CRITICAL(HW_GPU, "zero output width"); return; } if (config.texture_copy.size == 0) { LOG_CRITICAL(HW_GPU, "zero size"); return; } if (VideoCore::g_renderer->Rasterizer()->AccelerateTextureCopy(config)) return; u8* src_pointer = Memory::GetPhysicalPointer(src_addr); u8* dst_pointer = Memory::GetPhysicalPointer(dst_addr); u32 input_width = config.texture_copy.input_width * 16; u32 input_gap = config.texture_copy.input_gap * 16; u32 output_width = config.texture_copy.output_width * 16; u32 output_gap = config.texture_copy.output_gap * 16; size_t contiguous_input_size = config.texture_copy.size / input_width * (input_width + input_gap); Memory::RasterizerFlushRegion(config.GetPhysicalInputAddress(), static_cast(contiguous_input_size)); size_t contiguous_output_size = config.texture_copy.size / output_width * (output_width + output_gap); Memory::RasterizerFlushAndInvalidateRegion(config.GetPhysicalOutputAddress(), static_cast(contiguous_output_size)); u32 remaining_size = config.texture_copy.size; u32 remaining_input = input_width; u32 remaining_output = output_width; while (remaining_size > 0) { u32 copy_size = std::min({remaining_input, remaining_output, remaining_size}); std::memcpy(dst_pointer, src_pointer, copy_size); src_pointer += copy_size; dst_pointer += copy_size; remaining_input -= copy_size; remaining_output -= copy_size; remaining_size -= copy_size; if (remaining_input == 0) { remaining_input = input_width; src_pointer += input_gap; } if (remaining_output == 0) { remaining_output = output_width; dst_pointer += output_gap; } } } template inline void Write(u32 addr, const T data) { addr -= HW::VADDR_GPU; u32 index = addr / 4; // Writes other than u32 are untested, so I'd rather have them abort than silently fail if (index >= Regs::NumIds() || !std::is_same::value) { LOG_ERROR(HW_GPU, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, addr); return; } g_regs[index] = static_cast(data); switch (index) { // Memory fills are triggered once the fill value is written. case GPU_REG_INDEX_WORKAROUND(memory_fill_config[0].trigger, 0x00004 + 0x3): case GPU_REG_INDEX_WORKAROUND(memory_fill_config[1].trigger, 0x00008 + 0x3): { const bool is_second_filler = (index != GPU_REG_INDEX(memory_fill_config[0].trigger)); auto& config = g_regs.memory_fill_config[is_second_filler]; if (config.trigger) { MemoryFill(config); LOG_TRACE(HW_GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(), config.GetEndAddress()); // It seems that it won't signal interrupt if "address_start" is zero. // TODO: hwtest this if (config.GetStartAddress() != 0) { if (!is_second_filler) { GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC0); } else { GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC1); } } // Reset "trigger" flag and set the "finish" flag // NOTE: This was confirmed to happen on hardware even if "address_start" is zero. config.trigger.Assign(0); config.finished.Assign(1); } break; } case GPU_REG_INDEX(display_transfer_config.trigger): { MICROPROFILE_SCOPE(GPU_DisplayTransfer); const auto& config = g_regs.display_transfer_config; if (config.trigger & 1) { if (Pica::g_debug_context) Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::IncomingDisplayTransfer, nullptr); if (config.is_texture_copy) { TextureCopy(config); LOG_TRACE(HW_GPU, "TextureCopy: 0x%X bytes from 0x%08X(%u+%u)-> " "0x%08X(%u+%u), flags 0x%08X", config.texture_copy.size, config.GetPhysicalInputAddress(), config.texture_copy.input_width * 16, config.texture_copy.input_gap * 16, config.GetPhysicalOutputAddress(), config.texture_copy.output_width * 16, config.texture_copy.output_gap * 16, config.flags); } else { DisplayTransfer(config); LOG_TRACE(HW_GPU, "DisplayTransfer: 0x%08x(%ux%u)-> " "0x%08x(%ux%u), dst format %x, flags 0x%08X", config.GetPhysicalInputAddress(), config.input_width.Value(), config.input_height.Value(), config.GetPhysicalOutputAddress(), config.output_width.Value(), config.output_height.Value(), config.output_format.Value(), config.flags); } g_regs.display_transfer_config.trigger = 0; GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PPF); } break; } // Seems like writing to this register triggers processing case GPU_REG_INDEX(command_processor_config.trigger): { const auto& config = g_regs.command_processor_config; if (config.trigger & 1) { MICROPROFILE_SCOPE(GPU_CmdlistProcessing); u32* buffer = (u32*)Memory::GetPhysicalPointer(config.GetPhysicalAddress()); if (Pica::g_debug_context && Pica::g_debug_context->recorder) { Pica::g_debug_context->recorder->MemoryAccessed( (u8*)buffer, config.size * sizeof(u32), config.GetPhysicalAddress()); } Pica::CommandProcessor::ProcessCommandList(buffer, config.size); g_regs.command_processor_config.trigger = 0; } break; } default: break; } // Notify tracer about the register write // This is happening *after* handling the write to make sure we properly catch all memory reads. if (Pica::g_debug_context && Pica::g_debug_context->recorder) { // addr + GPU VBase - IO VBase + IO PBase Pica::g_debug_context->recorder->RegisterWritten( addr + 0x1EF00000 - 0x1EC00000 + 0x10100000, data); } } // Explicitly instantiate template functions because we aren't defining this in the header: template void Read(u64& var, const u32 addr); template void Read(u32& var, const u32 addr); template void Read(u16& var, const u32 addr); template void Read(u8& var, const u32 addr); template void Write(u32 addr, const u64 data); template void Write(u32 addr, const u32 data); template void Write(u32 addr, const u16 data); template void Write(u32 addr, const u8 data); static void FrameLimiter() { time_delay += FIXED_FRAME_TIME; time_delay = MathUtil::Clamp(time_delay, -MAX_LAG_TIME, MAX_LAG_TIME); s32 desired_time = static_cast(time_delay); s32 elapsed_time = static_cast(Common::Timer::GetTimeMs() - time_point); if (elapsed_time < desired_time) { Common::SleepCurrentThread(desired_time - elapsed_time); } u32 frame_time = Common::Timer::GetTimeMs() - time_point; time_delay -= frame_time; } /// Update hardware static void VBlankCallback(u64 userdata, int cycles_late) { frame_count++; VideoCore::g_renderer->SwapBuffers(); // Signal to GSP that GPU interrupt has occurred // TODO(yuriks): hwtest to determine if PDC0 is for the Top screen and PDC1 for the Sub // screen, or if both use the same interrupts and these two instead determine the // beginning and end of the VBlank period. If needed, split the interrupt firing into // two different intervals. GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC0); GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC1); // Check for user input updates Service::HID::Update(); if (!Settings::values.use_vsync && Settings::values.toggle_framelimit) { FrameLimiter(); } time_point = Common::Timer::GetTimeMs(); // Reschedule recurrent event CoreTiming::ScheduleEvent(frame_ticks - cycles_late, vblank_event); } /// Initialize hardware void Init() { memset(&g_regs, 0, sizeof(g_regs)); auto& framebuffer_top = g_regs.framebuffer_config[0]; auto& framebuffer_sub = g_regs.framebuffer_config[1]; // Setup default framebuffer addresses (located in VRAM) // .. or at least these are the ones used by system applets. // There's probably a smarter way to come up with addresses // like this which does not require hardcoding. framebuffer_top.address_left1 = 0x181E6000; framebuffer_top.address_left2 = 0x1822C800; framebuffer_top.address_right1 = 0x18273000; framebuffer_top.address_right2 = 0x182B9800; framebuffer_sub.address_left1 = 0x1848F000; framebuffer_sub.address_left2 = 0x184C7800; framebuffer_top.width.Assign(240); framebuffer_top.height.Assign(400); framebuffer_top.stride = 3 * 240; framebuffer_top.color_format.Assign(Regs::PixelFormat::RGB8); framebuffer_top.active_fb = 0; framebuffer_sub.width.Assign(240); framebuffer_sub.height.Assign(320); framebuffer_sub.stride = 3 * 240; framebuffer_sub.color_format.Assign(Regs::PixelFormat::RGB8); framebuffer_sub.active_fb = 0; frame_count = 0; time_point = Common::Timer::GetTimeMs(); vblank_event = CoreTiming::RegisterEvent("GPU::VBlankCallback", VBlankCallback); CoreTiming::ScheduleEvent(frame_ticks, vblank_event); LOG_DEBUG(HW_GPU, "initialized OK"); } /// Shutdown hardware void Shutdown() { LOG_DEBUG(HW_GPU, "shutdown OK"); } } // namespace