// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include #include #include "common/assert.h" #include "common/logging/log.h" #include "core/hle/ipc_helpers.h" #include "core/hle/service/audio/hwopus.h" namespace Service::Audio { namespace { struct OpusDeleter { void operator()(OpusMSDecoder* ptr) const { opus_multistream_decoder_destroy(ptr); } }; using OpusDecoderPtr = std::unique_ptr; struct OpusPacketHeader { // Packet size in bytes. u32_be size; // Indicates the final range of the codec's entropy coder. u32_be final_range; }; static_assert(sizeof(OpusPacketHeader) == 0x8, "OpusHeader is an invalid size"); class OpusDecoderState { public: /// Describes extra behavior that may be asked of the decoding context. enum class ExtraBehavior { /// No extra behavior. None, /// Resets the decoder context back to a freshly initialized state. ResetContext, }; enum class PerfTime { Disabled, Enabled, }; explicit OpusDecoderState(OpusDecoderPtr decoder_, u32 sample_rate_, u32 channel_count_) : decoder{std::move(decoder_)}, sample_rate{sample_rate_}, channel_count{channel_count_} {} // Decodes interleaved Opus packets. Optionally allows reporting time taken to // perform the decoding, as well as any relevant extra behavior. void DecodeInterleaved(Kernel::HLERequestContext& ctx, PerfTime perf_time, ExtraBehavior extra_behavior) { if (perf_time == PerfTime::Disabled) { DecodeInterleavedHelper(ctx, nullptr, extra_behavior); } else { u64 performance = 0; DecodeInterleavedHelper(ctx, &performance, extra_behavior); } } private: void DecodeInterleavedHelper(Kernel::HLERequestContext& ctx, u64* performance, ExtraBehavior extra_behavior) { u32 consumed = 0; u32 sample_count = 0; std::vector samples(ctx.GetWriteBufferNumElements()); if (extra_behavior == ExtraBehavior::ResetContext) { ResetDecoderContext(); } if (!DecodeOpusData(consumed, sample_count, ctx.ReadBuffer(), samples, performance)) { LOG_ERROR(Audio, "Failed to decode opus data"); IPC::ResponseBuilder rb{ctx, 2}; // TODO(ogniK): Use correct error code rb.Push(ResultUnknown); return; } const u32 param_size = performance != nullptr ? 6 : 4; IPC::ResponseBuilder rb{ctx, param_size}; rb.Push(ResultSuccess); rb.Push(consumed); rb.Push(sample_count); if (performance) { rb.Push(*performance); } ctx.WriteBuffer(samples); } bool DecodeOpusData(u32& consumed, u32& sample_count, const std::vector& input, std::vector& output, u64* out_performance_time) const { const auto start_time = std::chrono::steady_clock::now(); const std::size_t raw_output_sz = output.size() * sizeof(opus_int16); if (sizeof(OpusPacketHeader) > input.size()) { LOG_ERROR(Audio, "Input is smaller than the header size, header_sz={}, input_sz={}", sizeof(OpusPacketHeader), input.size()); return false; } OpusPacketHeader hdr{}; std::memcpy(&hdr, input.data(), sizeof(OpusPacketHeader)); if (sizeof(OpusPacketHeader) + static_cast(hdr.size) > input.size()) { LOG_ERROR(Audio, "Input does not fit in the opus header size. data_sz={}, input_sz={}", sizeof(OpusPacketHeader) + static_cast(hdr.size), input.size()); return false; } const auto frame = input.data() + sizeof(OpusPacketHeader); const auto decoded_sample_count = opus_packet_get_nb_samples( frame, static_cast(input.size() - sizeof(OpusPacketHeader)), static_cast(sample_rate)); if (decoded_sample_count * channel_count * sizeof(u16) > raw_output_sz) { LOG_ERROR( Audio, "Decoded data does not fit into the output data, decoded_sz={}, raw_output_sz={}", decoded_sample_count * channel_count * sizeof(u16), raw_output_sz); return false; } const int frame_size = (static_cast(raw_output_sz / sizeof(s16) / channel_count)); const auto out_sample_count = opus_multistream_decode(decoder.get(), frame, hdr.size, output.data(), frame_size, 0); if (out_sample_count < 0) { LOG_ERROR(Audio, "Incorrect sample count received from opus_decode, " "output_sample_count={}, frame_size={}, data_sz_from_hdr={}", out_sample_count, frame_size, static_cast(hdr.size)); return false; } const auto end_time = std::chrono::steady_clock::now() - start_time; sample_count = out_sample_count; consumed = static_cast(sizeof(OpusPacketHeader) + hdr.size); if (out_performance_time != nullptr) { *out_performance_time = std::chrono::duration_cast(end_time).count(); } return true; } void ResetDecoderContext() { ASSERT(decoder != nullptr); opus_multistream_decoder_ctl(decoder.get(), OPUS_RESET_STATE); } OpusDecoderPtr decoder; u32 sample_rate; u32 channel_count; }; class IHardwareOpusDecoderManager final : public ServiceFramework { public: explicit IHardwareOpusDecoderManager(Core::System& system_, OpusDecoderState decoder_state_) : ServiceFramework{system_, "IHardwareOpusDecoderManager"}, decoder_state{ std::move(decoder_state_)} { // clang-format off static const FunctionInfo functions[] = { {0, &IHardwareOpusDecoderManager::DecodeInterleavedOld, "DecodeInterleavedOld"}, {1, nullptr, "SetContext"}, {2, nullptr, "DecodeInterleavedForMultiStreamOld"}, {3, nullptr, "SetContextForMultiStream"}, {4, &IHardwareOpusDecoderManager::DecodeInterleavedWithPerfOld, "DecodeInterleavedWithPerfOld"}, {5, nullptr, "DecodeInterleavedForMultiStreamWithPerfOld"}, {6, &IHardwareOpusDecoderManager::DecodeInterleaved, "DecodeInterleavedWithPerfAndResetOld"}, {7, nullptr, "DecodeInterleavedForMultiStreamWithPerfAndResetOld"}, {8, &IHardwareOpusDecoderManager::DecodeInterleaved, "DecodeInterleaved"}, {9, nullptr, "DecodeInterleavedForMultiStream"}, }; // clang-format on RegisterHandlers(functions); } private: void DecodeInterleavedOld(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Audio, "called"); decoder_state.DecodeInterleaved(ctx, OpusDecoderState::PerfTime::Disabled, OpusDecoderState::ExtraBehavior::None); } void DecodeInterleavedWithPerfOld(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Audio, "called"); decoder_state.DecodeInterleaved(ctx, OpusDecoderState::PerfTime::Enabled, OpusDecoderState::ExtraBehavior::None); } void DecodeInterleaved(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Audio, "called"); IPC::RequestParser rp{ctx}; const auto extra_behavior = rp.Pop() ? OpusDecoderState::ExtraBehavior::ResetContext : OpusDecoderState::ExtraBehavior::None; decoder_state.DecodeInterleaved(ctx, OpusDecoderState::PerfTime::Enabled, extra_behavior); } OpusDecoderState decoder_state; }; std::size_t WorkerBufferSize(u32 channel_count) { ASSERT_MSG(channel_count == 1 || channel_count == 2, "Invalid channel count"); constexpr int num_streams = 1; const int num_stereo_streams = channel_count == 2 ? 1 : 0; return opus_multistream_decoder_get_size(num_streams, num_stereo_streams); } // Creates the mapping table that maps the input channels to the particular // output channels. In the stereo case, we map the left and right input channels // to the left and right output channels respectively. // // However, in the monophonic case, we only map the one available channel // to the sole output channel. We specify 255 for the would-be right channel // as this is a special value defined by Opus to indicate to the decoder to // ignore that channel. std::array CreateMappingTable(u32 channel_count) { if (channel_count == 2) { return {{0, 1}}; } return {{0, 255}}; } } // Anonymous namespace void HwOpus::GetWorkBufferSize(Kernel::HLERequestContext& ctx) { IPC::RequestParser rp{ctx}; const auto sample_rate = rp.Pop(); const auto channel_count = rp.Pop(); LOG_DEBUG(Audio, "called with sample_rate={}, channel_count={}", sample_rate, channel_count); ASSERT_MSG(sample_rate == 48000 || sample_rate == 24000 || sample_rate == 16000 || sample_rate == 12000 || sample_rate == 8000, "Invalid sample rate"); ASSERT_MSG(channel_count == 1 || channel_count == 2, "Invalid channel count"); const u32 worker_buffer_sz = static_cast(WorkerBufferSize(channel_count)); LOG_DEBUG(Audio, "worker_buffer_sz={}", worker_buffer_sz); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(worker_buffer_sz); } void HwOpus::GetWorkBufferSizeEx(Kernel::HLERequestContext& ctx) { GetWorkBufferSize(ctx); } void HwOpus::GetWorkBufferSizeForMultiStreamEx(Kernel::HLERequestContext& ctx) { OpusMultiStreamParametersEx param; std::memcpy(¶m, ctx.ReadBuffer().data(), ctx.GetReadBufferSize()); const auto sample_rate = param.sample_rate; const auto channel_count = param.channel_count; const auto number_streams = param.number_streams; const auto number_stereo_streams = param.number_stereo_streams; LOG_DEBUG( Audio, "called with sample_rate={}, channel_count={}, number_streams={}, number_stereo_streams={}", sample_rate, channel_count, number_streams, number_stereo_streams); ASSERT_MSG(sample_rate == 48000 || sample_rate == 24000 || sample_rate == 16000 || sample_rate == 12000 || sample_rate == 8000, "Invalid sample rate"); const u32 worker_buffer_sz = static_cast(opus_multistream_decoder_get_size(number_streams, number_stereo_streams)); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(worker_buffer_sz); } void HwOpus::OpenHardwareOpusDecoder(Kernel::HLERequestContext& ctx) { IPC::RequestParser rp{ctx}; const auto sample_rate = rp.Pop(); const auto channel_count = rp.Pop(); const auto buffer_sz = rp.Pop(); LOG_DEBUG(Audio, "called sample_rate={}, channel_count={}, buffer_size={}", sample_rate, channel_count, buffer_sz); ASSERT_MSG(sample_rate == 48000 || sample_rate == 24000 || sample_rate == 16000 || sample_rate == 12000 || sample_rate == 8000, "Invalid sample rate"); ASSERT_MSG(channel_count == 1 || channel_count == 2, "Invalid channel count"); const std::size_t worker_sz = WorkerBufferSize(channel_count); ASSERT_MSG(buffer_sz >= worker_sz, "Worker buffer too large"); const int num_stereo_streams = channel_count == 2 ? 1 : 0; const auto mapping_table = CreateMappingTable(channel_count); int error = 0; OpusDecoderPtr decoder{ opus_multistream_decoder_create(sample_rate, static_cast(channel_count), 1, num_stereo_streams, mapping_table.data(), &error)}; if (error != OPUS_OK || decoder == nullptr) { LOG_ERROR(Audio, "Failed to create Opus decoder (error={}).", error); IPC::ResponseBuilder rb{ctx, 2}; // TODO(ogniK): Use correct error code rb.Push(ResultUnknown); return; } IPC::ResponseBuilder rb{ctx, 2, 0, 1}; rb.Push(ResultSuccess); rb.PushIpcInterface( system, OpusDecoderState{std::move(decoder), sample_rate, channel_count}); } void HwOpus::OpenHardwareOpusDecoderEx(Kernel::HLERequestContext& ctx) { IPC::RequestParser rp{ctx}; const auto sample_rate = rp.Pop(); const auto channel_count = rp.Pop(); LOG_DEBUG(Audio, "called sample_rate={}, channel_count={}", sample_rate, channel_count); ASSERT_MSG(sample_rate == 48000 || sample_rate == 24000 || sample_rate == 16000 || sample_rate == 12000 || sample_rate == 8000, "Invalid sample rate"); ASSERT_MSG(channel_count == 1 || channel_count == 2, "Invalid channel count"); const int num_stereo_streams = channel_count == 2 ? 1 : 0; const auto mapping_table = CreateMappingTable(channel_count); int error = 0; OpusDecoderPtr decoder{ opus_multistream_decoder_create(sample_rate, static_cast(channel_count), 1, num_stereo_streams, mapping_table.data(), &error)}; if (error != OPUS_OK || decoder == nullptr) { LOG_ERROR(Audio, "Failed to create Opus decoder (error={}).", error); IPC::ResponseBuilder rb{ctx, 2}; // TODO(ogniK): Use correct error code rb.Push(ResultUnknown); return; } IPC::ResponseBuilder rb{ctx, 2, 0, 1}; rb.Push(ResultSuccess); rb.PushIpcInterface( system, OpusDecoderState{std::move(decoder), sample_rate, channel_count}); } HwOpus::HwOpus(Core::System& system_) : ServiceFramework{system_, "hwopus"} { static const FunctionInfo functions[] = { {0, &HwOpus::OpenHardwareOpusDecoder, "OpenHardwareOpusDecoder"}, {1, &HwOpus::GetWorkBufferSize, "GetWorkBufferSize"}, {2, nullptr, "OpenOpusDecoderForMultiStream"}, {3, nullptr, "GetWorkBufferSizeForMultiStream"}, {4, &HwOpus::OpenHardwareOpusDecoderEx, "OpenHardwareOpusDecoderEx"}, {5, &HwOpus::GetWorkBufferSizeEx, "GetWorkBufferSizeEx"}, {6, nullptr, "OpenHardwareOpusDecoderForMultiStreamEx"}, {7, &HwOpus::GetWorkBufferSizeForMultiStreamEx, "GetWorkBufferSizeForMultiStreamEx"}, }; RegisterHandlers(functions); } HwOpus::~HwOpus() = default; } // namespace Service::Audio