// Copyright 2018 yuzu emulator team // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "audio_core/audio_renderer.h" #include "common/alignment.h" #include "common/bit_util.h" #include "common/common_funcs.h" #include "common/logging/log.h" #include "common/string_util.h" #include "core/core.h" #include "core/hle/ipc_helpers.h" #include "core/hle/kernel/hle_ipc.h" #include "core/hle/kernel/k_event.h" #include "core/hle/kernel/k_readable_event.h" #include "core/hle/kernel/k_writable_event.h" #include "core/hle/kernel/kernel.h" #include "core/hle/service/audio/audren_u.h" #include "core/hle/service/audio/errors.h" namespace Service::Audio { class IAudioRenderer final : public ServiceFramework { public: explicit IAudioRenderer(Core::System& system_, const AudioCommon::AudioRendererParameter& audren_params, const std::size_t instance_number) : ServiceFramework{system_, "IAudioRenderer"}, system_event{system.Kernel()} { // clang-format off static const FunctionInfo functions[] = { {0, &IAudioRenderer::GetSampleRate, "GetSampleRate"}, {1, &IAudioRenderer::GetSampleCount, "GetSampleCount"}, {2, &IAudioRenderer::GetMixBufferCount, "GetMixBufferCount"}, {3, &IAudioRenderer::GetState, "GetState"}, {4, &IAudioRenderer::RequestUpdateImpl, "RequestUpdate"}, {5, &IAudioRenderer::Start, "Start"}, {6, &IAudioRenderer::Stop, "Stop"}, {7, &IAudioRenderer::QuerySystemEvent, "QuerySystemEvent"}, {8, &IAudioRenderer::SetRenderingTimeLimit, "SetRenderingTimeLimit"}, {9, &IAudioRenderer::GetRenderingTimeLimit, "GetRenderingTimeLimit"}, {10, &IAudioRenderer::RequestUpdateImpl, "RequestUpdateAuto"}, {11, &IAudioRenderer::ExecuteAudioRendererRendering, "ExecuteAudioRendererRendering"}, }; // clang-format on RegisterHandlers(functions); Kernel::KAutoObject::Create(std::addressof(system_event)); system_event.Initialize("IAudioRenderer:SystemEvent"); renderer = std::make_unique( system.CoreTiming(), system.Memory(), audren_params, [this]() { const auto guard = LockService(); system_event.GetWritableEvent().Signal(); }, instance_number); } private: void GetSampleRate(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(renderer->GetSampleRate()); } void GetSampleCount(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(renderer->GetSampleCount()); } void GetState(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(static_cast(renderer->GetStreamState())); } void GetMixBufferCount(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(renderer->GetMixBufferCount()); } void RequestUpdateImpl(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "(STUBBED) called"); std::vector output_params(ctx.GetWriteBufferSize()); auto result = renderer->UpdateAudioRenderer(ctx.ReadBuffer(), output_params); if (result.IsSuccess()) { ctx.WriteBuffer(output_params); } IPC::ResponseBuilder rb{ctx, 2}; rb.Push(result); } void Start(Kernel::HLERequestContext& ctx) { LOG_WARNING(Service_Audio, "(STUBBED) called"); IPC::ResponseBuilder rb{ctx, 2}; rb.Push(ResultSuccess); } void Stop(Kernel::HLERequestContext& ctx) { LOG_WARNING(Service_Audio, "(STUBBED) called"); IPC::ResponseBuilder rb{ctx, 2}; rb.Push(ResultSuccess); } void QuerySystemEvent(Kernel::HLERequestContext& ctx) { LOG_WARNING(Service_Audio, "(STUBBED) called"); IPC::ResponseBuilder rb{ctx, 2, 1}; rb.Push(ResultSuccess); rb.PushCopyObjects(system_event.GetReadableEvent()); } void SetRenderingTimeLimit(Kernel::HLERequestContext& ctx) { IPC::RequestParser rp{ctx}; rendering_time_limit_percent = rp.Pop(); LOG_DEBUG(Service_Audio, "called. rendering_time_limit_percent={}", rendering_time_limit_percent); ASSERT(rendering_time_limit_percent <= 100); IPC::ResponseBuilder rb{ctx, 2}; rb.Push(ResultSuccess); } void GetRenderingTimeLimit(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(rendering_time_limit_percent); } void ExecuteAudioRendererRendering(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); // This service command currently only reports an unsupported operation // error code, or aborts. Given that, we just always return an error // code in this case. IPC::ResponseBuilder rb{ctx, 2}; rb.Push(ERR_NOT_SUPPORTED); } Kernel::KEvent system_event; std::unique_ptr renderer; u32 rendering_time_limit_percent = 100; }; class IAudioDevice final : public ServiceFramework { public: explicit IAudioDevice(Core::System& system_, Kernel::KEvent& buffer_event_, u32_le revision_) : ServiceFramework{system_, "IAudioDevice"}, buffer_event{buffer_event_}, revision{ revision_} { static const FunctionInfo functions[] = { {0, &IAudioDevice::ListAudioDeviceName, "ListAudioDeviceName"}, {1, &IAudioDevice::SetAudioDeviceOutputVolume, "SetAudioDeviceOutputVolume"}, {2, &IAudioDevice::GetAudioDeviceOutputVolume, "GetAudioDeviceOutputVolume"}, {3, &IAudioDevice::GetActiveAudioDeviceName, "GetActiveAudioDeviceName"}, {4, &IAudioDevice::QueryAudioDeviceSystemEvent, "QueryAudioDeviceSystemEvent"}, {5, &IAudioDevice::GetActiveChannelCount, "GetActiveChannelCount"}, {6, &IAudioDevice::ListAudioDeviceName, "ListAudioDeviceNameAuto"}, {7, &IAudioDevice::SetAudioDeviceOutputVolume, "SetAudioDeviceOutputVolumeAuto"}, {8, &IAudioDevice::GetAudioDeviceOutputVolume, "GetAudioDeviceOutputVolumeAuto"}, {10, &IAudioDevice::GetActiveAudioDeviceName, "GetActiveAudioDeviceNameAuto"}, {11, &IAudioDevice::QueryAudioDeviceInputEvent, "QueryAudioDeviceInputEvent"}, {12, &IAudioDevice::QueryAudioDeviceOutputEvent, "QueryAudioDeviceOutputEvent"}, {13, nullptr, "GetAudioSystemMasterVolumeSetting"}, }; RegisterHandlers(functions); } private: using AudioDeviceName = std::array; static constexpr std::array audio_device_names{{ "AudioStereoJackOutput", "AudioBuiltInSpeakerOutput", "AudioTvOutput", "AudioUsbDeviceOutput", }}; enum class DeviceType { AHUBHeadphones, AHUBSpeakers, HDA, USBOutput, }; void ListAudioDeviceName(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); const bool usb_output_supported = IsFeatureSupported(AudioFeatures::AudioUSBDeviceOutput, revision); const std::size_t count = ctx.GetWriteBufferSize() / sizeof(AudioDeviceName); std::vector name_buffer; name_buffer.reserve(audio_device_names.size()); for (std::size_t i = 0; i < count && i < audio_device_names.size(); i++) { const auto type = static_cast(i); if (!usb_output_supported && type == DeviceType::USBOutput) { continue; } const auto& device_name = audio_device_names[i]; auto& entry = name_buffer.emplace_back(); device_name.copy(entry.data(), device_name.size()); } ctx.WriteBuffer(name_buffer); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(static_cast(name_buffer.size())); } void SetAudioDeviceOutputVolume(Kernel::HLERequestContext& ctx) { IPC::RequestParser rp{ctx}; const f32 volume = rp.Pop(); const auto device_name_buffer = ctx.ReadBuffer(); const std::string name = Common::StringFromBuffer(device_name_buffer); LOG_WARNING(Service_Audio, "(STUBBED) called. name={}, volume={}", name, volume); IPC::ResponseBuilder rb{ctx, 2}; rb.Push(ResultSuccess); } void GetAudioDeviceOutputVolume(Kernel::HLERequestContext& ctx) { const auto device_name_buffer = ctx.ReadBuffer(); const std::string name = Common::StringFromBuffer(device_name_buffer); LOG_WARNING(Service_Audio, "(STUBBED) called. name={}", name); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(1.0f); } void GetActiveAudioDeviceName(Kernel::HLERequestContext& ctx) { LOG_WARNING(Service_Audio, "(STUBBED) called"); // Currently set to always be TV audio output. const auto& device_name = audio_device_names[2]; AudioDeviceName out_device_name{}; device_name.copy(out_device_name.data(), device_name.size()); ctx.WriteBuffer(out_device_name); IPC::ResponseBuilder rb{ctx, 2}; rb.Push(ResultSuccess); } void QueryAudioDeviceSystemEvent(Kernel::HLERequestContext& ctx) { LOG_WARNING(Service_Audio, "(STUBBED) called"); buffer_event.GetWritableEvent().Signal(); IPC::ResponseBuilder rb{ctx, 2, 1}; rb.Push(ResultSuccess); rb.PushCopyObjects(buffer_event.GetReadableEvent()); } void GetActiveChannelCount(Kernel::HLERequestContext& ctx) { LOG_WARNING(Service_Audio, "(STUBBED) called"); IPC::ResponseBuilder rb{ctx, 3}; rb.Push(ResultSuccess); rb.Push(1); } // Should be similar to QueryAudioDeviceOutputEvent void QueryAudioDeviceInputEvent(Kernel::HLERequestContext& ctx) { LOG_WARNING(Service_Audio, "(STUBBED) called"); IPC::ResponseBuilder rb{ctx, 2, 1}; rb.Push(ResultSuccess); rb.PushCopyObjects(buffer_event.GetReadableEvent()); } void QueryAudioDeviceOutputEvent(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); IPC::ResponseBuilder rb{ctx, 2, 1}; rb.Push(ResultSuccess); rb.PushCopyObjects(buffer_event.GetReadableEvent()); } Kernel::KEvent& buffer_event; u32_le revision = 0; }; AudRenU::AudRenU(Core::System& system_) : ServiceFramework{system_, "audren:u"}, buffer_event{system.Kernel()} { // clang-format off static const FunctionInfo functions[] = { {0, &AudRenU::OpenAudioRenderer, "OpenAudioRenderer"}, {1, &AudRenU::GetAudioRendererWorkBufferSize, "GetWorkBufferSize"}, {2, &AudRenU::GetAudioDeviceService, "GetAudioDeviceService"}, {3, &AudRenU::OpenAudioRendererForManualExecution, "OpenAudioRendererForManualExecution"}, {4, &AudRenU::GetAudioDeviceServiceWithRevisionInfo, "GetAudioDeviceServiceWithRevisionInfo"}, }; // clang-format on RegisterHandlers(functions); Kernel::KAutoObject::Create(std::addressof(buffer_event)); buffer_event.Initialize("IAudioOutBufferReleasedEvent"); } AudRenU::~AudRenU() = default; void AudRenU::OpenAudioRenderer(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); OpenAudioRendererImpl(ctx); } static u64 CalculateNumPerformanceEntries(const AudioCommon::AudioRendererParameter& params) { // +1 represents the final mix. return u64{params.effect_count} + params.submix_count + params.sink_count + params.voice_count + 1; } void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); // Several calculations below align the sizes being calculated // onto a 64 byte boundary. static constexpr u64 buffer_alignment_size = 64; // Some calculations that calculate portions of the buffer // that will contain information, on the other hand, align // the result of some of their calcularions on a 16 byte boundary. static constexpr u64 info_field_alignment_size = 16; // Maximum detail entries that may exist at one time for performance // frame statistics. static constexpr u64 max_perf_detail_entries = 100; // Size of the data structure representing the bulk of the voice-related state. static constexpr u64 voice_state_size_bytes = 0x100; // Size of the upsampler manager data structure constexpr u64 upsampler_manager_size = 0x48; // Calculates the part of the size that relates to mix buffers. const auto calculate_mix_buffer_sizes = [](const AudioCommon::AudioRendererParameter& params) { // As of 8.0.0 this is the maximum on voice channels. constexpr u64 max_voice_channels = 6; // The service expects the sample_count member of the parameters to either be // a value of 160 or 240, so the maximum sample count is assumed in order // to adequately handle all values at runtime. constexpr u64 default_max_sample_count = 240; const u64 total_mix_buffers = params.mix_buffer_count + max_voice_channels; u64 size = 0; size += total_mix_buffers * (sizeof(s32) * params.sample_count); size += total_mix_buffers * (sizeof(s32) * default_max_sample_count); size += u64{params.submix_count} + params.sink_count; size = Common::AlignUp(size, buffer_alignment_size); size += Common::AlignUp(params.unknown_30, buffer_alignment_size); size += Common::AlignUp(sizeof(s32) * params.mix_buffer_count, buffer_alignment_size); return size; }; // Calculates the portion of the size related to the mix data (and the sorting thereof). const auto calculate_mix_info_size = [](const AudioCommon::AudioRendererParameter& params) { // The size of the mixing info data structure. constexpr u64 mix_info_size = 0x940; // Consists of total submixes with the final mix included. const u64 total_mix_count = u64{params.submix_count} + 1; // The total number of effects that may be available to the audio renderer at any time. constexpr u64 max_effects = 256; // Calculates the part of the size related to the audio node state. // This will only be used if the audio revision supports the splitter. const auto calculate_node_state_size = [](std::size_t num_nodes) { // Internally within a nodestate, it appears to use a data structure // similar to a std::bitset<64> twice. constexpr u64 bit_size = Common::BitSize(); constexpr u64 num_bitsets = 2; // Node state instances have three states internally for performing // depth-first searches of nodes. Initialized, Found, and Done Sorting. constexpr u64 num_states = 3; u64 size = 0; size += (num_nodes * num_nodes) * sizeof(s32); size += num_states * (num_nodes * sizeof(s32)); size += num_bitsets * (Common::AlignUp(num_nodes, bit_size) / Common::BitSize()); return size; }; // Calculates the part of the size related to the adjacency (aka edge) matrix. const auto calculate_edge_matrix_size = [](std::size_t num_nodes) { return (num_nodes * num_nodes) * sizeof(s32); }; u64 size = 0; size += Common::AlignUp(sizeof(void*) * total_mix_count, info_field_alignment_size); size += Common::AlignUp(mix_info_size * total_mix_count, info_field_alignment_size); size += Common::AlignUp(sizeof(s32) * max_effects * params.submix_count, info_field_alignment_size); if (IsFeatureSupported(AudioFeatures::Splitter, params.revision)) { size += Common::AlignUp(calculate_node_state_size(total_mix_count) + calculate_edge_matrix_size(total_mix_count), info_field_alignment_size); } return size; }; // Calculates the part of the size related to voice channel info. const auto calculate_voice_info_size = [](const AudioCommon::AudioRendererParameter& params) { constexpr u64 voice_info_size = 0x220; constexpr u64 voice_resource_size = 0xD0; u64 size = 0; size += Common::AlignUp(sizeof(void*) * params.voice_count, info_field_alignment_size); size += Common::AlignUp(voice_info_size * params.voice_count, info_field_alignment_size); size += Common::AlignUp(voice_resource_size * params.voice_count, info_field_alignment_size); size += Common::AlignUp(voice_state_size_bytes * params.voice_count, info_field_alignment_size); return size; }; // Calculates the part of the size related to memory pools. const auto calculate_memory_pools_size = [](const AudioCommon::AudioRendererParameter& params) { const u64 num_memory_pools = sizeof(s32) * (u64{params.effect_count} + params.voice_count); const u64 memory_pool_info_size = 0x20; return Common::AlignUp(num_memory_pools * memory_pool_info_size, info_field_alignment_size); }; // Calculates the part of the size related to the splitter context. const auto calculate_splitter_context_size = [](const AudioCommon::AudioRendererParameter& params) -> u64 { if (!IsFeatureSupported(AudioFeatures::Splitter, params.revision)) { return 0; } constexpr u64 splitter_info_size = 0x20; constexpr u64 splitter_destination_data_size = 0xE0; u64 size = 0; size += params.num_splitter_send_channels; size += Common::AlignUp(splitter_info_size * params.splitter_count, info_field_alignment_size); size += Common::AlignUp(splitter_destination_data_size * params.num_splitter_send_channels, info_field_alignment_size); return size; }; // Calculates the part of the size related to the upsampler info. const auto calculate_upsampler_info_size = [](const AudioCommon::AudioRendererParameter& params) { constexpr u64 upsampler_info_size = 0x280; // Yes, using the buffer size over info alignment size is intentional here. return Common::AlignUp(upsampler_info_size * (u64{params.submix_count} + params.sink_count), buffer_alignment_size); }; // Calculates the part of the size related to effect info. const auto calculate_effect_info_size = [](const AudioCommon::AudioRendererParameter& params) { constexpr u64 effect_info_size = 0x2B0; return Common::AlignUp(effect_info_size * params.effect_count, info_field_alignment_size); }; // Calculates the part of the size related to audio sink info. const auto calculate_sink_info_size = [](const AudioCommon::AudioRendererParameter& params) { const u64 sink_info_size = 0x170; return Common::AlignUp(sink_info_size * params.sink_count, info_field_alignment_size); }; // Calculates the part of the size related to voice state info. const auto calculate_voice_state_size = [](const AudioCommon::AudioRendererParameter& params) { const u64 voice_state_size = 0x100; const u64 additional_size = buffer_alignment_size - 1; return Common::AlignUp(voice_state_size * params.voice_count + additional_size, info_field_alignment_size); }; // Calculates the part of the size related to performance statistics. const auto calculate_perf_size = [](const AudioCommon::AudioRendererParameter& params) { // Extra size value appended to the end of the calculation. constexpr u64 appended = 128; // Whether or not we assume the newer version of performance metrics data structures. const bool is_v2 = IsFeatureSupported(AudioFeatures::PerformanceMetricsVersion2, params.revision); // Data structure sizes constexpr u64 perf_statistics_size = 0x0C; const u64 header_size = is_v2 ? 0x30 : 0x18; const u64 entry_size = is_v2 ? 0x18 : 0x10; const u64 detail_size = is_v2 ? 0x18 : 0x10; const u64 entry_count = CalculateNumPerformanceEntries(params); const u64 size_per_frame = header_size + (entry_size * entry_count) + (detail_size * max_perf_detail_entries); u64 size = 0; size += Common::AlignUp(size_per_frame * params.performance_frame_count + 1, buffer_alignment_size); size += Common::AlignUp(perf_statistics_size, buffer_alignment_size); size += appended; return size; }; // Calculates the part of the size that relates to the audio command buffer. const auto calculate_command_buffer_size = [](const AudioCommon::AudioRendererParameter& params) { constexpr u64 alignment = (buffer_alignment_size - 1) * 2; if (!IsFeatureSupported(AudioFeatures::VariadicCommandBuffer, params.revision)) { constexpr u64 command_buffer_size = 0x18000; return command_buffer_size + alignment; } // When the variadic command buffer is supported, this means // the command generator for the audio renderer can issue commands // that are (as one would expect), variable in size. So what we need to do // is determine the maximum possible size for a few command data structures // then multiply them by the amount of present commands indicated by the given // respective audio parameters. constexpr u64 max_biquad_filters = 2; constexpr u64 max_mix_buffers = 24; constexpr u64 biquad_filter_command_size = 0x2C; constexpr u64 depop_mix_command_size = 0x24; constexpr u64 depop_setup_command_size = 0x50; constexpr u64 effect_command_max_size = 0x540; constexpr u64 mix_command_size = 0x1C; constexpr u64 mix_ramp_command_size = 0x24; constexpr u64 mix_ramp_grouped_command_size = 0x13C; constexpr u64 perf_command_size = 0x28; constexpr u64 sink_command_size = 0x130; constexpr u64 submix_command_max_size = depop_mix_command_size + (mix_command_size * max_mix_buffers) * max_mix_buffers; constexpr u64 volume_command_size = 0x1C; constexpr u64 volume_ramp_command_size = 0x20; constexpr u64 voice_biquad_filter_command_size = biquad_filter_command_size * max_biquad_filters; constexpr u64 voice_data_command_size = 0x9C; const u64 voice_command_max_size = (params.splitter_count * depop_setup_command_size) + (voice_data_command_size + voice_biquad_filter_command_size + volume_ramp_command_size + mix_ramp_grouped_command_size); // Now calculate the individual elements that comprise the size and add them together. const u64 effect_commands_size = params.effect_count * effect_command_max_size; const u64 final_mix_commands_size = depop_mix_command_size + volume_command_size * max_mix_buffers; const u64 perf_commands_size = perf_command_size * (CalculateNumPerformanceEntries(params) + max_perf_detail_entries); const u64 sink_commands_size = params.sink_count * sink_command_size; const u64 splitter_commands_size = params.num_splitter_send_channels * max_mix_buffers * mix_ramp_command_size; const u64 submix_commands_size = params.submix_count * submix_command_max_size; const u64 voice_commands_size = params.voice_count * voice_command_max_size; return effect_commands_size + final_mix_commands_size + perf_commands_size + sink_commands_size + splitter_commands_size + submix_commands_size + voice_commands_size + alignment; }; IPC::RequestParser rp{ctx}; const auto params = rp.PopRaw(); u64 size = 0; size += calculate_mix_buffer_sizes(params); size += calculate_mix_info_size(params); size += calculate_voice_info_size(params); size += upsampler_manager_size; size += calculate_memory_pools_size(params); size += calculate_splitter_context_size(params); size = Common::AlignUp(size, buffer_alignment_size); size += calculate_upsampler_info_size(params); size += calculate_effect_info_size(params); size += calculate_sink_info_size(params); size += calculate_voice_state_size(params); size += calculate_perf_size(params); size += calculate_command_buffer_size(params); // finally, 4KB page align the size, and we're done. size = Common::AlignUp(size, 4096); IPC::ResponseBuilder rb{ctx, 4}; rb.Push(ResultSuccess); rb.Push(size); LOG_DEBUG(Service_Audio, "buffer_size=0x{:X}", size); } void AudRenU::GetAudioDeviceService(Kernel::HLERequestContext& ctx) { IPC::RequestParser rp{ctx}; const u64 aruid = rp.Pop(); LOG_DEBUG(Service_Audio, "called. aruid={:016X}", aruid); // Revisionless variant of GetAudioDeviceServiceWithRevisionInfo that // always assumes the initial release revision (REV1). IPC::ResponseBuilder rb{ctx, 2, 0, 1}; rb.Push(ResultSuccess); rb.PushIpcInterface(system, buffer_event, Common::MakeMagic('R', 'E', 'V', '1')); } void AudRenU::OpenAudioRendererForManualExecution(Kernel::HLERequestContext& ctx) { LOG_DEBUG(Service_Audio, "called"); OpenAudioRendererImpl(ctx); } void AudRenU::GetAudioDeviceServiceWithRevisionInfo(Kernel::HLERequestContext& ctx) { struct Parameters { u32 revision; u64 aruid; }; IPC::RequestParser rp{ctx}; const auto [revision, aruid] = rp.PopRaw(); LOG_DEBUG(Service_Audio, "called. revision={:08X}, aruid={:016X}", revision, aruid); IPC::ResponseBuilder rb{ctx, 2, 0, 1}; rb.Push(ResultSuccess); rb.PushIpcInterface(system, buffer_event, revision); } void AudRenU::OpenAudioRendererImpl(Kernel::HLERequestContext& ctx) { IPC::RequestParser rp{ctx}; const auto params = rp.PopRaw(); IPC::ResponseBuilder rb{ctx, 2, 0, 1}; rb.Push(ResultSuccess); rb.PushIpcInterface(system, params, audren_instance_count++); } bool IsFeatureSupported(AudioFeatures feature, u32_le revision) { // Byte swap const u32_be version_num = revision - Common::MakeMagic('R', 'E', 'V', '0'); switch (feature) { case AudioFeatures::AudioUSBDeviceOutput: return version_num >= 4U; case AudioFeatures::Splitter: return version_num >= 2U; case AudioFeatures::PerformanceMetricsVersion2: case AudioFeatures::VariadicCommandBuffer: return version_num >= 5U; default: return false; } } } // namespace Service::Audio