// Copyright 2014 Citra Emulator Project / PPSSPP Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include #include #include #include "common/common.h" #include "common/thread_queue_list.h" #include "core/core.h" #include "core/mem_map.h" #include "core/hle/hle.h" #include "core/hle/syscall.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/thread.h" // Enums enum ThreadStatus { THREADSTATUS_RUNNING = 1, THREADSTATUS_READY = 2, THREADSTATUS_WAIT = 4, THREADSTATUS_SUSPEND = 8, THREADSTATUS_DORMANT = 16, THREADSTATUS_DEAD = 32, THREADSTATUS_WAITSUSPEND = THREADSTATUS_WAIT | THREADSTATUS_SUSPEND }; enum WaitType { WAITTYPE_NONE, WAITTYPE_SLEEP, WAITTYPE_SEMA, WAITTYPE_EVENTFLAG, WAITTYPE_THREADEND, WAITTYPE_VBLANK, WAITTYPE_MUTEX, WAITTYPE_SYNCH, }; typedef s32 Handle; class Thread : public KernelObject { public: const char *GetName() { return name; } const char *GetTypeName() { return "Thread"; } static KernelIDType GetStaticIDType() { return KERNEL_ID_TYPE_THREAD; } KernelIDType GetIDType() const { return KERNEL_ID_TYPE_THREAD; } inline bool IsRunning() const { return (status & THREADSTATUS_RUNNING) != 0; } inline bool IsStopped() const { return (status & THREADSTATUS_DORMANT) != 0; } inline bool IsReady() const { return (status & THREADSTATUS_READY) != 0; } inline bool IsWaiting() const { return (status & THREADSTATUS_WAIT) != 0; } inline bool IsSuspended() const { return (status & THREADSTATUS_SUSPEND) != 0; } ThreadContext context; u32 status; u32 entry_point; u32 stack_top; u32 stack_size; s32 initial_priority; s32 current_priority; s32 processor_id; WaitType wait_type; char name[KERNEL_MAX_NAME_LENGTH+1]; }; // Lists all thread ids that aren't deleted/etc. std::vector g_thread_queue; // Lists only ready thread ids. Common::ThreadQueueList g_thread_ready_queue; Handle g_current_thread_handle; Thread* g_current_thread; inline Thread *__GetCurrentThread() { return g_current_thread; } inline void __SetCurrentThread(Thread *t) { g_current_thread = t; g_current_thread_handle = t->GetHandle(); } //////////////////////////////////////////////////////////////////////////////////////////////////// /// Saves the current CPU context void __KernelSaveContext(ThreadContext &ctx) { ctx.cpu_registers[0] = Core::g_app_core->GetReg(0); ctx.cpu_registers[1] = Core::g_app_core->GetReg(1); ctx.cpu_registers[2] = Core::g_app_core->GetReg(2); ctx.cpu_registers[3] = Core::g_app_core->GetReg(3); ctx.cpu_registers[4] = Core::g_app_core->GetReg(4); ctx.cpu_registers[5] = Core::g_app_core->GetReg(5); ctx.cpu_registers[6] = Core::g_app_core->GetReg(6); ctx.cpu_registers[7] = Core::g_app_core->GetReg(7); ctx.cpu_registers[8] = Core::g_app_core->GetReg(8); ctx.cpu_registers[9] = Core::g_app_core->GetReg(9); ctx.cpu_registers[10] = Core::g_app_core->GetReg(10); ctx.cpu_registers[11] = Core::g_app_core->GetReg(11); ctx.cpu_registers[12] = Core::g_app_core->GetReg(12); ctx.sp = Core::g_app_core->GetReg(13); ctx.lr = Core::g_app_core->GetReg(14); ctx.pc = Core::g_app_core->GetPC(); ctx.cpsr = Core::g_app_core->GetCPSR(); } /// Loads a CPU context void __KernelLoadContext(const ThreadContext &ctx) { Core::g_app_core->SetReg(0, ctx.cpu_registers[0]); Core::g_app_core->SetReg(1, ctx.cpu_registers[1]); Core::g_app_core->SetReg(2, ctx.cpu_registers[2]); Core::g_app_core->SetReg(3, ctx.cpu_registers[3]); Core::g_app_core->SetReg(4, ctx.cpu_registers[4]); Core::g_app_core->SetReg(5, ctx.cpu_registers[5]); Core::g_app_core->SetReg(6, ctx.cpu_registers[6]); Core::g_app_core->SetReg(7, ctx.cpu_registers[7]); Core::g_app_core->SetReg(8, ctx.cpu_registers[8]); Core::g_app_core->SetReg(9, ctx.cpu_registers[9]); Core::g_app_core->SetReg(10, ctx.cpu_registers[10]); Core::g_app_core->SetReg(11, ctx.cpu_registers[11]); Core::g_app_core->SetReg(12, ctx.cpu_registers[12]); Core::g_app_core->SetReg(13, ctx.sp); Core::g_app_core->SetReg(14, ctx.lr); //Core::g_app_core->SetReg(15, ctx.pc); Core::g_app_core->SetPC(ctx.pc); Core::g_app_core->SetCPSR(ctx.cpsr); } /// Resets a thread void __KernelResetThread(Thread *t, s32 lowest_priority) { memset(&t->context, 0, sizeof(ThreadContext)); t->context.pc = t->entry_point; t->context.sp = t->stack_top; if (t->current_priority < lowest_priority) { t->current_priority = t->initial_priority; } t->wait_type = WAITTYPE_NONE; } /// Change a thread to "ready" state void __KernelChangeReadyState(Thread *t, bool ready) { Handle handle = t->GetHandle(); if (t->IsReady()) { if (!ready) { g_thread_ready_queue.remove(t->current_priority, handle); } } else if (ready) { if (t->IsRunning()) { g_thread_ready_queue.push_front(t->current_priority, handle); } else { g_thread_ready_queue.push_back(t->current_priority, handle); } t->status = THREADSTATUS_READY; } } /// Changes a threads state void __KernelChangeThreadState(Thread *t, ThreadStatus new_status) { if (!t || t->status == new_status) { return; } __KernelChangeReadyState(t, (new_status & THREADSTATUS_READY) != 0); t->status = new_status; if (new_status == THREADSTATUS_WAIT) { if (t->wait_type == WAITTYPE_NONE) { printf("ERROR: Waittype none not allowed here\n"); } } } /// Calls a thread by marking it as "ready" (note: will not actually execute until current thread yields) void __KernelCallThread(Thread *t) { // Stop waiting if (t->wait_type != WAITTYPE_NONE) { t->wait_type = WAITTYPE_NONE; } __KernelChangeThreadState(t, THREADSTATUS_READY); } /// Creates a new thread Thread *__KernelCreateThread(Handle &handle, const char *name, u32 entry_point, s32 priority, s32 processor_id, u32 stack_top, int stack_size) { Thread *t = new Thread; handle = g_kernel_objects.Create(t); g_thread_queue.push_back(handle); g_thread_ready_queue.prepare(priority); t->status = THREADSTATUS_DORMANT; t->entry_point = entry_point; t->stack_top = stack_top; t->stack_size = stack_size; t->initial_priority = t->current_priority = priority; t->processor_id = processor_id; t->wait_type = WAITTYPE_NONE; strncpy(t->name, name, KERNEL_MAX_NAME_LENGTH); t->name[KERNEL_MAX_NAME_LENGTH] = '\0'; return t; } /// Creates a new thread - wrapper for external user Handle __KernelCreateThread(const char *name, u32 entry_point, s32 priority, s32 processor_id, u32 stack_top, int stack_size) { if (name == NULL) { ERROR_LOG(KERNEL, "__KernelCreateThread(): NULL name"); return -1; } if ((u32)stack_size < 0x200) { ERROR_LOG(KERNEL, "__KernelCreateThread(name=%s): invalid stack_size=0x%08X", name, stack_size); return -1; } if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); WARN_LOG(KERNEL, "__KernelCreateThread(name=%s): invalid priority=0x%08X, clamping to %08X", name, priority, new_priority); // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // validity of this priority = new_priority; } if (!Memory::GetPointer(entry_point)) { ERROR_LOG(KERNEL, "__KernelCreateThread(name=%s): invalid entry %08x", name, entry_point); return -1; } Handle handle; Thread *t = __KernelCreateThread(handle, name, entry_point, priority, processor_id, stack_top, stack_size); HLE::EatCycles(32000); // This won't schedule to the new thread, but it may to one woken from eating cycles. // Technically, this should not eat all at once, and reschedule in the middle, but that's hard. HLE::ReSchedule("thread created"); __KernelCallThread(t); return handle; } /// Switches CPU context to that of the specified thread void __KernelSwitchContext(Thread* t, const char *reason) { Thread *cur = __GetCurrentThread(); // Save context for current thread if (cur) { __KernelSaveContext(cur->context); if (cur->IsRunning()) { __KernelChangeReadyState(cur, true); } } // Load context of new thread if (t) { __SetCurrentThread(t); __KernelChangeReadyState(t, false); t->status = (t->status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY; t->wait_type = WAITTYPE_NONE; __KernelLoadContext(t->context); } else { __SetCurrentThread(NULL); } } /// Gets the next thread that is ready to be run by priority Thread *__KernelNextThread() { Handle next; Thread *cur = __GetCurrentThread(); if (cur && cur->IsRunning()) { next = g_thread_ready_queue.pop_first_better(cur->current_priority); } else { next = g_thread_ready_queue.pop_first(); } if (next < 0) { return NULL; } return g_kernel_objects.GetFast(next); } /// Sets up the primary application thread Handle __KernelSetupMainThread(s32 priority, int stack_size) { Handle handle; // Initialize new "main" thread Thread *t = __KernelCreateThread(handle, "main", Core::g_app_core->GetPC(), priority, THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END, stack_size); __KernelResetThread(t, 0); // If running another thread already, set it to "ready" state Thread *cur = __GetCurrentThread(); if (cur && cur->IsRunning()) { __KernelChangeReadyState(cur, true); } // Run new "main" thread __SetCurrentThread(t); t->status = THREADSTATUS_RUNNING; __KernelLoadContext(t->context); return handle; } /// Resumes a thread from waiting by marking it as "ready" void __KernelResumeThreadFromWait(Handle handle) { u32 error; Thread *t = g_kernel_objects.Get(handle, error); if (t) { t->status &= ~THREADSTATUS_WAIT; if (!(t->status & (THREADSTATUS_WAITSUSPEND | THREADSTATUS_DORMANT | THREADSTATUS_DEAD))) { __KernelChangeReadyState(t, true); } } } /// Puts a thread in the wait state for the given type/reason void __KernelWaitCurThread(WaitType wait_type, const char *reason) { Thread *t = __GetCurrentThread(); t->wait_type = wait_type; __KernelChangeThreadState(t, ThreadStatus(THREADSTATUS_WAIT | (t->status & THREADSTATUS_SUSPEND))); } /// Reschedules to the next available thread (call after current thread is suspended) void __KernelReschedule(const char *reason) { Thread *next = __KernelNextThread(); if (next > 0) { __KernelSwitchContext(next, reason); } } //////////////////////////////////////////////////////////////////////////////////////////////////// /// Wait thread - on WaitSynchronization void __KernelWaitThread_Synchronization() { // TODO(bunnei): Just a placeholder function for now... FixMe __KernelWaitCurThread(WAITTYPE_SYNCH, "waitSynchronization called"); } //////////////////////////////////////////////////////////////////////////////////////////////////// void __KernelThreadingInit() { } void __KernelThreadingShutdown() { }