// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/assert.h" #include "common/common_funcs.h" #include "common/logging/log.h" #include "common/make_unique.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/thread.h" #include "core/hle/kernel/vm_manager.h" #include "core/mem_map.h" #include "core/memory.h" namespace Kernel { SharedPtr CodeSet::Create(std::string name, u64 program_id) { SharedPtr codeset(new CodeSet); codeset->name = std::move(name); codeset->program_id = program_id; return codeset; } CodeSet::CodeSet() {} CodeSet::~CodeSet() {} u32 Process::next_process_id; SharedPtr Process::Create(SharedPtr code_set) { SharedPtr process(new Process); process->codeset = std::move(code_set); process->flags.raw = 0; process->flags.memory_region = MemoryRegion::APPLICATION; Memory::InitLegacyAddressSpace(process->vm_manager); return process; } void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) { for (size_t i = 0; i < len; ++i) { u32 descriptor = kernel_caps[i]; u32 type = descriptor >> 20; if (descriptor == 0xFFFFFFFF) { // Unused descriptor entry continue; } else if ((type & 0xF00) == 0xE00) { // 0x0FFF // Allowed interrupts list LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored"); } else if ((type & 0xF80) == 0xF00) { // 0x07FF // Allowed syscalls mask unsigned int index = ((descriptor >> 24) & 7) * 24; u32 bits = descriptor & 0xFFFFFF; while (bits && index < svc_access_mask.size()) { svc_access_mask.set(index, bits & 1); ++index; bits >>= 1; } } else if ((type & 0xFF0) == 0xFE0) { // 0x00FF // Handle table size handle_table_size = descriptor & 0x3FF; } else if ((type & 0xFF8) == 0xFF0) { // 0x007F // Misc. flags flags.raw = descriptor & 0xFFFF; } else if ((type & 0xFFE) == 0xFF8) { // 0x001F // Mapped memory range if (i+1 >= len || ((kernel_caps[i+1] >> 20) & 0xFFE) != 0xFF8) { LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored."); continue; } u32 end_desc = kernel_caps[i+1]; ++i; // Skip over the second descriptor on the next iteration AddressMapping mapping; mapping.address = descriptor << 12; mapping.size = (end_desc << 12) - mapping.address; mapping.writable = (descriptor & (1 << 20)) != 0; mapping.unk_flag = (end_desc & (1 << 20)) != 0; address_mappings.push_back(mapping); } else if ((type & 0xFFF) == 0xFFE) { // 0x000F // Mapped memory page AddressMapping mapping; mapping.address = descriptor << 12; mapping.size = Memory::PAGE_SIZE; mapping.writable = true; // TODO: Not sure if correct mapping.unk_flag = false; } else if ((type & 0xFE0) == 0xFC0) { // 0x01FF // Kernel version int minor = descriptor & 0xFF; int major = (descriptor >> 8) & 0xFF; LOG_INFO(Loader, "ExHeader kernel version ignored: %d.%d", major, minor); } else { LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x%08X", descriptor); } } } void Process::Run(s32 main_thread_priority, u32 stack_size) { auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) { auto vma = vm_manager.MapMemoryBlock(segment.addr, codeset->memory, segment.offset, segment.size, memory_state).Unwrap(); vm_manager.Reprotect(vma, permissions); }; // Map CodeSet segments MapSegment(codeset->code, VMAPermission::ReadExecute, MemoryState::Code); MapSegment(codeset->rodata, VMAPermission::Read, MemoryState::Code); MapSegment(codeset->data, VMAPermission::ReadWrite, MemoryState::Private); // Allocate and map stack vm_manager.MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size, std::make_shared>(stack_size, 0), 0, stack_size, MemoryState::Locked ).Unwrap(); vm_manager.LogLayout(Log::Level::Debug); Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority); } ResultVal Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) { if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) { return ERR_INVALID_ADDRESS; } if (heap_memory == nullptr) { // Initialize heap heap_memory = std::make_shared>(); heap_start = heap_end = target; } // If necessary, expand backing vector to cover new heap extents. if (target < heap_start) { heap_memory->insert(begin(*heap_memory), heap_start - target, 0); heap_start = target; vm_manager.RefreshMemoryBlockMappings(heap_memory.get()); } if (target + size > heap_end) { heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0); heap_end = target + size; vm_manager.RefreshMemoryBlockMappings(heap_memory.get()); } ASSERT(heap_end - heap_start == heap_memory->size()); CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start, size, MemoryState::Private)); vm_manager.Reprotect(vma, perms); return MakeResult(heap_end - size); } ResultCode Process::HeapFree(VAddr target, u32 size) { if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) { return ERR_INVALID_ADDRESS; } ResultCode result = vm_manager.UnmapRange(target, size); if (result.IsError()) return result; return RESULT_SUCCESS; } ResultVal Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) { if (linear_heap_memory == nullptr) { // Initialize heap linear_heap_memory = std::make_shared>(); } VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size(); // Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address), // but explicit addresses are also accepted and respected. if (target == 0) { target = heap_end; } if (target < Memory::LINEAR_HEAP_VADDR || target + size > Memory::LINEAR_HEAP_VADDR_END || target > heap_end || target + size < target) { return ERR_INVALID_ADDRESS; } // Expansion of the linear heap is only allowed if you do an allocation immediatelly at its // end. It's possible to free gaps in the middle of the heap and then reallocate them later, // but expansions are only allowed at the end. if (target == heap_end) { linear_heap_memory->insert(linear_heap_memory->end(), size, 0); vm_manager.RefreshMemoryBlockMappings(linear_heap_memory.get()); } size_t offset = target - Memory::LINEAR_HEAP_VADDR; CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linear_heap_memory, offset, size, MemoryState::Continuous)); vm_manager.Reprotect(vma, perms); return MakeResult(target); } ResultCode Process::LinearFree(VAddr target, u32 size) { if (linear_heap_memory == nullptr || target < Memory::LINEAR_HEAP_VADDR || target + size > Memory::LINEAR_HEAP_VADDR_END || target + size < target) { return ERR_INVALID_ADDRESS; } VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size(); if (target + size > heap_end) { return ERR_INVALID_ADDRESS_STATE; } ResultCode result = vm_manager.UnmapRange(target, size); if (result.IsError()) return result; if (target + size == heap_end) { // End of linear heap has been freed, so check what's the last allocated block in it and // reduce the size. auto vma = vm_manager.FindVMA(target); ASSERT(vma != vm_manager.vma_map.end()); ASSERT(vma->second.type == VMAType::Free); VAddr new_end = vma->second.base; if (new_end >= Memory::LINEAR_HEAP_VADDR) { linear_heap_memory->resize(new_end - Memory::LINEAR_HEAP_VADDR); } } return RESULT_SUCCESS; } Kernel::Process::Process() {} Kernel::Process::~Process() {} SharedPtr g_current_process; }