// Copyright 2020 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/alignment.h" #include "common/assert.h" #include "common/literals.h" #include "common/scope_exit.h" #include "core/core.h" #include "core/hle/kernel/k_address_space_info.h" #include "core/hle/kernel/k_memory_block.h" #include "core/hle/kernel/k_memory_block_manager.h" #include "core/hle/kernel/k_page_linked_list.h" #include "core/hle/kernel/k_page_table.h" #include "core/hle/kernel/k_process.h" #include "core/hle/kernel/k_resource_limit.h" #include "core/hle/kernel/k_scoped_resource_reservation.h" #include "core/hle/kernel/k_system_control.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/svc_results.h" #include "core/memory.h" namespace Kernel { namespace { using namespace Common::Literals; constexpr std::size_t GetAddressSpaceWidthFromType(FileSys::ProgramAddressSpaceType as_type) { switch (as_type) { case FileSys::ProgramAddressSpaceType::Is32Bit: case FileSys::ProgramAddressSpaceType::Is32BitNoMap: return 32; case FileSys::ProgramAddressSpaceType::Is36Bit: return 36; case FileSys::ProgramAddressSpaceType::Is39Bit: return 39; default: UNREACHABLE(); return {}; } } constexpr u64 GetAddressInRange(const KMemoryInfo& info, VAddr addr) { if (info.GetAddress() < addr) { return addr; } return info.GetAddress(); } constexpr std::size_t GetSizeInRange(const KMemoryInfo& info, VAddr start, VAddr end) { std::size_t size{info.GetSize()}; if (info.GetAddress() < start) { size -= start - info.GetAddress(); } if (info.GetEndAddress() > end) { size -= info.GetEndAddress() - end; } return size; } } // namespace KPageTable::KPageTable(Core::System& system_) : system{system_} {} ResultCode KPageTable::InitializeForProcess(FileSys::ProgramAddressSpaceType as_type, bool enable_aslr, VAddr code_addr, std::size_t code_size, KMemoryManager::Pool pool) { const auto GetSpaceStart = [this](KAddressSpaceInfo::Type type) { return KAddressSpaceInfo::GetAddressSpaceStart(address_space_width, type); }; const auto GetSpaceSize = [this](KAddressSpaceInfo::Type type) { return KAddressSpaceInfo::GetAddressSpaceSize(address_space_width, type); }; // Set our width and heap/alias sizes address_space_width = GetAddressSpaceWidthFromType(as_type); const VAddr start = 0; const VAddr end{1ULL << address_space_width}; std::size_t alias_region_size{GetSpaceSize(KAddressSpaceInfo::Type::Alias)}; std::size_t heap_region_size{GetSpaceSize(KAddressSpaceInfo::Type::Heap)}; ASSERT(start <= code_addr); ASSERT(code_addr < code_addr + code_size); ASSERT(code_addr + code_size - 1 <= end - 1); // Adjust heap/alias size if we don't have an alias region if (as_type == FileSys::ProgramAddressSpaceType::Is32BitNoMap) { heap_region_size += alias_region_size; alias_region_size = 0; } // Set code regions and determine remaining constexpr std::size_t RegionAlignment{2_MiB}; VAddr process_code_start{}; VAddr process_code_end{}; std::size_t stack_region_size{}; std::size_t kernel_map_region_size{}; if (address_space_width == 39) { alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Alias); heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Heap); stack_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Stack); kernel_map_region_size = GetSpaceSize(KAddressSpaceInfo::Type::MapSmall); code_region_start = GetSpaceStart(KAddressSpaceInfo::Type::Map39Bit); code_region_end = code_region_start + GetSpaceSize(KAddressSpaceInfo::Type::Map39Bit); alias_code_region_start = code_region_start; alias_code_region_end = code_region_end; process_code_start = Common::AlignDown(code_addr, RegionAlignment); process_code_end = Common::AlignUp(code_addr + code_size, RegionAlignment); } else { stack_region_size = 0; kernel_map_region_size = 0; code_region_start = GetSpaceStart(KAddressSpaceInfo::Type::MapSmall); code_region_end = code_region_start + GetSpaceSize(KAddressSpaceInfo::Type::MapSmall); stack_region_start = code_region_start; alias_code_region_start = code_region_start; alias_code_region_end = GetSpaceStart(KAddressSpaceInfo::Type::MapLarge) + GetSpaceSize(KAddressSpaceInfo::Type::MapLarge); stack_region_end = code_region_end; kernel_map_region_start = code_region_start; kernel_map_region_end = code_region_end; process_code_start = code_region_start; process_code_end = code_region_end; } // Set other basic fields is_aslr_enabled = enable_aslr; address_space_start = start; address_space_end = end; is_kernel = false; // Determine the region we can place our undetermineds in VAddr alloc_start{}; std::size_t alloc_size{}; if ((process_code_start - code_region_start) >= (end - process_code_end)) { alloc_start = code_region_start; alloc_size = process_code_start - code_region_start; } else { alloc_start = process_code_end; alloc_size = end - process_code_end; } const std::size_t needed_size{ (alias_region_size + heap_region_size + stack_region_size + kernel_map_region_size)}; if (alloc_size < needed_size) { UNREACHABLE(); return ResultOutOfMemory; } const std::size_t remaining_size{alloc_size - needed_size}; // Determine random placements for each region std::size_t alias_rnd{}, heap_rnd{}, stack_rnd{}, kmap_rnd{}; if (enable_aslr) { alias_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment; heap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment; stack_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment; kmap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment; } // Setup heap and alias regions alias_region_start = alloc_start + alias_rnd; alias_region_end = alias_region_start + alias_region_size; heap_region_start = alloc_start + heap_rnd; heap_region_end = heap_region_start + heap_region_size; if (alias_rnd <= heap_rnd) { heap_region_start += alias_region_size; heap_region_end += alias_region_size; } else { alias_region_start += heap_region_size; alias_region_end += heap_region_size; } // Setup stack region if (stack_region_size) { stack_region_start = alloc_start + stack_rnd; stack_region_end = stack_region_start + stack_region_size; if (alias_rnd < stack_rnd) { stack_region_start += alias_region_size; stack_region_end += alias_region_size; } else { alias_region_start += stack_region_size; alias_region_end += stack_region_size; } if (heap_rnd < stack_rnd) { stack_region_start += heap_region_size; stack_region_end += heap_region_size; } else { heap_region_start += stack_region_size; heap_region_end += stack_region_size; } } // Setup kernel map region if (kernel_map_region_size) { kernel_map_region_start = alloc_start + kmap_rnd; kernel_map_region_end = kernel_map_region_start + kernel_map_region_size; if (alias_rnd < kmap_rnd) { kernel_map_region_start += alias_region_size; kernel_map_region_end += alias_region_size; } else { alias_region_start += kernel_map_region_size; alias_region_end += kernel_map_region_size; } if (heap_rnd < kmap_rnd) { kernel_map_region_start += heap_region_size; kernel_map_region_end += heap_region_size; } else { heap_region_start += kernel_map_region_size; heap_region_end += kernel_map_region_size; } if (stack_region_size) { if (stack_rnd < kmap_rnd) { kernel_map_region_start += stack_region_size; kernel_map_region_end += stack_region_size; } else { stack_region_start += kernel_map_region_size; stack_region_end += kernel_map_region_size; } } } // Set heap members current_heap_end = heap_region_start; max_heap_size = 0; max_physical_memory_size = 0; // Ensure that we regions inside our address space auto IsInAddressSpace = [&](VAddr addr) { return address_space_start <= addr && addr <= address_space_end; }; ASSERT(IsInAddressSpace(alias_region_start)); ASSERT(IsInAddressSpace(alias_region_end)); ASSERT(IsInAddressSpace(heap_region_start)); ASSERT(IsInAddressSpace(heap_region_end)); ASSERT(IsInAddressSpace(stack_region_start)); ASSERT(IsInAddressSpace(stack_region_end)); ASSERT(IsInAddressSpace(kernel_map_region_start)); ASSERT(IsInAddressSpace(kernel_map_region_end)); // Ensure that we selected regions that don't overlap const VAddr alias_start{alias_region_start}; const VAddr alias_last{alias_region_end - 1}; const VAddr heap_start{heap_region_start}; const VAddr heap_last{heap_region_end - 1}; const VAddr stack_start{stack_region_start}; const VAddr stack_last{stack_region_end - 1}; const VAddr kmap_start{kernel_map_region_start}; const VAddr kmap_last{kernel_map_region_end - 1}; ASSERT(alias_last < heap_start || heap_last < alias_start); ASSERT(alias_last < stack_start || stack_last < alias_start); ASSERT(alias_last < kmap_start || kmap_last < alias_start); ASSERT(heap_last < stack_start || stack_last < heap_start); ASSERT(heap_last < kmap_start || kmap_last < heap_start); current_heap_end = heap_region_start; max_heap_size = 0; mapped_physical_memory_size = 0; memory_pool = pool; page_table_impl.Resize(address_space_width, PageBits); return InitializeMemoryLayout(start, end); } ResultCode KPageTable::MapProcessCode(VAddr addr, std::size_t num_pages, KMemoryState state, KMemoryPermission perm) { std::lock_guard lock{page_table_lock}; const u64 size{num_pages * PageSize}; if (!CanContain(addr, size, state)) { return ResultInvalidCurrentMemory; } if (IsRegionMapped(addr, size)) { return ResultInvalidCurrentMemory; } KPageLinkedList page_linked_list; CASCADE_CODE(system.Kernel().MemoryManager().Allocate(page_linked_list, num_pages, memory_pool, allocation_option)); CASCADE_CODE(Operate(addr, num_pages, page_linked_list, OperationType::MapGroup)); block_manager->Update(addr, num_pages, state, perm); return ResultSuccess; } ResultCode KPageTable::MapCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) { std::lock_guard lock{page_table_lock}; const std::size_t num_pages{size / PageSize}; KMemoryState state{}; KMemoryPermission perm{}; CASCADE_CODE(CheckMemoryState(&state, &perm, nullptr, nullptr, src_addr, size, KMemoryState::All, KMemoryState::Normal, KMemoryPermission::All, KMemoryPermission::UserReadWrite, KMemoryAttribute::Mask, KMemoryAttribute::None, KMemoryAttribute::IpcAndDeviceMapped)); if (IsRegionMapped(dst_addr, size)) { return ResultInvalidCurrentMemory; } KPageLinkedList page_linked_list; AddRegionToPages(src_addr, num_pages, page_linked_list); { auto block_guard = detail::ScopeExit( [&] { Operate(src_addr, num_pages, perm, OperationType::ChangePermissions); }); CASCADE_CODE(Operate(src_addr, num_pages, KMemoryPermission::None, OperationType::ChangePermissions)); CASCADE_CODE(MapPages(dst_addr, page_linked_list, KMemoryPermission::None)); block_guard.Cancel(); } block_manager->Update(src_addr, num_pages, state, KMemoryPermission::None, KMemoryAttribute::Locked); block_manager->Update(dst_addr, num_pages, KMemoryState::AliasCode); return ResultSuccess; } ResultCode KPageTable::UnmapCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) { std::lock_guard lock{page_table_lock}; if (!size) { return ResultSuccess; } const std::size_t num_pages{size / PageSize}; CASCADE_CODE(CheckMemoryState(nullptr, nullptr, nullptr, nullptr, src_addr, size, KMemoryState::All, KMemoryState::Normal, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::Mask, KMemoryAttribute::Locked, KMemoryAttribute::IpcAndDeviceMapped)); KMemoryState state{}; CASCADE_CODE(CheckMemoryState( &state, nullptr, nullptr, nullptr, dst_addr, PageSize, KMemoryState::FlagCanCodeAlias, KMemoryState::FlagCanCodeAlias, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::Mask, KMemoryAttribute::None, KMemoryAttribute::IpcAndDeviceMapped)); CASCADE_CODE(CheckMemoryState(dst_addr, size, KMemoryState::All, state, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::Mask, KMemoryAttribute::None)); CASCADE_CODE(Operate(dst_addr, num_pages, KMemoryPermission::None, OperationType::Unmap)); block_manager->Update(dst_addr, num_pages, KMemoryState::Free); block_manager->Update(src_addr, num_pages, KMemoryState::Normal, KMemoryPermission::UserReadWrite); system.InvalidateCpuInstructionCacheRange(dst_addr, size); return ResultSuccess; } ResultCode KPageTable::UnmapProcessMemory(VAddr dst_addr, std::size_t size, KPageTable& src_page_table, VAddr src_addr) { std::lock_guard lock{page_table_lock}; const std::size_t num_pages{size / PageSize}; // Check that the memory is mapped in the destination process. size_t num_allocator_blocks; R_TRY(CheckMemoryState(&num_allocator_blocks, dst_addr, size, KMemoryState::All, KMemoryState::SharedCode, KMemoryPermission::UserReadWrite, KMemoryPermission::UserReadWrite, KMemoryAttribute::All, KMemoryAttribute::None)); // Check that the memory is mapped in the source process. R_TRY(src_page_table.CheckMemoryState(src_addr, size, KMemoryState::FlagCanMapProcess, KMemoryState::FlagCanMapProcess, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::All, KMemoryAttribute::None)); CASCADE_CODE(Operate(dst_addr, num_pages, KMemoryPermission::None, OperationType::Unmap)); // Apply the memory block update. block_manager->Update(dst_addr, num_pages, KMemoryState::Free, KMemoryPermission::None, KMemoryAttribute::None); return ResultSuccess; } ResultCode KPageTable::MapPhysicalMemory(VAddr addr, std::size_t size) { // Lock the physical memory lock. std::lock_guard phys_lk(map_physical_memory_lock); // Lock the table. std::lock_guard lock{page_table_lock}; std::size_t mapped_size{}; const VAddr end_addr{addr + size}; block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) { if (info.state != KMemoryState::Free) { mapped_size += GetSizeInRange(info, addr, end_addr); } }); if (mapped_size == size) { return ResultSuccess; } const std::size_t remaining_size{size - mapped_size}; const std::size_t remaining_pages{remaining_size / PageSize}; // Reserve the memory from the process resource limit. KScopedResourceReservation memory_reservation( system.Kernel().CurrentProcess()->GetResourceLimit(), LimitableResource::PhysicalMemory, remaining_size); if (!memory_reservation.Succeeded()) { LOG_ERROR(Kernel, "Could not reserve remaining {:X} bytes", remaining_size); return ResultLimitReached; } KPageLinkedList page_linked_list; CASCADE_CODE(system.Kernel().MemoryManager().Allocate(page_linked_list, remaining_pages, memory_pool, allocation_option)); // We succeeded, so commit the memory reservation. memory_reservation.Commit(); // Map the memory. auto node{page_linked_list.Nodes().begin()}; PAddr map_addr{node->GetAddress()}; std::size_t src_num_pages{node->GetNumPages()}; block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) { if (info.state != KMemoryState::Free) { return; } std::size_t dst_num_pages{GetSizeInRange(info, addr, end_addr) / PageSize}; VAddr dst_addr{GetAddressInRange(info, addr)}; while (dst_num_pages) { if (!src_num_pages) { node = std::next(node); map_addr = node->GetAddress(); src_num_pages = node->GetNumPages(); } const std::size_t num_pages{std::min(src_num_pages, dst_num_pages)}; Operate(dst_addr, num_pages, KMemoryPermission::UserReadWrite, OperationType::Map, map_addr); dst_addr += num_pages * PageSize; map_addr += num_pages * PageSize; src_num_pages -= num_pages; dst_num_pages -= num_pages; } }); mapped_physical_memory_size += remaining_size; const std::size_t num_pages{size / PageSize}; block_manager->Update(addr, num_pages, KMemoryState::Free, KMemoryPermission::None, KMemoryAttribute::None, KMemoryState::Normal, KMemoryPermission::UserReadWrite, KMemoryAttribute::None); return ResultSuccess; } ResultCode KPageTable::UnmapPhysicalMemory(VAddr addr, std::size_t size) { std::lock_guard lock{page_table_lock}; const VAddr end_addr{addr + size}; ResultCode result{ResultSuccess}; std::size_t mapped_size{}; // Verify that the region can be unmapped block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) { if (info.state == KMemoryState::Normal) { if (info.attribute != KMemoryAttribute::None) { result = ResultInvalidCurrentMemory; return; } mapped_size += GetSizeInRange(info, addr, end_addr); } else if (info.state != KMemoryState::Free) { result = ResultInvalidCurrentMemory; } }); if (result.IsError()) { return result; } if (!mapped_size) { return ResultSuccess; } // Unmap each region within the range KPageLinkedList page_linked_list; block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) { if (info.state == KMemoryState::Normal) { const std::size_t block_size{GetSizeInRange(info, addr, end_addr)}; const std::size_t block_num_pages{block_size / PageSize}; const VAddr block_addr{GetAddressInRange(info, addr)}; AddRegionToPages(block_addr, block_size / PageSize, page_linked_list); if (result = Operate(block_addr, block_num_pages, KMemoryPermission::None, OperationType::Unmap); result.IsError()) { return; } } }); if (result.IsError()) { return result; } const std::size_t num_pages{size / PageSize}; system.Kernel().MemoryManager().Free(page_linked_list, num_pages, memory_pool, allocation_option); block_manager->Update(addr, num_pages, KMemoryState::Free); auto process{system.Kernel().CurrentProcess()}; process->GetResourceLimit()->Release(LimitableResource::PhysicalMemory, mapped_size); mapped_physical_memory_size -= mapped_size; return ResultSuccess; } ResultCode KPageTable::MapMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) { std::lock_guard lock{page_table_lock}; KMemoryState src_state{}; CASCADE_CODE(CheckMemoryState( &src_state, nullptr, nullptr, nullptr, src_addr, size, KMemoryState::FlagCanAlias, KMemoryState::FlagCanAlias, KMemoryPermission::All, KMemoryPermission::UserReadWrite, KMemoryAttribute::Mask, KMemoryAttribute::None, KMemoryAttribute::IpcAndDeviceMapped)); if (IsRegionMapped(dst_addr, size)) { return ResultInvalidCurrentMemory; } KPageLinkedList page_linked_list; const std::size_t num_pages{size / PageSize}; AddRegionToPages(src_addr, num_pages, page_linked_list); { auto block_guard = detail::ScopeExit([&] { Operate(src_addr, num_pages, KMemoryPermission::UserReadWrite, OperationType::ChangePermissions); }); CASCADE_CODE(Operate(src_addr, num_pages, KMemoryPermission::None, OperationType::ChangePermissions)); CASCADE_CODE(MapPages(dst_addr, page_linked_list, KMemoryPermission::UserReadWrite)); block_guard.Cancel(); } block_manager->Update(src_addr, num_pages, src_state, KMemoryPermission::None, KMemoryAttribute::Locked); block_manager->Update(dst_addr, num_pages, KMemoryState::Stack, KMemoryPermission::UserReadWrite); return ResultSuccess; } ResultCode KPageTable::UnmapMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) { std::lock_guard lock{page_table_lock}; KMemoryState src_state{}; CASCADE_CODE(CheckMemoryState( &src_state, nullptr, nullptr, nullptr, src_addr, size, KMemoryState::FlagCanAlias, KMemoryState::FlagCanAlias, KMemoryPermission::All, KMemoryPermission::None, KMemoryAttribute::Mask, KMemoryAttribute::Locked, KMemoryAttribute::IpcAndDeviceMapped)); KMemoryPermission dst_perm{}; CASCADE_CODE(CheckMemoryState(nullptr, &dst_perm, nullptr, nullptr, dst_addr, size, KMemoryState::All, KMemoryState::Stack, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::Mask, KMemoryAttribute::None, KMemoryAttribute::IpcAndDeviceMapped)); KPageLinkedList src_pages; KPageLinkedList dst_pages; const std::size_t num_pages{size / PageSize}; AddRegionToPages(src_addr, num_pages, src_pages); AddRegionToPages(dst_addr, num_pages, dst_pages); if (!dst_pages.IsEqual(src_pages)) { return ResultInvalidMemoryRegion; } { auto block_guard = detail::ScopeExit([&] { MapPages(dst_addr, dst_pages, dst_perm); }); CASCADE_CODE(Operate(dst_addr, num_pages, KMemoryPermission::None, OperationType::Unmap)); CASCADE_CODE(Operate(src_addr, num_pages, KMemoryPermission::UserReadWrite, OperationType::ChangePermissions)); block_guard.Cancel(); } block_manager->Update(src_addr, num_pages, src_state, KMemoryPermission::UserReadWrite); block_manager->Update(dst_addr, num_pages, KMemoryState::Free); return ResultSuccess; } ResultCode KPageTable::MapPages(VAddr addr, const KPageLinkedList& page_linked_list, KMemoryPermission perm) { VAddr cur_addr{addr}; for (const auto& node : page_linked_list.Nodes()) { if (const auto result{ Operate(cur_addr, node.GetNumPages(), perm, OperationType::Map, node.GetAddress())}; result.IsError()) { const std::size_t num_pages{(addr - cur_addr) / PageSize}; ASSERT(Operate(addr, num_pages, KMemoryPermission::None, OperationType::Unmap) .IsSuccess()); return result; } cur_addr += node.GetNumPages() * PageSize; } return ResultSuccess; } ResultCode KPageTable::MapPages(VAddr addr, KPageLinkedList& page_linked_list, KMemoryState state, KMemoryPermission perm) { std::lock_guard lock{page_table_lock}; const std::size_t num_pages{page_linked_list.GetNumPages()}; const std::size_t size{num_pages * PageSize}; if (!CanContain(addr, size, state)) { return ResultInvalidCurrentMemory; } if (IsRegionMapped(addr, num_pages * PageSize)) { return ResultInvalidCurrentMemory; } CASCADE_CODE(MapPages(addr, page_linked_list, perm)); block_manager->Update(addr, num_pages, state, perm); return ResultSuccess; } ResultCode KPageTable::UnmapPages(VAddr addr, const KPageLinkedList& page_linked_list) { VAddr cur_addr{addr}; for (const auto& node : page_linked_list.Nodes()) { const std::size_t num_pages{(addr - cur_addr) / PageSize}; if (const auto result{ Operate(addr, num_pages, KMemoryPermission::None, OperationType::Unmap)}; result.IsError()) { return result; } cur_addr += node.GetNumPages() * PageSize; } return ResultSuccess; } ResultCode KPageTable::UnmapPages(VAddr addr, KPageLinkedList& page_linked_list, KMemoryState state) { std::lock_guard lock{page_table_lock}; const std::size_t num_pages{page_linked_list.GetNumPages()}; const std::size_t size{num_pages * PageSize}; if (!CanContain(addr, size, state)) { return ResultInvalidCurrentMemory; } if (IsRegionMapped(addr, num_pages * PageSize)) { return ResultInvalidCurrentMemory; } CASCADE_CODE(UnmapPages(addr, page_linked_list)); block_manager->Update(addr, num_pages, state, KMemoryPermission::None); return ResultSuccess; } ResultCode KPageTable::SetProcessMemoryPermission(VAddr addr, std::size_t size, Svc::MemoryPermission svc_perm) { const size_t num_pages = size / PageSize; // Lock the table. std::lock_guard lock{page_table_lock}; // Verify we can change the memory permission. KMemoryState old_state; KMemoryPermission old_perm; size_t num_allocator_blocks; R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr, std::addressof(num_allocator_blocks), addr, size, KMemoryState::FlagCode, KMemoryState::FlagCode, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::All, KMemoryAttribute::None)); // Determine new perm/state. const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm); KMemoryState new_state = old_state; const bool is_w = (new_perm & KMemoryPermission::UserWrite) == KMemoryPermission::UserWrite; const bool is_x = (new_perm & KMemoryPermission::UserExecute) == KMemoryPermission::UserExecute; const bool was_x = (old_perm & KMemoryPermission::UserExecute) == KMemoryPermission::UserExecute; ASSERT(!(is_w && is_x)); if (is_w) { switch (old_state) { case KMemoryState::Code: new_state = KMemoryState::CodeData; break; case KMemoryState::AliasCode: new_state = KMemoryState::AliasCodeData; break; default: UNREACHABLE(); } } // Succeed if there's nothing to do. R_SUCCEED_IF(old_perm == new_perm && old_state == new_state); // Perform mapping operation. const auto operation = was_x ? OperationType::ChangePermissionsAndRefresh : OperationType::ChangePermissions; R_TRY(Operate(addr, num_pages, new_perm, operation)); // Update the blocks. block_manager->Update(addr, num_pages, new_state, new_perm, KMemoryAttribute::None); // Ensure cache coherency, if we're setting pages as executable. if (is_x) { // Memory execution state is changing, invalidate CPU cache range system.InvalidateCpuInstructionCacheRange(addr, size); } return ResultSuccess; } KMemoryInfo KPageTable::QueryInfoImpl(VAddr addr) { std::lock_guard lock{page_table_lock}; return block_manager->FindBlock(addr).GetMemoryInfo(); } KMemoryInfo KPageTable::QueryInfo(VAddr addr) { if (!Contains(addr, 1)) { return {address_space_end, 0 - address_space_end, KMemoryState::Inaccessible, KMemoryPermission::None, KMemoryAttribute::None, KMemoryPermission::None}; } return QueryInfoImpl(addr); } ResultCode KPageTable::ReserveTransferMemory(VAddr addr, std::size_t size, KMemoryPermission perm) { std::lock_guard lock{page_table_lock}; KMemoryState state{}; KMemoryAttribute attribute{}; CASCADE_CODE(CheckMemoryState( &state, nullptr, &attribute, nullptr, addr, size, KMemoryState::FlagCanTransfer | KMemoryState::FlagReferenceCounted, KMemoryState::FlagCanTransfer | KMemoryState::FlagReferenceCounted, KMemoryPermission::All, KMemoryPermission::UserReadWrite, KMemoryAttribute::Mask, KMemoryAttribute::None, KMemoryAttribute::IpcAndDeviceMapped)); block_manager->Update(addr, size / PageSize, state, perm, attribute | KMemoryAttribute::Locked); return ResultSuccess; } ResultCode KPageTable::ResetTransferMemory(VAddr addr, std::size_t size) { std::lock_guard lock{page_table_lock}; KMemoryState state{}; CASCADE_CODE( CheckMemoryState(&state, nullptr, nullptr, nullptr, addr, size, KMemoryState::FlagCanTransfer | KMemoryState::FlagReferenceCounted, KMemoryState::FlagCanTransfer | KMemoryState::FlagReferenceCounted, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::Mask, KMemoryAttribute::Locked, KMemoryAttribute::IpcAndDeviceMapped)); block_manager->Update(addr, size / PageSize, state, KMemoryPermission::UserReadWrite); return ResultSuccess; } ResultCode KPageTable::SetMemoryPermission(VAddr addr, std::size_t size, Svc::MemoryPermission svc_perm) { const size_t num_pages = size / PageSize; // Lock the table. std::lock_guard lock{page_table_lock}; // Verify we can change the memory permission. KMemoryState old_state; KMemoryPermission old_perm; R_TRY(this->CheckMemoryState( std::addressof(old_state), std::addressof(old_perm), nullptr, nullptr, addr, size, KMemoryState::FlagCanReprotect, KMemoryState::FlagCanReprotect, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::All, KMemoryAttribute::None)); // Determine new perm. const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm); R_SUCCEED_IF(old_perm == new_perm); // Perform mapping operation. R_TRY(Operate(addr, num_pages, new_perm, OperationType::ChangePermissions)); // Update the blocks. block_manager->Update(addr, num_pages, old_state, new_perm, KMemoryAttribute::None); return ResultSuccess; } ResultCode KPageTable::SetMemoryAttribute(VAddr addr, std::size_t size, u32 mask, u32 attr) { const size_t num_pages = size / PageSize; ASSERT((static_cast(mask) | KMemoryAttribute::SetMask) == KMemoryAttribute::SetMask); // Lock the table. std::lock_guard lock{page_table_lock}; // Verify we can change the memory attribute. KMemoryState old_state; KMemoryPermission old_perm; KMemoryAttribute old_attr; size_t num_allocator_blocks; constexpr auto AttributeTestMask = ~(KMemoryAttribute::SetMask | KMemoryAttribute::DeviceShared); R_TRY(this->CheckMemoryState( std::addressof(old_state), std::addressof(old_perm), std::addressof(old_attr), std::addressof(num_allocator_blocks), addr, size, KMemoryState::FlagCanChangeAttribute, KMemoryState::FlagCanChangeAttribute, KMemoryPermission::None, KMemoryPermission::None, AttributeTestMask, KMemoryAttribute::None, ~AttributeTestMask)); // Determine the new attribute. const auto new_attr = ((old_attr & static_cast(~mask)) | static_cast(attr & mask)); // Perform operation. this->Operate(addr, num_pages, old_perm, OperationType::ChangePermissionsAndRefresh); // Update the blocks. block_manager->Update(addr, num_pages, old_state, old_perm, new_attr); return ResultSuccess; } ResultCode KPageTable::SetMaxHeapSize(std::size_t size) { // Lock the table. std::lock_guard lock{page_table_lock}; // Only process page tables are allowed to set heap size. ASSERT(!this->IsKernel()); max_heap_size = size; return ResultSuccess; } ResultCode KPageTable::SetHeapSize(VAddr* out, std::size_t size) { // Lock the physical memory lock. std::lock_guard phys_lk(map_physical_memory_lock); // Try to perform a reduction in heap, instead of an extension. VAddr cur_address{}; std::size_t allocation_size{}; { // Lock the table. std::lock_guard lk(page_table_lock); // Validate that setting heap size is possible at all. R_UNLESS(!is_kernel, ResultOutOfMemory); R_UNLESS(size <= static_cast(heap_region_end - heap_region_start), ResultOutOfMemory); R_UNLESS(size <= max_heap_size, ResultOutOfMemory); if (size < GetHeapSize()) { // The size being requested is less than the current size, so we need to free the end of // the heap. // Validate memory state. std::size_t num_allocator_blocks; R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), heap_region_start + size, GetHeapSize() - size, KMemoryState::All, KMemoryState::Normal, KMemoryPermission::All, KMemoryPermission::UserReadWrite, KMemoryAttribute::All, KMemoryAttribute::None)); // Unmap the end of the heap. const auto num_pages = (GetHeapSize() - size) / PageSize; R_TRY(Operate(heap_region_start + size, num_pages, KMemoryPermission::None, OperationType::Unmap)); // Release the memory from the resource limit. system.Kernel().CurrentProcess()->GetResourceLimit()->Release( LimitableResource::PhysicalMemory, num_pages * PageSize); // Apply the memory block update. block_manager->Update(heap_region_start + size, num_pages, KMemoryState::Free, KMemoryPermission::None, KMemoryAttribute::None); // Update the current heap end. current_heap_end = heap_region_start + size; // Set the output. *out = heap_region_start; return ResultSuccess; } else if (size == GetHeapSize()) { // The size requested is exactly the current size. *out = heap_region_start; return ResultSuccess; } else { // We have to allocate memory. Determine how much to allocate and where while the table // is locked. cur_address = current_heap_end; allocation_size = size - GetHeapSize(); } } // Reserve memory for the heap extension. KScopedResourceReservation memory_reservation( system.Kernel().CurrentProcess()->GetResourceLimit(), LimitableResource::PhysicalMemory, allocation_size); R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached); // Allocate pages for the heap extension. KPageLinkedList page_linked_list; R_TRY(system.Kernel().MemoryManager().Allocate(page_linked_list, allocation_size / PageSize, memory_pool, allocation_option)); // Map the pages. { // Lock the table. std::lock_guard lk(page_table_lock); // Ensure that the heap hasn't changed since we began executing. ASSERT(cur_address == current_heap_end); // Check the memory state. std::size_t num_allocator_blocks{}; R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), current_heap_end, allocation_size, KMemoryState::All, KMemoryState::Free, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::None, KMemoryAttribute::None)); // Map the pages. const auto num_pages = allocation_size / PageSize; R_TRY(Operate(current_heap_end, num_pages, page_linked_list, OperationType::MapGroup)); // Clear all the newly allocated pages. for (std::size_t cur_page = 0; cur_page < num_pages; ++cur_page) { std::memset(system.Memory().GetPointer(current_heap_end + (cur_page * PageSize)), 0, PageSize); } // We succeeded, so commit our memory reservation. memory_reservation.Commit(); // Apply the memory block update. block_manager->Update(current_heap_end, num_pages, KMemoryState::Normal, KMemoryPermission::UserReadWrite, KMemoryAttribute::None); // Update the current heap end. current_heap_end = heap_region_start + size; // Set the output. *out = heap_region_start; return ResultSuccess; } } ResultVal KPageTable::AllocateAndMapMemory(std::size_t needed_num_pages, std::size_t align, bool is_map_only, VAddr region_start, std::size_t region_num_pages, KMemoryState state, KMemoryPermission perm, PAddr map_addr) { std::lock_guard lock{page_table_lock}; if (!CanContain(region_start, region_num_pages * PageSize, state)) { return ResultInvalidCurrentMemory; } if (region_num_pages <= needed_num_pages) { return ResultOutOfMemory; } const VAddr addr{ AllocateVirtualMemory(region_start, region_num_pages, needed_num_pages, align)}; if (!addr) { return ResultOutOfMemory; } if (is_map_only) { R_TRY(Operate(addr, needed_num_pages, perm, OperationType::Map, map_addr)); } else { KPageLinkedList page_group; R_TRY(system.Kernel().MemoryManager().Allocate(page_group, needed_num_pages, memory_pool, allocation_option)); R_TRY(Operate(addr, needed_num_pages, page_group, OperationType::MapGroup)); } block_manager->Update(addr, needed_num_pages, state, perm); return addr; } ResultCode KPageTable::LockForDeviceAddressSpace(VAddr addr, std::size_t size) { std::lock_guard lock{page_table_lock}; KMemoryPermission perm{}; if (const ResultCode result{CheckMemoryState( nullptr, &perm, nullptr, nullptr, addr, size, KMemoryState::FlagCanChangeAttribute, KMemoryState::FlagCanChangeAttribute, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::LockedAndIpcLocked, KMemoryAttribute::None, KMemoryAttribute::DeviceSharedAndUncached)}; result.IsError()) { return result; } block_manager->UpdateLock( addr, size / PageSize, [](KMemoryBlockManager::iterator block, KMemoryPermission permission) { block->ShareToDevice(permission); }, perm); return ResultSuccess; } ResultCode KPageTable::UnlockForDeviceAddressSpace(VAddr addr, std::size_t size) { std::lock_guard lock{page_table_lock}; KMemoryPermission perm{}; if (const ResultCode result{CheckMemoryState( nullptr, &perm, nullptr, nullptr, addr, size, KMemoryState::FlagCanChangeAttribute, KMemoryState::FlagCanChangeAttribute, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::LockedAndIpcLocked, KMemoryAttribute::None, KMemoryAttribute::DeviceSharedAndUncached)}; result.IsError()) { return result; } block_manager->UpdateLock( addr, size / PageSize, [](KMemoryBlockManager::iterator block, KMemoryPermission permission) { block->UnshareToDevice(permission); }, perm); return ResultSuccess; } ResultCode KPageTable::LockForCodeMemory(VAddr addr, std::size_t size) { std::lock_guard lock{page_table_lock}; KMemoryPermission new_perm = KMemoryPermission::NotMapped | KMemoryPermission::KernelReadWrite; KMemoryPermission old_perm{}; if (const ResultCode result{CheckMemoryState( nullptr, &old_perm, nullptr, nullptr, addr, size, KMemoryState::FlagCanCodeMemory, KMemoryState::FlagCanCodeMemory, KMemoryPermission::All, KMemoryPermission::UserReadWrite, KMemoryAttribute::All, KMemoryAttribute::None)}; result.IsError()) { return result; } new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm; block_manager->UpdateLock( addr, size / PageSize, [](KMemoryBlockManager::iterator block, KMemoryPermission permission) { block->ShareToDevice(permission); }, new_perm); return ResultSuccess; } ResultCode KPageTable::UnlockForCodeMemory(VAddr addr, std::size_t size) { std::lock_guard lock{page_table_lock}; KMemoryPermission new_perm = KMemoryPermission::UserReadWrite; KMemoryPermission old_perm{}; if (const ResultCode result{CheckMemoryState( nullptr, &old_perm, nullptr, nullptr, addr, size, KMemoryState::FlagCanCodeMemory, KMemoryState::FlagCanCodeMemory, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::All, KMemoryAttribute::Locked)}; result.IsError()) { return result; } new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm; block_manager->UpdateLock( addr, size / PageSize, [](KMemoryBlockManager::iterator block, KMemoryPermission permission) { block->UnshareToDevice(permission); }, new_perm); return ResultSuccess; } ResultCode KPageTable::InitializeMemoryLayout(VAddr start, VAddr end) { block_manager = std::make_unique(start, end); return ResultSuccess; } bool KPageTable::IsRegionMapped(VAddr address, u64 size) { return CheckMemoryState(address, size, KMemoryState::All, KMemoryState::Free, KMemoryPermission::All, KMemoryPermission::None, KMemoryAttribute::Mask, KMemoryAttribute::None, KMemoryAttribute::IpcAndDeviceMapped) .IsError(); } bool KPageTable::IsRegionContiguous(VAddr addr, u64 size) const { auto start_ptr = system.Memory().GetPointer(addr); for (u64 offset{}; offset < size; offset += PageSize) { if (start_ptr != system.Memory().GetPointer(addr + offset)) { return false; } start_ptr += PageSize; } return true; } void KPageTable::AddRegionToPages(VAddr start, std::size_t num_pages, KPageLinkedList& page_linked_list) { VAddr addr{start}; while (addr < start + (num_pages * PageSize)) { const PAddr paddr{GetPhysicalAddr(addr)}; if (!paddr) { UNREACHABLE(); } page_linked_list.AddBlock(paddr, 1); addr += PageSize; } } VAddr KPageTable::AllocateVirtualMemory(VAddr start, std::size_t region_num_pages, u64 needed_num_pages, std::size_t align) { if (is_aslr_enabled) { UNIMPLEMENTED(); } return block_manager->FindFreeArea(start, region_num_pages, needed_num_pages, align, 0, IsKernel() ? 1 : 4); } ResultCode KPageTable::Operate(VAddr addr, std::size_t num_pages, const KPageLinkedList& page_group, OperationType operation) { ASSERT(this->IsLockedByCurrentThread()); ASSERT(Common::IsAligned(addr, PageSize)); ASSERT(num_pages > 0); ASSERT(num_pages == page_group.GetNumPages()); for (const auto& node : page_group.Nodes()) { const std::size_t size{node.GetNumPages() * PageSize}; switch (operation) { case OperationType::MapGroup: system.Memory().MapMemoryRegion(page_table_impl, addr, size, node.GetAddress()); break; default: UNREACHABLE(); } addr += size; } return ResultSuccess; } ResultCode KPageTable::Operate(VAddr addr, std::size_t num_pages, KMemoryPermission perm, OperationType operation, PAddr map_addr) { ASSERT(this->IsLockedByCurrentThread()); ASSERT(num_pages > 0); ASSERT(Common::IsAligned(addr, PageSize)); ASSERT(ContainsPages(addr, num_pages)); switch (operation) { case OperationType::Unmap: system.Memory().UnmapRegion(page_table_impl, addr, num_pages * PageSize); break; case OperationType::Map: { ASSERT(map_addr); ASSERT(Common::IsAligned(map_addr, PageSize)); system.Memory().MapMemoryRegion(page_table_impl, addr, num_pages * PageSize, map_addr); break; } case OperationType::ChangePermissions: case OperationType::ChangePermissionsAndRefresh: break; default: UNREACHABLE(); } return ResultSuccess; } constexpr VAddr KPageTable::GetRegionAddress(KMemoryState state) const { switch (state) { case KMemoryState::Free: case KMemoryState::Kernel: return address_space_start; case KMemoryState::Normal: return heap_region_start; case KMemoryState::Ipc: case KMemoryState::NonSecureIpc: case KMemoryState::NonDeviceIpc: return alias_region_start; case KMemoryState::Stack: return stack_region_start; case KMemoryState::Static: case KMemoryState::ThreadLocal: return kernel_map_region_start; case KMemoryState::Io: case KMemoryState::Shared: case KMemoryState::AliasCode: case KMemoryState::AliasCodeData: case KMemoryState::Transfered: case KMemoryState::SharedTransfered: case KMemoryState::SharedCode: case KMemoryState::GeneratedCode: case KMemoryState::CodeOut: case KMemoryState::Coverage: return alias_code_region_start; case KMemoryState::Code: case KMemoryState::CodeData: return code_region_start; default: UNREACHABLE(); return {}; } } constexpr std::size_t KPageTable::GetRegionSize(KMemoryState state) const { switch (state) { case KMemoryState::Free: case KMemoryState::Kernel: return address_space_end - address_space_start; case KMemoryState::Normal: return heap_region_end - heap_region_start; case KMemoryState::Ipc: case KMemoryState::NonSecureIpc: case KMemoryState::NonDeviceIpc: return alias_region_end - alias_region_start; case KMemoryState::Stack: return stack_region_end - stack_region_start; case KMemoryState::Static: case KMemoryState::ThreadLocal: return kernel_map_region_end - kernel_map_region_start; case KMemoryState::Io: case KMemoryState::Shared: case KMemoryState::AliasCode: case KMemoryState::AliasCodeData: case KMemoryState::Transfered: case KMemoryState::SharedTransfered: case KMemoryState::SharedCode: case KMemoryState::GeneratedCode: case KMemoryState::CodeOut: case KMemoryState::Coverage: return alias_code_region_end - alias_code_region_start; case KMemoryState::Code: case KMemoryState::CodeData: return code_region_end - code_region_start; default: UNREACHABLE(); return {}; } } bool KPageTable::CanContain(VAddr addr, std::size_t size, KMemoryState state) const { const VAddr end = addr + size; const VAddr last = end - 1; const VAddr region_start = this->GetRegionAddress(state); const size_t region_size = this->GetRegionSize(state); const bool is_in_region = region_start <= addr && addr < end && last <= region_start + region_size - 1; const bool is_in_heap = !(end <= heap_region_start || heap_region_end <= addr || heap_region_start == heap_region_end); const bool is_in_alias = !(end <= alias_region_start || alias_region_end <= addr || alias_region_start == alias_region_end); switch (state) { case KMemoryState::Free: case KMemoryState::Kernel: return is_in_region; case KMemoryState::Io: case KMemoryState::Static: case KMemoryState::Code: case KMemoryState::CodeData: case KMemoryState::Shared: case KMemoryState::AliasCode: case KMemoryState::AliasCodeData: case KMemoryState::Stack: case KMemoryState::ThreadLocal: case KMemoryState::Transfered: case KMemoryState::SharedTransfered: case KMemoryState::SharedCode: case KMemoryState::GeneratedCode: case KMemoryState::CodeOut: case KMemoryState::Coverage: return is_in_region && !is_in_heap && !is_in_alias; case KMemoryState::Normal: ASSERT(is_in_heap); return is_in_region && !is_in_alias; case KMemoryState::Ipc: case KMemoryState::NonSecureIpc: case KMemoryState::NonDeviceIpc: ASSERT(is_in_alias); return is_in_region && !is_in_heap; default: return false; } } ResultCode KPageTable::CheckMemoryState(const KMemoryInfo& info, KMemoryState state_mask, KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm, KMemoryAttribute attr_mask, KMemoryAttribute attr) const { // Validate the states match expectation. R_UNLESS((info.state & state_mask) == state, ResultInvalidCurrentMemory); R_UNLESS((info.perm & perm_mask) == perm, ResultInvalidCurrentMemory); R_UNLESS((info.attribute & attr_mask) == attr, ResultInvalidCurrentMemory); return ResultSuccess; } ResultCode KPageTable::CheckMemoryStateContiguous(std::size_t* out_blocks_needed, VAddr addr, std::size_t size, KMemoryState state_mask, KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm, KMemoryAttribute attr_mask, KMemoryAttribute attr) const { ASSERT(this->IsLockedByCurrentThread()); // Get information about the first block. const VAddr last_addr = addr + size - 1; KMemoryBlockManager::const_iterator it = block_manager->FindIterator(addr); KMemoryInfo info = it->GetMemoryInfo(); // If the start address isn't aligned, we need a block. const size_t blocks_for_start_align = (Common::AlignDown(addr, PageSize) != info.GetAddress()) ? 1 : 0; while (true) { // Validate against the provided masks. R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr)); // Break once we're done. if (last_addr <= info.GetLastAddress()) { break; } // Advance our iterator. it++; ASSERT(it != block_manager->cend()); info = it->GetMemoryInfo(); } // If the end address isn't aligned, we need a block. const size_t blocks_for_end_align = (Common::AlignUp(addr + size, PageSize) != info.GetEndAddress()) ? 1 : 0; if (out_blocks_needed != nullptr) { *out_blocks_needed = blocks_for_start_align + blocks_for_end_align; } return ResultSuccess; } ResultCode KPageTable::CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm, KMemoryAttribute* out_attr, std::size_t* out_blocks_needed, VAddr addr, std::size_t size, KMemoryState state_mask, KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm, KMemoryAttribute attr_mask, KMemoryAttribute attr, KMemoryAttribute ignore_attr) const { ASSERT(this->IsLockedByCurrentThread()); // Get information about the first block. const VAddr last_addr = addr + size - 1; KMemoryBlockManager::const_iterator it = block_manager->FindIterator(addr); KMemoryInfo info = it->GetMemoryInfo(); // If the start address isn't aligned, we need a block. const size_t blocks_for_start_align = (Common::AlignDown(addr, PageSize) != info.GetAddress()) ? 1 : 0; // Validate all blocks in the range have correct state. const KMemoryState first_state = info.state; const KMemoryPermission first_perm = info.perm; const KMemoryAttribute first_attr = info.attribute; while (true) { // Validate the current block. R_UNLESS(info.state == first_state, ResultInvalidCurrentMemory); R_UNLESS(info.perm == first_perm, ResultInvalidCurrentMemory); R_UNLESS((info.attribute | ignore_attr) == (first_attr | ignore_attr), ResultInvalidCurrentMemory); // Validate against the provided masks. R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr)); // Break once we're done. if (last_addr <= info.GetLastAddress()) { break; } // Advance our iterator. it++; ASSERT(it != block_manager->cend()); info = it->GetMemoryInfo(); } // If the end address isn't aligned, we need a block. const size_t blocks_for_end_align = (Common::AlignUp(addr + size, PageSize) != info.GetEndAddress()) ? 1 : 0; // Write output state. if (out_state != nullptr) { *out_state = first_state; } if (out_perm != nullptr) { *out_perm = first_perm; } if (out_attr != nullptr) { *out_attr = static_cast(first_attr & ~ignore_attr); } if (out_blocks_needed != nullptr) { *out_blocks_needed = blocks_for_start_align + blocks_for_end_align; } return ResultSuccess; } } // namespace Kernel